Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = 3D-quadrature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 (registering DOI) - 31 Jul 2025
Viewed by 143
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Multipath Interference Impact Due to Fiber Mode Coupling in C+L+S Multiband Transmission Reach
by Luís Cancela and João Pires
Photonics 2025, 12(8), 770; https://doi.org/10.3390/photonics12080770 - 30 Jul 2025
Viewed by 113
Abstract
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can [...] Read more.
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can also increase network capacity and can also be used for multiband (MB) transmission. Nevertheless, in MB transmission, power mode coupling arises when bands with wavelengths below the cut-off wavelength are used, inducing multipath interference (MPI). This work investigates the impact of the MPI, due to mode coupling from G.654E SMF, in the transmission reach of a C+L+S band transmission system. Our results indicate that for the S-band scenario, the band below the wavelength cut-off, an approximately 25% reach decrease is observed when the MPI/span increases to −26 dB/span, considering quadrature phase-shift keying (QPSK) signals with a 64 GBaud symbol rate. We also concluded that if the L-band were not above the wavelength cut-off, it would be much more affected than the S-band, with an approximately 52% reach decrease due to MPI impact. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

22 pages, 4331 KiB  
Article
Simulation-Based Design of a Low-Cost Broadband Wide-Beamwidth Crossed-Dipole Antenna for Multi-Global Navigational Satellite System Positioning
by Songyuan Xu, Jiwon Heo, Won Seok Choi, Seong-Gon Choi and Bierng-Chearl Ahn
Sensors 2025, 25(15), 4665; https://doi.org/10.3390/s25154665 - 28 Jul 2025
Viewed by 184
Abstract
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio [...] Read more.
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio beamwidth. The design is carried out using CST Studio Suite for a single dipole antenna followed by a crossed-dipole antenna, a feed network, and the entire antenna structure. The designed multi-GNSS antenna shows, at 1.16–1.61 GHz, a reflection coefficient of less than −17 dB, a zenith gain of 3.9–5.8 dBic, a horizontal gain of −3.3 to −0.2 dBic, a zenith axial ratio of 0.6–1.0 dB, and horizontal axial ratio of 0.4–5.9 dB. The proposed antenna has a dimension of 0.48 × 0.48 × 0.25 λ at the center frequency of 1.39 GHz. The proposed antenna can also operate as an LHCP antenna for L-band satellite phone communication at 1.525–1.661 GHz. Full article
Show Figures

Figure 1

20 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 142
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

17 pages, 622 KiB  
Article
In-Plane Vibration Analysis of Rectangular Plates with Elastically Restrained Boundaries Using Differential Quadrature Method of Variational Weak Form
by Xianke Wang, Weipeng Zhou, Shichao Yi and Sen Li
Materials 2025, 18(14), 3250; https://doi.org/10.3390/ma18143250 - 10 Jul 2025
Viewed by 229
Abstract
An efficient numerical approach utilizing a variational weak form, grounded in 2D elastic theory and variational principles, is proposed for analyzing the in-plane vibrational behavior of rectangular plates resting on elastically restrained boundaries. The differential and integral operators can be discretized into matrix [...] Read more.
An efficient numerical approach utilizing a variational weak form, grounded in 2D elastic theory and variational principles, is proposed for analyzing the in-plane vibrational behavior of rectangular plates resting on elastically restrained boundaries. The differential and integral operators can be discretized into matrix representations employing the differential quadrature method (DQM) and Taylor series expansion techniques. The discretization of dynamics equations stems directly from a weak formulation that circumvents the need for any transformation or discretization of higher-order derivatives encountered in the corresponding strong equations. Utilizing the matrix elementary transformation technique, the displacements of boundary and internal nodes are segregated, subsequently leading to the derivation of the generalized eigenvalue problem pertaining to the free vibration analysis of the Functionally Graded Material (FGM) rectangular plate. Furthermore, the study examines the impact of the gradient parameter, aspect ratio, and elastic constraints on the dimensionless frequency characteristics of the FGM rectangular plate. Ultimately, the modal properties of an in-plane FGM rectangular plate are investigated. Full article
Show Figures

Figure 1

31 pages, 6761 KiB  
Article
Improved Modulation Classification Based on Hough Transforms of Constellation Diagrams Using CNN for the UWA-OFDM Communication System
by Mohamed A. Abdel-Moneim, Mohamed K. M. Gerwash, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie, Khalil F. Ramadan and Nariman Abdel-Salam
Eng 2025, 6(6), 127; https://doi.org/10.3390/eng6060127 - 14 Jun 2025
Viewed by 423
Abstract
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based [...] Read more.
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based on the adoption of Hough Transform (HT) and Edge Detection (ED) to enhance modulation classification, especially for a small dataset. Deep neural models based on basic Convolutional Neural Network (CNN), Visual Geometry Group-16 (VGG-16), and VGG-19 trained on constellation diagrams transformed using HT are adopted. The objective is to extract features from constellation diagrams projected onto the Hough space. In addition, we use Orthogonal Frequency Division Multiplexing (OFDM) technology, which is frequently utilized in UWA systems because of its ability to avoid multipath fading and enhance spectrum utilization. We use an OFDM system with the Discrete Cosine Transform (DCT), Cyclic Prefix (CP), and equalization over the UWA communication channel under the effect of estimation errors. Seven modulation types are considered for classification, including Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) (2/8/16-PSK and 4/8/16/32-QAM), with a Signal-to-Noise Ratio (SNR) ranging from −5 to 25 dB. Simulation results indicate that our CNN model with HT and ED at perfect channel estimation, achieves a 94% classification accuracy at 10 dB SNR, outperforming benchmark models by approximately 40%. Full article
Show Figures

Figure 1

10 pages, 801 KiB  
Article
Asymptotic Behavior of the Modulus of the Kernel and Error Bounds of Anti-Gaussian Quadrature Formulas with Jacobi Weights
by Ramon Orive, Ljubica Mihić, Aleksandar Pejčev, Miroslav Pranić and Stefan Spalević
Mathematics 2025, 13(12), 1902; https://doi.org/10.3390/math13121902 - 6 Jun 2025
Viewed by 309
Abstract
In this paper, the remainder term of anti-Gaussian quadrature rules for analytic integrands with respect to Jacobi weight functions ωa,b(x)=(1x)a(1+x)b, where [...] Read more.
In this paper, the remainder term of anti-Gaussian quadrature rules for analytic integrands with respect to Jacobi weight functions ωa,b(x)=(1x)a(1+x)b, where a,b>1, is analyzed, and sharp estimates of the error are provided. These kinds of quadrature formulas were introduced by D.P. Laurie and have been recently studied by M.M. Spalević for the case of Jacobi-type weight functions ω. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing for Applied Mathematics)
Show Figures

Figure 1

21 pages, 8812 KiB  
Article
A Three-Channel Improved SE Attention Mechanism Network Based on SVD for High-Order Signal Modulation Recognition
by Xujia Zhou, Gangyi Tu, Xicheng Zhu, Di Zhao and Luyan Zhang
Electronics 2025, 14(11), 2233; https://doi.org/10.3390/electronics14112233 - 30 May 2025
Viewed by 415
Abstract
To address the issues of poor differentiation capability for high-order signals and low average recognition rates in existing communication modulation recognition techniques, this paper first performs denoising using an entropy-based dynamic Singular Value Decomposition (SVD) method and proposes a three-channel convolutional gated recurrent [...] Read more.
To address the issues of poor differentiation capability for high-order signals and low average recognition rates in existing communication modulation recognition techniques, this paper first performs denoising using an entropy-based dynamic Singular Value Decomposition (SVD) method and proposes a three-channel convolutional gated recurrent units (GRU) model combined with an improved SE attention mechanism for automatic modulation recognition.The model denoises in-phase/quadrature (I/Q) signals using the SVD method to enhance signal quality. By combining one-dimensional (1D) convolutional and two-dimensional (2D) convolutional, it employs a three-channel approach to extract spatial features and capture local correlations. GRU is utilized to capture temporal sequence features so as to enhance the perception of dynamic changes. Additionally, an improved SE block is introduced to optimize feature representation, adaptively adjust channel weights, and improve classification performance. Experiments on the RadioML2016.10a dataset show that the model has a maximum classification recognition rate of 92.54%. Compared with traditional CNN, ResNet, CLDNN, GRU2, DAE, and LSTM2, the average recognition accuracy is improved by 5.41% to 8.93%. At the same time, the model significantly enhances the differentiation capability between 16QAM and 64QAM, reducing the average confusion probability by 27.70% to 39.40%. Full article
Show Figures

Figure 1

14 pages, 1208 KiB  
Article
Neural Network Method for Solving Time Fractional Diffusion Equations
by Feng Gao and Chunmei Chi
Fractal Fract. 2025, 9(6), 338; https://doi.org/10.3390/fractalfract9060338 - 23 May 2025
Viewed by 573
Abstract
In this paper, we propose a neural network method to solve time-fractional diffusion equations with Dirichlet boundary conditions by using a combination of machine learning techniques and Method of Lines. We first used the Method of Lines to discretize the equation in the [...] Read more.
In this paper, we propose a neural network method to solve time-fractional diffusion equations with Dirichlet boundary conditions by using a combination of machine learning techniques and Method of Lines. We first used the Method of Lines to discretize the equation in the space domain while keeping the time domain continuous, and represent the solution of the diffusion equation using a neural network. Then we used Gauss–Jacobi quadrature to approximate the fractional derivative in the time domain, thereby obtaining the loss function for the neural network. We used TensorFlow to carry out the gradient descent process to train this neural network. We conducted numerical tests in 1D and 2D cases and compared the results with the exact solutions. The numerical tests showed that this method is effective and easy to manipulate for many time-fractional diffusion problems. Full article
Show Figures

Figure 1

21 pages, 4138 KiB  
Article
Noise Suppression in Quadrature Phase-Shift-Keying-Oriented All-Optical Matching Systems Using Highly Nonlinear Fiber
by Xin Li, Feiyang Ruan, Ying Tang, Tenglin Gao and Shanguo Huang
Photonics 2025, 12(5), 516; https://doi.org/10.3390/photonics12050516 - 21 May 2025
Viewed by 356
Abstract
All-optical matching systems that detect and localize designated target sequences in input all-optical data sequences have attracted significant attention in all-optical processing. They have various applications, including all-optical intrusion detection, optical frame alignment, and optical package identification. In real-world applications, noise is inevitable [...] Read more.
All-optical matching systems that detect and localize designated target sequences in input all-optical data sequences have attracted significant attention in all-optical processing. They have various applications, including all-optical intrusion detection, optical frame alignment, and optical package identification. In real-world applications, noise is inevitable and can lead to incorrect matching results. In particular, noise accumulates in serial all-optical matching systems, rendering the systems useless after several cycles. In this study, we developed a scheme for suppressing noise in quadrature phase-shift-keying (QPSK)-oriented all-optical matching systems. First, we evaluated the impact of input and amplifier noise on a QPSK-oriented all-optical matching system at a transmission rate of 100 Gbaud. We then developed a second-order noise-suppression structure using a highly nonlinear fiber (HNLF). With an input optical signal-to-noise ratio (OSNR) of 6 dB and an amplifier noise figure (NF) of 4 dB, the QPSK-oriented all-optical matching system without the noise-suppression structure output incorrect results. However, when the system was optimized using the proposed noise-suppression structure, correct matching results were obtained. Furthermore, when the NF of the amplifiers was fixed at 4 dB, the optimized system could reduce the minimum input OSNR to 0 dB. With an input OSNR of 0 dB, the logarithm of the bit error rate (BER) of the output matching results of the optimized system tended to negative infinity. The extinction ratio (ER), contrast ratio (CR), and quality (Q) factor of the output of the optimized system were 154.9532, 166.94289, and 161.12 dB, respectively, indicating high noise resistance. These results demonstrate that the system optimized using the proposed noise-suppression scheme exhibits high stability and reliability in noisy environments. Full article
Show Figures

Figure 1

14 pages, 9820 KiB  
Article
Design and Analysis of an Ultra-Wideband High-Precision Active Phase Shifter in 0.18 μm SiGe BiCMOS Technology
by Hao Jiang, Zenglong Zhao, Nengxu Zhu and Fanyi Meng
J. Low Power Electron. Appl. 2025, 15(2), 30; https://doi.org/10.3390/jlpea15020030 - 7 May 2025
Viewed by 856
Abstract
This paper presents an active phase shifter for phased array system applications, implemented using 0.18 μm SiGe BiCMOS technology. The phase shifter circuit consists of a wideband quadrature signal generator, a vector modulator, an input balun, and an output balun. To enhance the [...] Read more.
This paper presents an active phase shifter for phased array system applications, implemented using 0.18 μm SiGe BiCMOS technology. The phase shifter circuit consists of a wideband quadrature signal generator, a vector modulator, an input balun, and an output balun. To enhance the bandwidth, a polyphase filter is employed as the quadrature signal generator, and a two-stage RC-CR filter with a highly symmetrical miniaturized layout is cascaded to create multiple resonant points, thus extending the phase shifter’s bandwidth to cover the required range. The gain of the variable-gain amplifier within the vector modulator is adjustable by varying the tail current, thereby enlarging the range of selectable points, improving phase-shifting accuracy, and reducing gain fluctuations. The measurement results show that the proposed active phase shifter achieves an RMS phase error of less than 2° and a gain variation ranging from −1.2 dB to 0.1 dB across a 20 GHz to 30 GHz bandwidth at room temperature. The total chip area is 0.4 mm2, with a core area of 0.165 mm2, and consumes 19.5 mW of power from a 2.5 V supply. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

17 pages, 5879 KiB  
Article
Modeling and Performance Analysis of MDM−WDM FSO Link Using DP-QPSK Modulation Under Real Weather Conditions
by Tanmeet Kaur, Sanmukh Kaur and Muhammad Ijaz
Telecom 2025, 6(2), 29; https://doi.org/10.3390/telecom6020029 - 22 Apr 2025
Viewed by 678
Abstract
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link [...] Read more.
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link as a result of aggregate attenuation caused by different weather conditions in a region. In the present work, empirical models have been derived in terms of visibility, considering fog, haze, and cloud conditions of diverse geographical regions of Delhi, Washington, London, and Cape Town. Mean square error (MSE) and goodness of fit (R squared) have been employed as measures for estimating model performance. The dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique has been employed with hybrid mode and the wave division multiplexing (MDM-WDM) scheme for analyzing the performance of the FSO link with two Laguerre Gaussian modes (LG00 and LG 01) at 5 different wavelengths from 1550 nm to 1554 nm. The performance of the system has been analyzed in terms of received power and signal to noise ratio with respect to the transmission range of the link. Minimum received power and SNR values of −52 dBm and −33 dB have been obtained over the observed transmission range as a result of multiple impairments. Random forest (RF), k-nearest neighbors (KNN), multi-layer perceptron (MLP), gradient boosting (GB), and machine learning (ML) techniques have also been employed for estimating the SNR of the received signal. The maximum R squared (0.99) and minimum MSE (0.11), MAE (0.25), and RMSE (0.33) values have been reported in the case of the GB model, compared to other ML techniques, resulting in the best fit model. Full article
Show Figures

Figure 1

22 pages, 10265 KiB  
Article
Signal-to-Noise Ratio Model and Imaging Performance Analysis of Photonic Integrated Interferometric System for Remote Sensing
by Chuang Zhang, Yan He and Qinghua Yu
Remote Sens. 2025, 17(9), 1484; https://doi.org/10.3390/rs17091484 - 22 Apr 2025
Viewed by 653
Abstract
Photonic integrated interferometric imaging systems (PIISs) provide a compact solution for high-resolution Earth observation missions with stringent size, weight, and power (SWaP) constraints. As an indirect imaging method, a PIIS exhibits fundamentally different noise response characteristics compared to conventional remote sensing systems, and [...] Read more.
Photonic integrated interferometric imaging systems (PIISs) provide a compact solution for high-resolution Earth observation missions with stringent size, weight, and power (SWaP) constraints. As an indirect imaging method, a PIIS exhibits fundamentally different noise response characteristics compared to conventional remote sensing systems, and its imaging performance under practical operational scenarios has not been thoroughly investigated. The primary objective of this paper is to evaluate the operational capabilities of PIISs under remote sensing conditions. We (1) establish a signal-to-noise-ratio model for PIISs with balanced four-quadrature detection, (2) analyze the impacts of intensity noise and turbulent phase noise based on radiative transfer and turbulence models, and (3) simulate imaging performance with WorldView-3-like parameters. The results of the visibility signal-to-noise ratio (SNR) analysis demonstrate that the system’s minimum detectable fringe visibility is inversely proportional to the reciprocal of the sub-aperture intensity signal-to-noise ratio. When the integration time reaches 100 ms, the minimum detectable fringe visibility ranges between 102 and 103 (at 10 dB system efficiency). Imaging simulations demonstrate that recognizable image reconstruction requires integration times exceeding 10 ms for 10 cm baselines, achieving approximately 25 dB PSNR and 0.8 SSIM at 100 ms integration duration. These results may provide references for potential applications of photonic integrated interferometric imaging systems in remote sensing. Full article
Show Figures

Graphical abstract

11 pages, 4532 KiB  
Article
A High-Efficiency Frequency Multiplier with Triangular-Resistance Phase Interpolation
by Yuyang Ding, Chen Wang, Xukun Wang, Chunli Huang and Bo Zhou
Electronics 2025, 14(8), 1549; https://doi.org/10.3390/electronics14081549 - 11 Apr 2025
Viewed by 420
Abstract
A high-efficiency frequency multiplier is presented in 65-nm CMOS with a core area of 0.06 mm2. A low-cost five-segment triangular-resistance phase interpolation scheme is proposed. By performing resistive interpolation on four-path orthogonal triangular signals, 10-fold frequency multiplication is achieved within the [...] Read more.
A high-efficiency frequency multiplier is presented in 65-nm CMOS with a core area of 0.06 mm2. A low-cost five-segment triangular-resistance phase interpolation scheme is proposed. By performing resistive interpolation on four-path orthogonal triangular signals, 10-fold frequency multiplication is achieved within the input frequency range of 12–20 MHz. The prototype only includes a quadrature square-wave generator, four orthogonal square-triangular converters and the proposed four-path 5-segment triangular-resistance phase interpolators, with a frequency deviation less than 7%. The presented design achieves an output power of −9.8 dBm, with an input power of −2.0 dBm and power consumption of 0.45 mW from a 1.2-V supply, which obtains a frequency multiplication efficiency up to 9.6%. The proposed mechanism could be extended to accomplish a configurable multiplication factor. Full article
(This article belongs to the Special Issue Radio Frequency/Microwave Integrated Circuits and Design Automation)
Show Figures

Figure 1

16 pages, 769 KiB  
Article
Taylor Series Interpolation-Based Direct Digital Frequency Synthesizer with High Memory Compression Ratio
by Kalle I. Palomäki and Jari Nurmi
Sensors 2025, 25(8), 2403; https://doi.org/10.3390/s25082403 - 10 Apr 2025
Cited by 1 | Viewed by 500
Abstract
A common challenge in direct digital frequency synthesizers (DDFSs) is obtaining high memory compression while maintaining good output signal purity. To address this challenge, in this paper, we present a 16-bit, quadrature direct digital frequency synthesizer (DDFS) that utilizes the second-order Taylor series [...] Read more.
A common challenge in direct digital frequency synthesizers (DDFSs) is obtaining high memory compression while maintaining good output signal purity. To address this challenge, in this paper, we present a 16-bit, quadrature direct digital frequency synthesizer (DDFS) that utilizes the second-order Taylor series polynomial interpolation in the phase-to-amplitude conversion. In this approach, the sinusoidal signal is divided into multiple segments, and for each segment, related values are stored into a look-up table (LUT). The amplitude values for each segment are calculated using the stored LUT values and the second-order Taylor series polynomial interpolation. A Python-based model was created to optimize the number of segments, and the resulting design was coded using register-transfer level VHDL. The design is synthesized and implemented on an AMD Artix 7 FPGA, and the implementation results are presented. We show that the proposed design is capable of reaching a very high memory compression ratio of 5178:1. Additionally, the design generates both sine and cosine with high spectral purity utilizing a low number of FPGA resources compared to previous work. With 107 logic slices and 3 DSP slices, the design reaches a spurious-free dynamic range (SFDR) of −102.9 dBc. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop