Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = Aβ cascade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7888 KiB  
Article
Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling
by Pranav Mishra, Ehsan K. Esfahani, Paul Fernyhough and Benedict C. Albensi
Int. J. Mol. Sci. 2025, 26(13), 6203; https://doi.org/10.3390/ijms26136203 - 27 Jun 2025
Viewed by 608
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the [...] Read more.
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the critical roles of mitochondrial dysfunction and neuroinflammation in disease progression. Aβ impairs mitochondrial function, which, in part, can subsequently trigger inflammatory cascades, creating a vicious cycle of neuronal damage. Estrogen receptors (ERs) are widely expressed throughout the brain, and the sex hormone 17β-estradiol (E2) exerts neuroprotection through both anti-inflammatory and mitochondrial mechanisms. While E2 exhibits neuroprotective properties, its mechanisms against Aβ toxicity remain incompletely understood. In this study, we investigated the neuroprotective effects of E2 against Aβ-induced mitochondrial dysfunction and neuroinflammation in primary cortical neurons, with a particular focus on the role of AMP-activated protein kinase (AMPK). We found that E2 treatment significantly increased phosphorylated AMPK and upregulated the expression of mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α), leading to improved mitochondrial respiration. In contrast, Aβ suppressed AMPK and PGC-1α signaling, impaired mitochondrial function, activated the pro-inflammatory nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and reduced neuronal viability. E2 pretreatment also rescued Aβ-induced mitochondrial dysfunction, suppressed NF-κB activation, and, importantly, prevented the decline in neuronal viability. However, the pharmacological inhibition of AMPK using Compound C (CC) abolished these protective effects, resulting in mitochondrial collapse, elevated inflammation, and cell death, highlighting AMPK’s critical role in mediating E2’s actions. Interestingly, while NF-κB inhibition using BAY 11-7082 partially restored mitochondrial respiration, it failed to prevent Aβ-induced cytotoxicity, suggesting that E2’s full neuroprotective effects rely on broader AMPK-dependent mechanisms beyond NF-κB suppression alone. Together, these findings establish AMPK as a key mediator of E2’s protective effects against Aβ-driven mitochondrial dysfunction and neuroinflammation, providing new insights into estrogen-based therapeutic strategies for AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

12 pages, 1727 KiB  
Viewpoint
An Overview of Glutaminyl Cyclase as a Promising Drug Target for Alzheimer’s Disease
by Rasajna Madhusudhana, Emily Boyle and Yana Cen
Biomedicines 2025, 13(6), 1467; https://doi.org/10.3390/biomedicines13061467 - 13 Jun 2025
Viewed by 602
Abstract
Alzheimer’s disease (AD) has become an increasingly pressing concern for the aging population. Current AD treatments mainly focus on cognitive and neuropsychiatric symptoms—with few FDA-approved treatments targeting disease progression itself. The amyloid cascade hypothesis describes the formation and accumulation of β-amyloid (Aβ) oligomers [...] Read more.
Alzheimer’s disease (AD) has become an increasingly pressing concern for the aging population. Current AD treatments mainly focus on cognitive and neuropsychiatric symptoms—with few FDA-approved treatments targeting disease progression itself. The amyloid cascade hypothesis describes the formation and accumulation of β-amyloid (Aβ) oligomers and plaques as a primary event in AD pathogenesis. This hypothesis has served as the foundation of disease-modifying treatment development over the last decade. Recently, glutaminyl cyclase (QC) has been identified as a potential drug target in the amyloid cascade. QC catalyzes the cyclization of Aβ to form pyroglutamated Aβ (pEAβ). pEAβ acts as the seed for the formation of Aβ plaques, thus preventing the formation of pEAβ via QC inhibition, and offers a promising therapeutic strategy against AD. Here, we offer an overview of the pathway QCI research has followed—from the initial testing of imidazole-based inhibitor scaffolds to QCI structural optimization via pharmacophore identification, Varoglutamstat entering clinical trials, and further avenues of bettering specificity and potency for future QCI development. Full article
Show Figures

Figure 1

25 pages, 1948 KiB  
Review
The Role and Pathogenesis of Tau Protein in Alzheimer’s Disease
by Xiaoyue Hong, Linshu Huang, Fang Lei, Tian Li, Yi Luo, Mengliu Zeng and Zhuo Wang
Biomolecules 2025, 15(6), 824; https://doi.org/10.3390/biom15060824 - 5 Jun 2025
Viewed by 1351
Abstract
Alzheimer’s disease (AD), a predominant neurodegenerative disorder, is clinically characterized by progressive cognitive deterioration and behavioral deficits. An in-depth understanding of the pathogenesis and neuropathology of AD is essential for the development of effective treatments and early diagnosis techniques. The neuropathological signature of [...] Read more.
Alzheimer’s disease (AD), a predominant neurodegenerative disorder, is clinically characterized by progressive cognitive deterioration and behavioral deficits. An in-depth understanding of the pathogenesis and neuropathology of AD is essential for the development of effective treatments and early diagnosis techniques. The neuropathological signature of AD involves two hallmark lesions: intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau aggregates and extracellular senile plaques containing amyloid-β (Aβ) peptide depositions. Although Aβ-centric research has dominated AD investigations over the past three decades, pharmacological interventions targeting Aβ pathology have failed to demonstrate clinical efficacy. Tau, a microtubule-associated protein predominantly localized to neuronal axons, orchestrates microtubule stabilization and axonal transport through dynamic tubulin interactions under physiological conditions. In AD pathogenesis, however, tau undergoes pathogenic post-translational modifications (PTMs), encompassing hyperphosphorylation, lysine acetylation, methylation, ubiquitination, and glycosylation. These PTM-driven alterations induce microtubule network disintegration, mitochondrial dysfunction, synaptic impairment, and neuroinflammatory cascades, ultimately culminating in irreversible neurodegeneration and progressive cognitive decline. This review synthesizes contemporary advances in tau PTM research and delineates their mechanistic contributions to AD pathogenesis, thereby establishing a framework for biomarker discovery, targeted therapeutic development, and precision medicine approaches in tauopathies. This review synthesizes contemporary advances in tau PTM research and delineates their mechanistic contributions to AD pathogenesis, thereby establishing a solid theoretical and experimental basis for the early diagnosis of neurodegenerative diseases, the discovery of therapeutic targets, and the development of novel therapeutic strategies. Full article
(This article belongs to the Special Issue Pathogenesis and Neuropathology of Alzheimer's Disease)
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
Short-Term Inhibition of NOX2 Prevents the Development of Aβ-Induced Pathology in Mice
by Kristina A. Mukhina, Olga I. Kechko, Alexander A. Osypov, Irina Yu. Petrushanko, Alexander A. Makarov, Vladimir A. Mitkevich and Irina Yu. Popova
Antioxidants 2025, 14(6), 663; https://doi.org/10.3390/antiox14060663 - 30 May 2025
Cited by 1 | Viewed by 456
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by the formation of neurotoxic beta-amyloid (Aβ) oligomers in the central nervous system. One of the earliest pathological effects of Aβ is the induction of oxidative stress in brain tissue, mediated by NADPH [...] Read more.
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by the formation of neurotoxic beta-amyloid (Aβ) oligomers in the central nervous system. One of the earliest pathological effects of Aβ is the induction of oxidative stress in brain tissue, mediated by NADPH oxidase 2 (NOX2). This study aimed to determine whether short-term inhibition of NOX2 could disrupt the pathological cascade and prevent the development of Aβ-induced pathology. We demonstrated that suppressing NOX2 activity by GSK2795039 during the first three days after intracerebral Aβ administration prevented the development of the pathological process in mice. Two weeks after the induction of Aβ pathology, animals treated with GSK2795039 showed no neuropsychiatric-like behavioral changes, which correlated with the absence of chronic oxidative damage in brain tissue. Moreover, GSK2795039 prevented microglial activation and reduced microglia-associated neuroinflammation. These findings indicate that short-term NOX2 inhibition effectively suppresses the development of Aβ-induced pathology, suggesting that NOX2 is a potential target for treatment and prevention of AD pathology. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

25 pages, 810 KiB  
Review
Signs of Alzheimer’s Disease: Tied to Aging
by Jiahui Chen, Zhongying Zhu and Yuanyuan Xu
Int. J. Mol. Sci. 2025, 26(11), 4974; https://doi.org/10.3390/ijms26114974 - 22 May 2025
Cited by 2 | Viewed by 3919
Abstract
: Alzheimer’s disease (AD) is a neurodegenerative disorder closely associated with aging, and its pathogenesis involves the interaction of multidimensional pathophysiologic processes. This review outlines the core mechanisms linking aging and AD. The amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) [...] Read more.
: Alzheimer’s disease (AD) is a neurodegenerative disorder closely associated with aging, and its pathogenesis involves the interaction of multidimensional pathophysiologic processes. This review outlines the core mechanisms linking aging and AD. The amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) triggers neuronal damage and synaptic dysfunction, which is exacerbated by aging-associated declines in protein clearance. Neuroinflammation, a synergistic pathogenetic factor in AD, is mediated by microglia activation, creating a vicious cycle with Aβ and tau pathology. The cholinergic hypothesis states that the degeneration of cholinergic neurons in the basal forebrain can lead to acetylcholine deficiency, which is directly associated with cognitive decline. Endothelial disorders promote neuroinflammation and metabolic waste accumulation through blood–brain barrier dysfunction and cerebral vascular abnormalities. In addition, glutamate-mediated excitotoxicity and mitochondrial dysfunction (e.g., oxidative stress and energy metabolism imbalance) further lead to neuronal death, and aging-associated declines in mitochondrial autophagy exacerbate such damage. This review also explores the application of animal models that mimic AD and aging in studying these mechanisms and summarizes therapeutic strategies targeting these pathways. Future studies need to integrate multi-targeted therapies and focus on the role of the aging microenvironment in regulating AD pathology in order to develop more effective early diagnosis and treatment options. Full article
Show Figures

Figure 1

24 pages, 2232 KiB  
Review
Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
by Chih Hung Lo, Lenny Yi Tong Cheong and Jialiu Zeng
Nanomaterials 2025, 15(10), 704; https://doi.org/10.3390/nano15100704 - 8 May 2025
Viewed by 954
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate [...] Read more.
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood–brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

18 pages, 1361 KiB  
Review
Inflammasome-Mediated Neuroinflammation: A Key Driver in Alzheimer’s Disease Pathogenesis
by Julie McGroarty, Shelbi Salinas, Hayden Evans, Bryan Jimenez, Vincent Tran, Samuel Kadavakollu, Arti Vashist and Venkata Atluri
Biomolecules 2025, 15(5), 676; https://doi.org/10.3390/biom15050676 - 7 May 2025
Viewed by 2218
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by memory loss, cognitive decline, and functional impairment. While hallmark pathological features include extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, increasing evidence points [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by memory loss, cognitive decline, and functional impairment. While hallmark pathological features include extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, increasing evidence points to chronic neuroinflammation as a key driver of disease progression. Among inflammatory mechanisms, the activation of the NLRP3 (nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3) inflammasome in microglia plays a pivotal role by amplifying neuroinflammatory cascades, exacerbating synaptic dysfunction, and accelerating neuronal loss. This review examines the molecular underpinnings of AD with a focus on NLRP3 inflammasome-mediated neuroinflammation, detailing the crosstalk between Aβ, tau pathology, and innate immune responses. Finally, we highlight emerging therapeutic strategies targeting NLRP3 inflammasome activation as promising avenues for mitigating neuroinflammation and slowing AD progression. Full article
(This article belongs to the Special Issue Pathogenesis and Neuropathology of Alzheimer's Disease)
Show Figures

Figure 1

27 pages, 7308 KiB  
Article
PF-06447475 Molecule Attenuates the Neuropathology of Familial Alzheimer’s and Coexistent Parkinson’s Disease Markers in PSEN1 I416T Dopaminergic-like Neurons
by Diana Alejandra Quintero-Espinosa, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Molecules 2025, 30(9), 2034; https://doi.org/10.3390/molecules30092034 - 2 May 2025
Viewed by 747
Abstract
Familial Alzheimer’s disease (FAD) is a complex multifactorial disorder clinically characterized by cognitive impairment and memory loss. Pathologically, FAD is characterized by intracellular accumulation of the protein fragment Aβ42 (iAβ), hyperphosphorylated microtubule-associated protein TAU (p-TAU), and extensive degeneration of basal forebrain cholinergic neurons [...] Read more.
Familial Alzheimer’s disease (FAD) is a complex multifactorial disorder clinically characterized by cognitive impairment and memory loss. Pathologically, FAD is characterized by intracellular accumulation of the protein fragment Aβ42 (iAβ), hyperphosphorylated microtubule-associated protein TAU (p-TAU), and extensive degeneration of basal forebrain cholinergic neurons of the nucleus basalis of Meynert (NbM) and the medial septal nucleus (MSN), mainly caused by mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and PSEN2 gene. Since the dopaminergic system may contribute to FAD symptoms, alterations in the nigro-hippocampal pathway may be associated with cognitive impairment in FAD. Interestingly, p-α-synuclein (p-α-Syn), Aβ, and p-TAU have been found to coexist in vulnerable regions of postmortem AD brains. However, the mechanism by which Aβ, p-TAU, and α-Syn coexist in DAergic neurons in AD brains has not been determined. We generated PSEN1 I416T dopaminergic-like neurons (DALNs) from I416T menstrual stromal cells (MenSCs) in NeuroForsk 2.0 medium for 7 days and then cultured them in minimal culture medium (MCm) for another 4 days. On day 11, DALNs were analyzed for molecular and pathological markers by flow cytometry and fluorescence microscopy. We found that mutant DALNs showed increased accumulation of iAβ as well as increased phosphorylation of TAU at S202/T205 compared to WT DALNs. Thus, mutant DALNs exhibited typical pathological hallmarks of Alzheimer’s disease. Furthermore, PSEN1 I416T DALNs showed concomitant signs of OS as evidenced by the appearance of oxidized sensor protein DJ-1 (i.e., DJ-1C106-SO3) and apoptotic markers TP53, pS63-c-JUN, PUMA, and cleavage caspase 3 (CC3). Notably, these DALNs exhibited PD-associated proteins such as intracellular accumulation of α-Syn (detected as aggregates of pS129-α-Syn) and phosphorylation of LRRK2 kinase at residue S935. In addition, mutant DALNs showed a 17.16- and 6.17-fold decrease in DA-induced Ca2+ flux, compared to WT DALNs. These observations suggest that iAβ and p-TAU, together with p-α-Syn, and p-LRRK2 kinase, may damage DAergic neurons and thereby contribute to the exacerbation of neuropathologic processes in FAD. Remarkably, the LRRK2 inhibitor PF-06447475 (PF-475) significantly reversed PSEN1 I416T-induced neuropathological markers in DAergic neurons. PF-465 inhibitor reduced iAβ, oxDJ-1C106-SO3, and p-TAU. In addition, this inhibitor reduced pS935-LRRK2, pS129-αSYN, pS63-c-JUN, and CC3. We conclude that the observed neuroprotective effects of PF-475 are due to direct inhibition of LRRK2 activity and that the LRRK2 protein is upstream of the molecular cascade of apoptosis and proteinopathy. Our results suggest that PF-475 is an effective neuroprotective agent against endogenous PSEN1 I416T-induced neurotoxicity in DALNs coexisting with Parkinson’s disease markers. Therefore, PF-475 may be of great therapeutic value in FAD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Figure 1

136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1286
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

26 pages, 717 KiB  
Review
In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer’s Disease Pathology
by Qianmin Liu, Simin Song, Lu Liu and Wei Hong
Biomolecules 2025, 15(4), 571; https://doi.org/10.3390/biom15040571 - 11 Apr 2025
Viewed by 979
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds. Full article
Show Figures

Figure 1

19 pages, 1936 KiB  
Review
Interferon Regulatory Factors as a Potential Therapeutic Target for Neuroinflammation: A Focus on Alzheimer’s Disease
by Xing Fan, Weikang Diao, Hao Wang, Xiaomin Yin and Wei Qian
Int. J. Mol. Sci. 2025, 26(7), 2906; https://doi.org/10.3390/ijms26072906 - 23 Mar 2025
Viewed by 1249
Abstract
Interferon Regulatory Factors (IRFs) are critical modulators of immune and inflammatory responses, yet their roles in Alzheimer’s disease (AD) and other neurodegenerative disorders remain incompletely understood. While IRFs are recognized for their regulatory functions in neuroinflammation, microglial activation, and neuronal survival, their dual [...] Read more.
Interferon Regulatory Factors (IRFs) are critical modulators of immune and inflammatory responses, yet their roles in Alzheimer’s disease (AD) and other neurodegenerative disorders remain incompletely understood. While IRFs are recognized for their regulatory functions in neuroinflammation, microglial activation, and neuronal survival, their dual roles as both drivers of pathological inflammation and mediators of neuroprotective pathways underscore a sophisticated regulatory paradox in neurodegenerative disorders. This review aims to synthesize current evidence on IRF-mediated neuroinflammation in AD and related diseases, focusing on the multifaceted functions of key IRF family members, including IRF1, IRF3, and IRF7. We critically evaluate their divergent roles: IRF1 and IRF3, for instance, exacerbate neuroinflammatory cascades and amyloid-beta (Aβ) pathology in AD, whereas IRF7 may paradoxically suppress inflammation under specific conditions. Additionally, we explore IRF dysregulation in Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease, emphasizing shared and distinct mechanisms across neurodegenerative disorders. Restoring IRF balance through genetic manipulation, small-molecule inhibitors, or microbiome-derived modulators could attenuate neuroinflammation, enhance Aβ clearance, and protect neuronal integrity. Ultimately, this work provides a framework for future research to harness IRF signaling pathways in the development of precision therapies for AD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

31 pages, 1450 KiB  
Review
Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part A: Endogenous Compounds and Repurposed Drugs
by Mariyana Atanasova
Pharmaceuticals 2025, 18(3), 306; https://doi.org/10.3390/ph18030306 - 23 Feb 2025
Viewed by 1999
Abstract
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various [...] Read more.
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules. Full article
Show Figures

Figure 1

13 pages, 923 KiB  
Article
Cerebrospinal Fluid Biomarkers and Neuropsychological Abnormalities in Dementia: A Monocentric Study of Consecutive Patients
by Martin Römer, Christian Lange-Asschenfeldt, Katharina Müller-Schmitz and Rüdiger J. Seitz
J. Clin. Med. 2025, 14(3), 710; https://doi.org/10.3390/jcm14030710 - 22 Jan 2025
Viewed by 1015
Abstract
Background: In search of indicators for dementia, this study investigated the association of cerebrospinal fluid (CSF) biomarkers and neuropsychological test results with disease stage in patients with early manifestations of dementia. Methods: In 190 consecutive patients with symptoms of dementia, the [...] Read more.
Background: In search of indicators for dementia, this study investigated the association of cerebrospinal fluid (CSF) biomarkers and neuropsychological test results with disease stage in patients with early manifestations of dementia. Methods: In 190 consecutive patients with symptoms of dementia, the CSF parameters amyloid-β 1-42 (Aβ1-42), phosphorylated tau protein (pTau), total tau protein (tTau), neuron-specific enolase (NSE), protein S100B (S100B), and Aβ (1-42)/(1-40) ratio (Aβ ratio), as well as the results of the CERAD-Plus test battery supplemented by the Clock Drawing Test (CDT), were analysed. Patients were divided into two groups based on the median duration of reported symptom onset. Results: Most prominent in the early phase of the disease were the relationships between Aβ1-42 and neuropsychological memory subtests, which were absent in the later phase. Less pronounced relationships to memory function were detectable for Aβ ratio and pTau. Conclusions: The results substantiate the relevance of Aβ1-42 for memory deficits and support the amyloid cascade hypothesis for Alzheimer’s dementia (AD). Our data suggest other pathomechanisms for visuospatial impairments in AD. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

32 pages, 1321 KiB  
Review
Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer’s Disease Pathogenesis—From Gut Microbiota and Viruses to Brain Biofilms
by Anna Onisiforou, Eleftheria G. Charalambous and Panos Zanos
Microorganisms 2025, 13(1), 90; https://doi.org/10.3390/microorganisms13010090 - 5 Jan 2025
Cited by 5 | Viewed by 5050
Abstract
For decades, Alzheimer’s Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to [...] Read more.
For decades, Alzheimer’s Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut–brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut–brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide’s antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions. Full article
(This article belongs to the Special Issue Latest Review Papers in Medical Microbiology 2024)
Show Figures

Figure 1

90 pages, 16197 KiB  
Perspective
Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer’s Disease-Affected Neurons: Contesting the ‘Obvious’
by Vladimir Volloch and Sophia Rits-Volloch
Genes 2025, 16(1), 46; https://doi.org/10.3390/genes16010046 - 2 Jan 2025
Cited by 1 | Viewed by 1261
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer’s disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer’s research field. The present Perspective challenges this assumption. It analyses the [...] Read more.
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer’s disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer’s research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving “substance X” predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is “central but not causative” in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology. Full article
Show Figures

Figure 1

Back to TopTop