Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = 38 GHz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4045 KiB  
Article
Microwave Dielectric Permittivity of Nanostructured RMn2O5 Manganate, R2Ti2O7 Titanate, and LiCoPO4 and LiNi0.5Co0.5PO4 Orthophosphate Composites
by Anatoly B. Rinkevich, Dmitry V. Perov, Evgeny A. Kuznetsov and Maria S. Stenina
Nanomaterials 2025, 15(13), 995; https://doi.org/10.3390/nano15130995 - 26 Jun 2025
Viewed by 225
Abstract
The complex dielectric permittivity has been studied with the waves of millimeter wavelength for rare earth manganate and titanate and LiCoPO4 and LiNi0.5Co0.5PO4 orthophosphate composites. The measurements are carried out at frequencies of 26 to 38 GHz [...] Read more.
The complex dielectric permittivity has been studied with the waves of millimeter wavelength for rare earth manganate and titanate and LiCoPO4 and LiNi0.5Co0.5PO4 orthophosphate composites. The measurements are carried out at frequencies of 26 to 38 GHz via measurements of transmission and reflection coefficients through a plate. A special method on how to extract the real and imaginary parts of dielectric permittivity is applied. Discussion is conducted on a nonmonotonic type of the frequency dependences for both real and imaginary parts of permittivity, and it has been shown that relaxation is non-Debye. The Cole–Cole, Havriliak–Negami, and Kohlrausch–Williams–Watts models cannot also explain the nonmonotonic frequency dependence of the real part of dielectric permittivity. Investigation of the structure and phase composition of nanocomposites has been carried out. Full article
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 471
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

24 pages, 5904 KiB  
Article
High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation
by Bilal Okan Icmez and Cetin Kurnaz
Appl. Sci. 2025, 15(7), 3993; https://doi.org/10.3390/app15073993 - 4 Apr 2025
Cited by 1 | Viewed by 1140
Abstract
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a [...] Read more.
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a more efficient alternative to complex array antennas. The antenna was designed using Rogers RT/duroid 5880 as a substrate, and CST simulations were used to optimize the return loss, gain, and efficiency. Analytical methods and parametric analyses were used to further optimize the design. Additionally, an SMP connector was integrated into the simulated model using Antenna Magus software, followed by further refinement through additional parametric studies. The final compact antenna (33 × 27 × 1.6 mm3) demonstrates excellent performance with simplified fabrication. The antenna achieved bandwidths of 1.12 GHz at 28 GHz and 1.27 GHz at 38 GHz, with remarkably low return loss values of −53.04 dB and −83.65 dB, respectively. The gain values reached 7.82 dBi at 28 GHz and 8.98 dBi at 38 GHz—prototype measurements closely aligned with simulations, confirming reliability. This study introduces a high-performance, single-element antenna that is both simple and complex. The meticulous optimization process, including SMP connector variations, minimized the fabrication sensitivity and improved the overall performance, thereby marking a significant advancement in antenna design. Full article
Show Figures

Figure 1

14 pages, 4800 KiB  
Article
Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator
by Zixin Chen, Jianping Li, Weiqin Zheng, Hongkang Liu, Quandong Huang, Ya Han and Yuwen Qin
Photonics 2025, 12(1), 85; https://doi.org/10.3390/photonics12010085 - 17 Jan 2025
Viewed by 1578
Abstract
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances [...] Read more.
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances simultaneously. In this paper, we propose an improved theoretical model of a chip-scale electro-optic (EO) microring modulator (EO-MRM) based on X-cut lithium–niobate-on-insulator (LNOI) with a hybrid architecture consisting of a 180-degree Euler bend in the coupling region, double-layer metal electrode structure, and ground–signal–signal–ground (G-S-S-G) electrode configuration, which can realize highly comprehensive performance and a compact footprint. After parameter optimization, the designed EO-MRM exhibited an extinction ratio of 38 dB. Compared to the structure without Euler bends, the increase was 35 dB. It also had a modulation bandwidth of 29 GHz and a tunability of 8.24 pm/V when the straight waveguide length was 100 μm. At the same time, the proposed device footprint was 1.92 × 104 μm2. The proposed MRM model provides an efficient solution to high-speed optical communication systems and microwave photonics, which is helpful for the fabrication of high-performance and multifunctional photonic integrated devices. Full article
Show Figures

Figure 1

11 pages, 2570 KiB  
Article
Three-Dimensional Scanning Virtual Aperture Imaging with Metasurface
by Zhan Ou, Yuan Liang, Hua Cai and Guangjian Wang
Sensors 2025, 25(1), 280; https://doi.org/10.3390/s25010280 - 6 Jan 2025
Viewed by 1003
Abstract
Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual [...] Read more.
Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system. The system first uses a focused beam to achieve near-field focal plane scanning, meanwhile forming a virtual aperture. Secondly, an adapted range migration algorithm (RMA) with a pre-processing step is applied to the virtual aperture to achieve a 3D high-resolution reconstruction. The pre-processing step fully exploits the feature of near-field beamforming that only a time delay is added on the received signal, which introduces ignorable additional calculation time. We build a compact prototype system working at a frequency from 38 to 40 GHz. Both the simulations and the experiments demonstrate that the proposed system can achieve high-quality imaging without complex implementations. Our method can be widely used for single-transceiver coherent systems to significantly improve the imaging depth of field (DOF). Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

11 pages, 3029 KiB  
Article
Laterally Excited Resonators Based on Single-Crystalline LiTaO3 Thin Film for High-Frequency Applications
by Chongrui Guan and Xingli He
Micromachines 2024, 15(12), 1416; https://doi.org/10.3390/mi15121416 - 26 Nov 2024
Cited by 1 | Viewed by 952
Abstract
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO3 (LT, with 42° YX-cut) film. [...] Read more.
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO3 (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms. In addition, the temperature response of the devices was numerically calculated, showing relatively low temperature coefficients of frequency (TCF) of ~−38 ppm/K for the primary resonant mode. The LT-based XBARs were fabricated and characterized, which presents a multi-resonant mode over a wide frequency range (0.1~10 GHz). For the primary resonance around 4.1 GHz, the fabricated devices exhibited a high-quality factor (Bode-Q) ~ 600 and piezoelectric coupling (kt2) ~ 2.84%, while the higher-harmonic showed a greater value of kt2 ~ 3.49%. To lower the resonant frequency of the resonator, the thin SiO2 film (~20 nm) was sputtered on the suspended device, which created a frequency offset between the series and shunt resonators. Finally, a ladder-type narrow band filter employing five XBARs was developed and characterized. This work effectively demonstrates the performance and application potential of micro-acoustic resonators employing high-quality LT films. Full article
Show Figures

Figure 1

12 pages, 1652 KiB  
Article
A High-Speed Silicon-Photonics WDM Switch for Optical Networks Applications
by Mohamed Elkattan and Michael Gad
Photonics 2024, 11(12), 1115; https://doi.org/10.3390/photonics11121115 - 25 Nov 2024
Cited by 2 | Viewed by 1422
Abstract
This article introduces the design of a novel high-speed silicon-photonics hitless switch that adheres to wavelength-division multiplexing (WDM) standards for channel 3 dB bandwidth, channel free spectral range, crosstalk, shape factor, and dispersion. The design combines the advantages of two structures, a compound [...] Read more.
This article introduces the design of a novel high-speed silicon-photonics hitless switch that adheres to wavelength-division multiplexing (WDM) standards for channel 3 dB bandwidth, channel free spectral range, crosstalk, shape factor, and dispersion. The design combines the advantages of two structures, a compound ring resonator structure, and a Mach–Zehnder interferometer (MZI) modulator. The mathematical treatment for the proposed device is detailed, and two designs are presented. For a switch of five ring resonators, the through (drop) channel 3 dB bandwidth is 60 GHz (38 GHz), channel crosstalk is −24 dB (−24 dB), dispersion is 22 ps/nm (21 ps/nm), shape factor is 0.66 (0.5), and insertion loss is 0.3 dB (1.7 dB). For a switch of nine ring resonators, the through (drop) channel 3 dB bandwidth is 59 GHz (38 GHz), channel crosstalk is −37 dB (−24 dB), dispersion is 28.5 ps/nm (29 ps/nm), shape factor is 0.8 (0.73), and insertion loss is 0.3 dB (2.3 dB). For the five-ring design, the switch-on/off ratio is 30 dB, and for the nine-ring design, it is 31 dB. For both designs, the switching speed is 100 GHz. Full article
Show Figures

Figure 1

22 pages, 9633 KiB  
Article
An Enhanced Particle Swarm Optimization-Based Node Deployment and Coverage in Sensor Networks
by Kondisetty Venkata Naga Aruna Bhargavi, Gottumukkala Partha Saradhi Varma, Indukuri Hemalatha and Ravilla Dilli
Sensors 2024, 24(19), 6238; https://doi.org/10.3390/s24196238 - 26 Sep 2024
Cited by 2 | Viewed by 1874
Abstract
Positioning, coverage, and connectivity play important roles in next-generation wireless network applications. The coverage in a wireless sensor network (WSN) is a measure of how effectively a region of interest (ROI) is monitored and targets are detected by the sensor nodes. The random [...] Read more.
Positioning, coverage, and connectivity play important roles in next-generation wireless network applications. The coverage in a wireless sensor network (WSN) is a measure of how effectively a region of interest (ROI) is monitored and targets are detected by the sensor nodes. The random deployment of sensor nodes results in poor coverage in WSNs. Additionally, battery depletion at the sensor nodes creates coverage holes in the ROI and affects network coverage. To enhance the coverage, determining the optimal position of the sensor nodes in the ROI is essential. The objective of this study is to define the optimal locations of sensor nodes prior to their deployment in the given network terrain and to increase the coverage area using the proposed version of an enhanced particle swarm optimization (EPSO) algorithm for different frequency bands. The EPSO algorithm avoids the deployment of sensor nodes in close proximity to each other and ensures that every target is covered by at least one sensor node. It applies a probabilistic coverage model based on the Euclidean distances to detect the coverage holes in the initial deployment of sensor nodes and guarantees a higher coverage probability. Delaunay triangulation (DT) helps to enhance the coverage of a given network terrain in the presence of targets. The combination of EPSO and DT is applied to cover the holes and optimize the position of the remaining sensor nodes in the WSN. The fitness function of the EPSO algorithm yielded converged results with the average number of iterations of 78, 82, and 80 at 3.6 GHz, 26 GHz, and 38 GHz frequency bands, respectively. The results of the sensor deployment and coverage showed that the required coverage conditions were met with a communication radius of 4 m compared with 6–120 m with the existing works. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

10 pages, 4474 KiB  
Article
Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus
by Yu Xin, Shu-Ting Guan, Ke Ren, Hui Wang, Ji Dong, Hao-Yu Wang, Jing Zhang, Xin-Ping Xu, Bin-Wei Yao, Li Zhao, Chang-Xiu Shi and Rui-Yun Peng
Metabolites 2024, 14(7), 354; https://doi.org/10.3390/metabo14070354 - 23 Jun 2024
Viewed by 1469
Abstract
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC–MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in [...] Read more.
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC–MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

23 pages, 7417 KiB  
Article
Dual-Band Antenna at 28 and 38 GHz Using Internal Stubs and Slot Perturbations
by Parveez Shariff Bhadravathi Ghouse, Pradeep Kumar, Pallavi R. Mane, Sameena Pathan, Tanweer Ali, Alexandros-Apostolos A. Boulogeorgos and Jaume Anguera
Technologies 2024, 12(6), 84; https://doi.org/10.3390/technologies12060084 - 6 Jun 2024
Cited by 6 | Viewed by 2571
Abstract
A double-stub matching technique is used to design a dual-band monopole antenna at 28 and 38 GHz. The transmission line stubs represent the matching elements. The first matching network comprises series capacitive and inductive stubs, causing impedance matching at the 28 GHz band [...] Read more.
A double-stub matching technique is used to design a dual-band monopole antenna at 28 and 38 GHz. The transmission line stubs represent the matching elements. The first matching network comprises series capacitive and inductive stubs, causing impedance matching at the 28 GHz band with a wide bandwidth. On the other hand, the second matching network has two shunt inductive stubs, generating resonance at 38 GHz. A Smith chart is utilized to predict the stub lengths. While incorporating their dimensions physically, some of the stub lengths are fine-tuned. The proposed antenna is compact with a profile of 0.75λ1×0.66λ1 (where λ1 is the free-space wavelength at 28 GHz). The measured bandwidths are 27–28.75 GHz and 36.20–42.43 GHz. Although the physical series capacitance of the first matching network is a slot in the ground plane, the antenna is able to achieve a good gain of 7 dBi in both bands. The proposed antenna has a compact design, good bandwidth and gain, making it a candidate for 5G wireless applications. Full article
(This article belongs to the Special Issue Intelligent Reflecting Surfaces for 5G and Beyond Volume II)
Show Figures

Figure 1

19 pages, 13981 KiB  
Article
MCML-BF: A Metal-Column Embedded Microstrip Line Transmission Structure with Bias Feeders for Beam-Scanning Leakage Antenna Design
by Shunhu Hou, Shengliang Fang, Youchen Fan, Yuhai Li, Zhao Ma and Jinming Li
Sensors 2024, 24(11), 3467; https://doi.org/10.3390/s24113467 - 28 May 2024
Viewed by 1079
Abstract
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two [...] Read more.
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two rows of metal columns in the dielectric substrate, electromagnetic waves can be more effectively transmitted to reduce dissipation, and attenuation loss can be lowered to improve energy radiation efficiency. This antenna couples TEM mode electromagnetic waves into free space by periodically arranging 72 complementary split ring resonators (CSRRs). The LC layer is encapsulated in the transmission medium between the ML and the metal grounding plate. The simulation results show that the antenna can achieve a 106° continuous beam turning from reverse −52° to forward 54° at a frequency of 38 GHz with the holographic principle. In practical applications, beam scanning is achieved by applying a DC bias voltage to the LC layer to adjust the LC dielectric constant. We designed a sector-blocking bias feeder structure to minimize the impact of RF signals on the DC source and avoid the effect of DC bias on antenna radiation. Further comparative experiments revealed that the bias feeder can significantly diminish the influence between the two sources, thereby reducing the impact of bias voltage introduced by LC layer feeding on antenna performance. Compared with existing approaches, the antenna array simultaneously combines the advantages of high frequency band, high gain, wide beam scanning range, and low loss. Full article
Show Figures

Figure 1

23 pages, 10230 KiB  
Article
Compact and Hybrid Dual-Band Bandpass Filter Using Folded Multimode Resonators and Second-Mode Suppression
by Nicolas Claus, Kamil Yavuz Kapusuz, Jo Verhaevert and Hendrik Rogier
Electronics 2024, 13(10), 1921; https://doi.org/10.3390/electronics13101921 - 14 May 2024
Cited by 4 | Viewed by 1789
Abstract
The proliferation of the Internet of Things (IoT) propels the continuous demand for compact, low-cost, and high-performance multiband filters. This paper introduces a novel low-profile dual-band bandpass filter (BPF) constructed with a back-to-back coupled pair of shielded folded quarter-mode substrate integrated waveguide (SF-QMSIW) [...] Read more.
The proliferation of the Internet of Things (IoT) propels the continuous demand for compact, low-cost, and high-performance multiband filters. This paper introduces a novel low-profile dual-band bandpass filter (BPF) constructed with a back-to-back coupled pair of shielded folded quarter-mode substrate integrated waveguide (SF-QMSIW) multimode cavities. A hybrid structure is obtained by etching a coplanar waveguide (CPW) coupling line in the folded cavity’s septum layer. It serves multiple functions: generating an additional resonance, providing a separate coupling mechanism for the upper passband, and offering the flexibility to control the passbands’ center frequency ratio. Additionally, the unused second higher-order mode is suppressed by integrating embedded split-ring resonators (ESRRs) with an inter-digital capacitor (IDC) structure into the feed lines. A filter prototype has been fabricated and experimentally tested. The measurements confirmed reliable operation in two passbands having center frequencies 3.6 GHz and 5.8 GHz, and exhibiting 3 dB fractional bandwidths (FBWs) of 6.4% and 5.3%, respectively. Furthermore, the group delay variation within both passbands equals only 0.62 ns and 1.00 ns, respectively. Owing to the second higher-order mode suppression, the filter demonstrated an inter-band rejection exceeding 38 dB, within a compact footprint of 0.71λg2 (with λg being the guided wavelength at the lower passband’s center frequency). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 2773 KiB  
Article
Terahertz Replica Generation of Ultra-High Data Rate Transmission in an Electro-Optical Semiconductor Optical Amplifier Mach–Zehnder Interferometer System
by Hassan Termos and Ali Mansour
Photonics 2024, 11(1), 83; https://doi.org/10.3390/photonics11010083 - 17 Jan 2024
Viewed by 1669
Abstract
This article presents an analysis of an electro-optical up-converter relying on a semiconductor optical amplifier Mach–Zehnder interferometer (SOA-MZI). The pulsed control signal is generated by an optical pulse clock (OPC) with a repetition rate of fs= 19.5 GHz. The intermediate frequency [...] Read more.
This article presents an analysis of an electro-optical up-converter relying on a semiconductor optical amplifier Mach–Zehnder interferometer (SOA-MZI). The pulsed control signal is generated by an optical pulse clock (OPC) with a repetition rate of fs= 19.5 GHz. The intermediate frequency (IF) signal, which carries the modulation format known as quadratic phase shift keying (QPSK) at a frequency fIF, is shifted at the output of the SOA-MZI to high outlet mixing frequencies nfs±fIF, where n represents the harmonic order of the OPC. To examine the characteristics of the sampled QPSK signals, we employ the Virtual Photonics Inc. (VPI) emulator and evaluate them using significate metrics like error vector magnitudes (EVMs), conversion gains, and bit error rates (BERs). The up-mixing process is mainly achieved through the cross-phase modulation (XPM) effect in the SOA-MZI, which operates within a 195.5 GHz ultrahigh frequency (UHF). The electro-optical SOA-MZI up-converter demonstrates consistent uplifting conversion gains across the scope of the output mixing frequencies. The simulated conversion gain deteriorates from 38 dB at 20 GHz to 13 dB at 195.5 GHz. The operational efficiency of the electro-optical SOA-MZI design, employing the standard modulation approach, is also evaluated by measuring the EVM values. The EVM attains a 24% performance level at a data rate of 5 Gbit/s in conjunction with the UHF of 195.5 GHz. To corroborate our results, we compare them with real-world experiments conducted with the UHF of 59 GHz. The maximum frequency range of 1 THz is attained by increasing the OPC repetition rate. Ultimately, through elevating the control frequency to 100 GHz, the generation of terahertz replicas of the 4096-QAM (quadrature amplitude modulation) compound signal becomes achievable at heightened UHF, extending 1 THz, while maintaining a data transmission rate of 120 Gbit/s and upholding exceptional performance characteristics. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

18 pages, 14236 KiB  
Article
A Compact Dual-Band Millimeter Wave Antenna for Smartwatch and IoT Applications with Link Budget Estimation
by Parveez Shariff Bhadrvathi Ghouse, Pallavi R. Mane, Sangeetha Thankappan Sumangala, Vasanth Kumar Puttur, Sameena Pathan, Vikash Kumar Jhunjhunwala and Tanweer Ali
Sensors 2024, 24(1), 103; https://doi.org/10.3390/s24010103 - 24 Dec 2023
Cited by 7 | Viewed by 2221
Abstract
Advancement in smartwatch sensors and connectivity features demands low latency communication with a wide bandwidth. ISM bands below 6 GHz are reaching a threshold. The millimeter-wave (mmWave) spectrum is the solution for future smartwatch applications. Therefore, a compact dual-band antenna operating at 25.5 [...] Read more.
Advancement in smartwatch sensors and connectivity features demands low latency communication with a wide bandwidth. ISM bands below 6 GHz are reaching a threshold. The millimeter-wave (mmWave) spectrum is the solution for future smartwatch applications. Therefore, a compact dual-band antenna operating at 25.5 and 38 GHz is presented here. The characteristics mode theory (CMT) aids the antenna design process by exciting Mode 1 and 2 as well as Mode 1–3 at their respective bands. In addition, the antenna structure generates two traverse modes, TM10 and TM02, at the lower and higher frequency bands. The antenna measured a bandwidth (BW) of 1.5 (25–26.5 GHz) and 2.5 GHz (37–39.5 GHz) with a maximum gain of 7.4 and 7.3 dBi, respectively. The antenna performance within the watch case (stainless steel) showed a stable |S11| with a gain improvement of 9.9 and 10.9 dBi and a specific absorption rate (SAR) of 0.063 and 0.0206 W/kg, respectively, at the lower and higher bands. The link budget analysis for various rotation angles of the watch indicated that, for a link margin of 20 dB, the antenna can transmit/receive 1 Gbps of data. However, significant fading was noticed at certain angles due to the shadowing effect caused by the watch case itself. Nonetheless, the antenna has a workable bandwidth, a high gain, and a low SAR, making it suitable for smartwatch and IoT applications. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

14 pages, 7195 KiB  
Article
A Miniature Eight-Port Antenna Array Based on Split-Ring Resonators for 5G Sub-6 GHz Handset Applications
by Jianlin Huang, Lingrong Shen, Shanshan Xiao, Xiaojing Shi and Gui Liu
Sensors 2023, 23(24), 9734; https://doi.org/10.3390/s23249734 - 10 Dec 2023
Cited by 4 | Viewed by 1377
Abstract
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on [...] Read more.
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a −10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3–4.2 GHz), N78 (3.3–3.8 GHz), and N79 (4.4–5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing. Full article
(This article belongs to the Special Issue 5G Antennas)
Show Figures

Figure 1

Back to TopTop