Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,419)

Search Parameters:
Keywords = 60Co irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1223 KB  
Article
Molecular Hydrogen as an Antioxidant and Radioprotector: Mechanistic Insights from Monte Carlo Radiation-Chemical Simulations
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Antioxidants 2025, 14(9), 1054; https://doi.org/10.3390/antiox14091054 - 27 Aug 2025
Abstract
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals ( [...] Read more.
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals (OH) are particularly damaging due to their very high reactivity and their capacity to induce oxidative injury to vital biomolecules such as DNA, membrane lipids, and proteins. From a radiation-chemical perspective, this study investigates the selective scavenging ability of molecular hydrogen (H2) toward OH radicals, with the aim of evaluating its potential as an antioxidant and radioprotective agent; (2) Methods: We employed our Monte Carlo track chemistry simulation code, IONLYS-IRT, to model the time-dependent yields of ROS in a neutral, aerated aqueous environment. The simulations included varying concentrations of dissolved H2 and, for comparison, cystamine—a well-known sulfur-containing radioprotector and antioxidant. Irradiation was simulated using 300 MeV protons, chosen to mimic the radiolytic effects of low linear energy transfer (LET) radiation, such as that of 60Co γ-rays or fast (>1 MeV) electrons; (3) Results: Our simulations quantitatively demonstrated that H2 selectively scavenges OH radicals. Nevertheless, its scavenging efficiency was consistently lower than that of cystamine, which produced a faster and more pronounced suppression of OH due to its higher reactivity and superior radical-quenching capacity; (4) Conclusions: Molecular hydrogen offers several unique advantages, including low toxicity, high diffusivity, selective scavenging of OH radicals, and well-documented anti-inflammatory effects. Although it is less potent than cystamine in terms of radical-scavenging efficiency, its excellent safety profile and biological compatibility position H2 as a promising radioprotector and antioxidant for therapeutic applications targeting radiation-induced oxidative stress and inflammation. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

13 pages, 2879 KB  
Article
Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection
by Tomoaki Matsuyama, Kei Kamada, Naveenkarthik Murugesan, Masao Yoshino, Rikito Murakami, Akihito Yamaji, Hiroki Sato, Kyoung-Jin Kim, Satoshi Ishizawa, Shunsuke Kurosawa, Takashi Hanada, Yuui Yokota and Akira Yoshikawa
Crystals 2025, 15(9), 761; https://doi.org/10.3390/cryst15090761 (registering DOI) - 27 Aug 2025
Abstract
In this study, we developed and characterized novel scintillators with Ce: LiCaAlF6–CaF2–Li3AlF6 and Ce: CaF2–LiF–Li3AlF6 ternary systems for thermal neutron detectors. The eutectics were grown by the vertical Stochbarger-Bridgman (VB) technique, [...] Read more.
In this study, we developed and characterized novel scintillators with Ce: LiCaAlF6–CaF2–Li3AlF6 and Ce: CaF2–LiF–Li3AlF6 ternary systems for thermal neutron detectors. The eutectics were grown by the vertical Stochbarger-Bridgman (VB) technique, and their constituent phases were identified using powder X-ray diffraction and scanning electron microscopy. Radioluminescence spectra irradiated under an Ag-target X-ray tube and confirmed the 5d-4f and self-trapped exciton luminescence derived from Ce3+. Scintillation decay and pulse height measurements were performed using 252Cf and 60Co sources. The Ce: CaF2–LiF–Li3AlF6 sample exhibited approximately 5.6 times higher effective neutron sensitivity compared with a Ce: LiCaAlF6 single crystal. A favorable decrease in the neutron discrimination threshold level (Qth) due to reduced γ-ray emission was observed. 6Li-enriched Ce: CaF-based scintillators hold potential for nuclear decommissioning applications. Full article
Show Figures

Figure 1

20 pages, 2753 KB  
Article
Preclinical Study of Pain Neuropeptide Expression in Murine Sensory Neurons Induced by Irradiated Osteoclasts in the Context of Stereotactic Body Radiation Therapy
by Sun H. Park, Megan Peters, Caleb Aguayo, Michael K. Farris, Ryan T. Hughes, Joseph Moore, Michael T. Munley, Kaitlyn E. Reno, Jeffrey A. Foster, Jean Gardin, George W. Schaaf, J. Mark Cline, Christopher M. Peters and Jeffrey S. Willey
Cells 2025, 14(17), 1324; https://doi.org/10.3390/cells14171324 - 27 Aug 2025
Abstract
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts [...] Read more.
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts and sensory neurons, focusing on osteoclast-derived factors in CWP. Using murine pre-osteoclast cell line Raw264.7, we induced differentiation with Receptor Activator of Nuclear Factor kappa-beta Ligand (RANKL), followed by 10 Gy gamma-irradiation. Conditioned media (C.M) from irradiated osteoclasts was used to treat sensory neuronal cultures from mouse dorsal root ganglia. Neuronal cultures were also exposed to 10 Gy radiation, with and without osteoclast co-culture. Osteoclast markers and pain-associated neuropeptides were analyzed using RT-qPCR and histochemical staining. Osteoclasts differentiation and activity were inhibited using osteoprotegerin (OPG) and risedronate. High-dose radiation significantly increased the size of tartrate-resistant-acid-phosphatase (TRAP)-positive osteoclasts (1.36-fold) and activity biomarkers (Ctsk, 1.35-fold, Mmp9, 1.76-fold). Neurons treated with C.M from irradiated osteoclasts showed ~1.5-fold increase in Calca (calcitonin gene-related peptide) and Tac1 (substance P) expression, which was mitigated by osteoclast inhibitors. These findings suggest that radiation enhances osteoclast activity and promotes pain signaling. Osteoclast inhibitors may represent a therapeutic strategy to reduce CWP and improve quality of life. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 8464 KB  
Article
Characterization of PVC/CaCO3 Nanocomposites Aged Under the Combined Effects of Temperature and UV-Radiation
by Soraya Nait Larbi, Mustapha Moudoud, Abdallah Hedir, Omar Lamrous, Ali Durmus, David Clark and Ferhat Slimani
Materials 2025, 18(17), 4001; https://doi.org/10.3390/ma18174001 - 27 Aug 2025
Abstract
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected [...] Read more.
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected to accelerated aging through prolonged ultraviolet (UV) exposure and thermal stress for up to 1248 h. The evolution of dielectric properties was characterized by impedance spectroscopy, while structural modifications were analyzed using Fourier-transform infrared (FTIR) spectroscopy. Additionally, changes in surface morphology, internal homogeneity (related to particle size, shape, and distribution), and chemical composition were investigated using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX), to evaluate the effects of irradiation and variations in the material’s surface composition and morphology. The results reveal a significant correlation between filler concentration and dielectric stability, highlighting the potential of CaCO3 reinforcement to improve the long-term reliability of polymeric insulating materials. The results further highlight that beyond the amount of filler used, the fine-scale feature of CaCO3, particularly its particle size and how well it is dispersed, has a significant impact on how the material responds to aging and maintains its dielectric properties. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 5897 KB  
Article
Testing the Potential of Magnetic Resonance Dosimetry: The Case of Lithium Carbonate
by Alexander Shames, Alexander Panich, Lonia Friedlander, Olga Iliashevsky, Haim Cohen and Raymond Moreh
Materials 2025, 18(17), 3986; https://doi.org/10.3390/ma18173986 - 26 Aug 2025
Abstract
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and [...] Read more.
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and nuclear spin relaxation. To date, these methods have typically been applied independently. Their combined use to probe radiation damage in the same material offers new opportunities for comprehensive characterization and preferred dosimetry techniques. In this work, we apply both EPR and NMR to investigate radiation damage in lithium carbonate (Li2CO3). A detailed EPR analysis of γ-irradiated samples shows that the concentration of paramagnetic defects increases with dose, following two distinct linear regimes: 10–100 Gy and 100–1000 Gy. A gradual decay of the EPR signal was observed over 40 days, even under cold storage. In contrast, 7Li NMR spectra and spin–lattice relaxation times in Li2CO3 exhibit negligible sensitivity to radiation doses up to 1000 Gy, while 1H NMR results remain inconclusive. Possible mechanisms underlying these contrasting behaviors are discussed. Full article
(This article belongs to the Special Issue Radiation Damage and Radiation Defects of Materials)
Show Figures

Graphical abstract

18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 - 25 Aug 2025
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

17 pages, 3371 KB  
Article
Band Engineering Induced by Sulphur Vacancies in MoS2/g-C3N4 or Selective CO2 Photoreduction to CH3OH
by Shicheng Liu, Junbo Yu, Xiangyu Chen, Na Li and Qulan Zhou
Nanomaterials 2025, 15(17), 1294; https://doi.org/10.3390/nano15171294 - 22 Aug 2025
Viewed by 289
Abstract
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient [...] Read more.
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient and selective CO2 photoreduction to CH3OH. The structural and photoelectronic characterisation of the system shows that the heterogeneous interface between MoS2 and g-C3N4 is in close contact. The introduction of SVs effectively modulates the electronic structure and surface activity of MoS2, which in turn enhances the CO2 reduction performance. Optical and electronic structure analyses reveal that the heterojunction promotes favourable band alignment and interfacial electric potential gradients, which together suppress charge recombination and enhance directional carrier separation. Under irradiation, the MoS2-SVs/g-C3N4 photocatalyst exhibited outstanding photocatalytic CH3OH production with a yield of 10.06 μmol·h−1·g−1, significantly surpassing the performance of control samples while demonstrating excellent product selectivity and remarkable stability. Mechanistic studies further verify that vacancy-induced energy band modulation with Fermi energy level enhancement significantly reduces the multi-electron transfer barrier, thus preferentially driving the CH3OH generation pathway. This work proposes a universal structural design strategy that synergistically coordinates vacancy engineering with band structure modulation, establishing both theoretical principles and practical methodologies for developing selective multi-electron CO2 reduction systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

20 pages, 1733 KB  
Article
Molecular Structure, Matrix-Isolation IR Spectrum and UV-Induced Transformations of 2-Amino-5-(4-Methoxyphenyl)-1,3,4-Oxadiazole
by İsa Sıdır, Susy Lopes, Rui Fausto and A. J. Lopes Jesus
Molecules 2025, 30(16), 3444; https://doi.org/10.3390/molecules30163444 - 21 Aug 2025
Viewed by 314
Abstract
The photochemistry of 1,3,4-oxadiazoles remains poorly understood, despite their recognized importance in medicinal chemistry and materials science. In this work, we report a detailed matrix-isolation study of 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole, combining low-temperature infrared spectroscopy with broadband UV photolysis and quantum chemical calculations. Theoretical analysis predicts [...] Read more.
The photochemistry of 1,3,4-oxadiazoles remains poorly understood, despite their recognized importance in medicinal chemistry and materials science. In this work, we report a detailed matrix-isolation study of 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole, combining low-temperature infrared spectroscopy with broadband UV photolysis and quantum chemical calculations. Theoretical analysis predicts the gas-phase molecule to exist exclusively as the amino tautomer, populating two nearly isoenergetic conformers (anti and syn) defined by the relative orientation of the amino and methoxy groups. Experimental IR spectra of the compound isolated in Ar and Xe matrices at 15 K confirm sole trapping of the amino tautomer. Annealing of the Xe matrix to the highest achievable temperature induced no detectable spectral changes, consistent with the predicted isoenergetic character of the conformers. Upon broadband UV irradiation (λ > 200 nm), the compound undergoes ring opening through N−N and C−O bond cleavages, paralleling the behavior of unsubstituted 1,3,4-oxadiazole system. Isocyanates emerge as the predominant photoproducts from these photochemical pathways. Additionally, spectroscopic evidence supports an alternative reaction pathway involving early-stage amino−imino tautomerization, followed by ring-opening of the imino tautomer through isocyanic acid extrusion, leading to the formation of a nitrilimine intermediate. This reactive species subsequently photorearranges into a carbodiimide via a diazirine-mediated pathway. All photoproducts were unambiguously identified through their distinct IR signatures, supported by quantum chemical calculations and reference data from structurally related systems. These findings provide unprecedented insight into the photochemical behavior of substituted 1,3,4-oxadiazoles and unveil new reaction pathways modulated by substituent effects, expanding the understanding of their photoreactivity. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

17 pages, 2864 KB  
Article
Estimation of Growth and Carrying Capacity of Porphyra spp. Under Aquaculture Conditions on the Southern Coast of Korea Using Dynamic Energy Budget (DEB)
by Dae Ho Tac, Sung Eun Park and Ji Young Lee
J. Mar. Sci. Eng. 2025, 13(8), 1586; https://doi.org/10.3390/jmse13081586 - 19 Aug 2025
Viewed by 260
Abstract
Understanding the growth dynamics and ecological constraints of Porphyra spp. is essential for optimizing sustainable seaweed aquaculture. However, most existing models lack physiological detail and exhibit limited performance under variable environmental conditions. This study developed a mechanistic Dynamic Energy Budget (DEB) model to [...] Read more.
Understanding the growth dynamics and ecological constraints of Porphyra spp. is essential for optimizing sustainable seaweed aquaculture. However, most existing models lack physiological detail and exhibit limited performance under variable environmental conditions. This study developed a mechanistic Dynamic Energy Budget (DEB) model to simulate structural biomass accumulation, carbon and nitrogen reserve dynamics, and blade area expansion of Porphyra under natural environmental conditions in Korean coastal waters. The model incorporates temperature, irradiance, and nutrient availability (NO3 and CO2) as environmental drivers and was implemented using a forward difference numerical scheme. Field data from Beein Bay were used for model calibration and validation. Simulations showed good agreement with the observed biomass, reserve content, and blade area, with root-mean-square error (RMSE) typically within ±10%. Sensitivity analysis identified temperature-adjusted carbon assimilation and nitrogen uptake as the primary drivers of growth. The model was further used to estimate dynamic carrying capacity, revealing seasonal thresholds for sustainable biomass under current farming practices. Although limitations remain—such as the exclusion of reproductive allocation and tissue loss—the results demonstrate that DEB theory provides a robust framework for modeling Porphyra aquaculture. This approach supports scenario testing, spatial planning, and production forecasting, and it is adaptable for ecosystem-based management including integrated multi-trophic aquaculture (IMTA) and climate adaptation strategies. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

30 pages, 2129 KB  
Article
Theoretical and Simulation Study of CO2 Laser Pulse Coupled with Composite Mechanical Drill Bit for Rock-Breaking Technology
by Lei Tao, Hailu Li, Liangzhu Yan and Zhiyuan Zhou
Processes 2025, 13(8), 2619; https://doi.org/10.3390/pr13082619 - 19 Aug 2025
Viewed by 339
Abstract
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling [...] Read more.
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling speed in high-strength, abrasive strata where traditional bits struggle. The theoretical analysis explores the thermo-mechanical coupling mechanism, where pulsed laser irradiation rapidly heats the rock surface, inducing thermal stress cracks, micro-spallation, and strength reduction through mechanisms like mineral thermal expansion mismatch and pore fluid vaporization. This pre-damage layer facilitates subsequent mechanical fragmentation. The research employs finite element numerical simulations (using COMSOL Multiphysics with an HJC constitutive model and damage evolution criteria) to model the coupled laser–mechanical–rock interaction, capturing temperature fields, stress distribution, crack propagation, and assessing efficiency. The results demonstrate that laser pre-conditioning significantly achieves 90–120% higher penetration rates compared to mechanical-only drilling. The dominant spallation mechanism proves energy-efficient. Conclusions affirm the feasibility and significant potential of CO2 laser-assisted drilling for deep formations, contingent on optimized laser parameters, composite bit design (incorporating laser transmission, multi-head layout, and environmental protection), and addressing challenges, like high in-situ stress and drilling fluid interference through techniques like gas drilling. Future work should focus on high-power laser downhole transmission, adaptive control, and rigorous field validation. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

14 pages, 3884 KB  
Article
Microwave-Enhanced Catalytic Performance of Benzene Oxidation on MOF-Derived Mn/Ce-Co Oxides
by Shefeng Li, Pengyi Zhao, Ziyang Liu, Chang Wang, Linling Wang and Siyu Ding
Molecules 2025, 30(16), 3388; https://doi.org/10.3390/molecules30163388 - 15 Aug 2025
Viewed by 387
Abstract
Microwave-assisted processing has shown tremendous promise in accelerating chemical reactions and reducing energy consumption through targeted dielectric heating. This study develops MOF-derived Mn-Co and Ce-Co oxide catalysts for energy-efficient benzene oxidation via microwave catalysis. The MnCo spinel oxides (particularly MnCo11-400) exhibit superior microwave [...] Read more.
Microwave-assisted processing has shown tremendous promise in accelerating chemical reactions and reducing energy consumption through targeted dielectric heating. This study develops MOF-derived Mn-Co and Ce-Co oxide catalysts for energy-efficient benzene oxidation via microwave catalysis. The MnCo spinel oxides (particularly MnCo11-400) exhibit superior microwave absorption and catalytic activity due to enhanced oxygen mobility and tailored dielectric properties. Microwave irradiation enables rapid benzene mineralization over the MnCo11-400 catalyst, achieving 78% conversion at 30 W and complete conversion at 50 W, demonstrating exceptional energy efficiency at low power inputs. Microwaves significantly lower the reaction temperature compared to conventional thermal catalysis (ΔT = 100–250 °C). Stability tests confirm robustness over repeated power cycling (80% conversion retained after 3 × 1 h on/off cycles). Furthermore, an adsorption–microwave oxidation synergistic strategy is demonstrated: pre-adsorbed low-concentration benzene (1.15 mmol) at ambient temperature undergoes complete mineralization within 20 min under 30 W microwave irradiation. The intermittent microwave operation achieves equivalent benzene removal to continuous thermal processing while significantly reducing energy demand. This work establishes MOF-derived spinel oxides as high-performance microwave catalysts for low-temperature VOC abatement. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

18 pages, 3033 KB  
Article
Mathematical Modelling of Upper Room UVGI in UFAD Systems for Enhanced Energy Efficiency and Airborne Disease Control: Applications for COVID-19 and Tuberculosis
by Mohamad Kanaan, Eddie Gazo-Hanna and Semaan Amine
Math. Comput. Appl. 2025, 30(4), 85; https://doi.org/10.3390/mca30040085 - 5 Aug 2025
Viewed by 336
Abstract
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model [...] Read more.
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model is substantiated for the SARS-CoV-2 virus as a simulated pathogen through a comprehensive computational fluid dynamics methodology validated against published experimental data of upper room UVGI and UFAD flows. Simulations show an 11% decrease in viral concentration within the upper irradiated zone when a 15 W louvered germicidal lamp is utilized. Finally, a case study on Mycobacterium tuberculosis (M. tuberculosis) bacteria is carried out using the validated simplified model to optimize the use of return air and UVGI implementation, ensuring acceptable indoor air quality and enhanced energy efficiency. Results reveal that the UFAD-UVGI system may consume up to 13.6% less energy while keeping the occupants at acceptable levels of M. tuberculosis concentration and UV irradiance when operated with 26% return air and a UVGI output of 72 W. Full article
Show Figures

Figure 1

20 pages, 8673 KB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Viewed by 454
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Graphical abstract

11 pages, 1745 KB  
Article
Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles
by Shafaq Arif, Amna Sarwar and M. S. Anwar
Condens. Matter 2025, 10(3), 41; https://doi.org/10.3390/condmat10030041 - 4 Aug 2025
Viewed by 348
Abstract
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. [...] Read more.
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. It is found that the optical bandgap of co-doped MgO NPs reduces from 2.30 to 1.98 eV (14%) with increasing Ni dopant concentrations up to 7%. The Co0.05Ni0.07Mg0.88O NPs exhibit a high photocatalytic degradation efficiency of 93% for methylene blue dye (MB) under natural sunlight irradiation for 240 min. Our findings indicate that the Co0.05NixMg0.95−xO NPs have strong potential for use as photocatalysts in industrial wastewater treatment. Full article
Show Figures

Figure 1

8 pages, 2685 KB  
Proceeding Paper
Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate
by Kentaro Yamauchi, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 5; https://doi.org/10.3390/chemproc2025017005 - 4 Aug 2025
Viewed by 196
Abstract
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B [...] Read more.
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B (RhB) under visible light irradiation. The absorbance at 554 nm gradually decreased over time and disappeared completely within 80 min. The crystal structure, morphology, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The improved photocatalytic activity of the treated catalysts was attributed to partial carbonate removal and the formation of Bi5+ species. Scavenger experiments indicated that superoxide radicals (·O2) and photogenerated holes (h+) played significant roles in the photocatalytic decolorization of RhB. Full article
Show Figures

Figure 1

Back to TopTop