Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Grouping and Microwave Radiation Methods
2.2. Transmission Electron Microscopy (TEM) Observation of Hippocampus
2.3. LC–MS/MS
2.3.1. Sample Collection and Processing
2.3.2. Chromatographic and Mass Spectrometric Parameters
2.3.3. Data Analysis
3. Results
3.1. Ultrastructural Damage to Synapses in the Rat Hippocampus after Microwave Radiation
3.2. Perturbations in the Metabolic Profile of Rat Hippocampal Tissue after Microwave Radiation
3.2.1. QC Sample Consistency Assessment and Model Fitting Identification
3.2.2. Differentially Abundant Metabolite Screening and Annotation
Notes on Differentially Abundant Metabolite Clusters
3.2.3. Analysis of Differential Metabolic Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comelekoglu, U.; Aktas, S.; Demirbag, B.; Karagul, M.I.; Yalin, S.; Yildirim, M.; Akar, A.; Korunur Engiz, B.; Sogut, F.; Ozbay, E. Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol. Bioelectromagnetics 2018, 39, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Yao, C.F.; Sun, L.; Wu, Y.; Liu, Y.; Wang, H.; Xu, X.P.; Zhou, H.M.; Zhao, L.; Zhao, X.J.; et al. Effects of 2.8 GHz microwave on spatial working memory and recognition memory in rats and its structural basis. Chin. J. Stereol. Image Anal. 2022, 27, 62–73. [Google Scholar]
- Liao, S.Y.; Hu, X.J.; Zhi, W.J.; Dong, J.; He, S.P.; Zou, Y.; Wang, L.F. Effects of microwave irradiation on amino acid transmitters in hippocampus, serum and urine of rats. Mil. Med. Sci. 2019, 43, 501–505. [Google Scholar]
- Zhu, R.Q.; Wang, H.; Xu, X.P.; Zhao, L.; Zhang, J.; Dong, J.; Yao, B.; Wang, H.; Zhou, H.; Gao, Y.; et al. Effects of 1.5 and 4.3 GHz microwave radiation on cognitive function and hippocampal tissue structure in Wistar rats. Sci. Rep. 2021, 11, 10061. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Behari, J. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl. Biochem. Biotechnol. 2009, 158, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Hainmueller, T.; Bartos, M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat. Rev. Neurosci. 2020, 21, 153–168. [Google Scholar] [CrossRef]
- Lopez-Rojas, J.; de Solis, C.A.; Leroy, F.; Kandel, E.R.; Siegelbaum, S.A. A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory. Neuron 2022, 110, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Terranova, J.I.; Yokose, J.; Osanai, H.; Marks, W.D.; Yamamoto, J.; Ogawa, S.K.; Kitamura, T. Hippocampal-amygdala memory circuits govern. experience-dependent observational fear. Neuron 2022, 110, 1416–1431. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Luchetti, A.; Fernandes, G.; Almeida Filho, D.; Kastellakis, G.; Tzilivaki, A.; Ramirez, E.M.; Tran, M.Y.; Poirazi, P.; Silva, A.J. A locus coeruleus-dorsal CA1 dopaminergic circuit. modulates memory linking. Neuron 2022, 110, 3374–3388. [Google Scholar] [CrossRef]
- Lisman, J.; Buzsáki, G.; Eichenbaum, H.; Nadel, L.; Ranganath, C.; Redish, A.D. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 2017, 20, 1434–1447. [Google Scholar]
- Zeidman, P.; Maguire, E.A. Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nat. Rev. Neurosci. 2016, 17, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Toda, T.; Parylak, S.L.; Linker, S.B.; Gage, F.H. The role of adult hippocampal neurogenesis in brain health and disease. Mol. Psychiatry 2019, 24, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Barkhof, F.; De Luca, J.; Frisén, J.; Geurts, J.J.; Hulst, H.E.; Sastre-Garriga, J.; Filippi, M.; Ciccarelli, O.; De Stefano, N.; et al. The hippocampus in multiple sclerosis. Lancet Neurol. 2018, 17, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, X.; Wang, J.; Wang, X.; Chen, W.; Lu, N.; Siniossoglou, S.; Yao, Z.; Liu, K. Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron 2020, 105, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.H.; Zhao, L.; Peng, R.Y. Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil. Med. Res. 2015, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Sun, Y.B.; Dong, J.; Xu, X.P.; Wang, H.Y.; Zhao, X.; Zhang, J.; Yao, B.; Zhao, L.; et al. Changes in cognitive function, synaptic structure and protein expression after long-term exposure to 2.856 and 9.375 GHz microwaves. Cell Commun. Signal. 2023, 21, 34. [Google Scholar] [CrossRef]
- Hasan, I.; Rubayet Jahan, M.; Nabiul Islam, M.; Rafiqul Islam, M. Effect of 2400 MHz mobile phone radiation. exposure on the behavior and hippocampus morphology in Swiss mouse model. Saudi J. Biol. Sci. 2022, 29, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Shahin, S.; Banerjee, S.; Singh, S.P. Chaturvedi CM. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism. Toxicol. Sci. 2015, 148, 380–399. [Google Scholar] [CrossRef]
- Hao, Y.H.; Li, W.C.; Wang, H.; Zhang, J.; Yu, C.; Tan, S.Z.; Wang, H.; Xu, X.; Dong, J.; Yao, B.; et al. Autophagy mediates the degradation of synaptic vesicles: A potential mechanism of synaptic plasticity injury induced by microwave exposure in rats. Physiol. Behav. 2018, 188, 119–127. [Google Scholar] [CrossRef]
- Manchester, M.; Anand, A. Metabolomics. Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv. Virus Res. 2017, 98, 57–81. [Google Scholar] [PubMed]
- Jia, Y.H.; Zou, K.; Zou, L.J. Research progress of metabolomics in cervical cancer. Eur. J. Med. Res. 2023, 28, 586. [Google Scholar] [CrossRef] [PubMed]
- Mamani-Huanca, M.; Gradillas, A.; López-Gonzálvez, Á.; Barbas, C. Unraveling the Cyclization of l-Argininosuccinic Acid in Biological Samples: A Study via Mass Spectrometry and NMR Spectroscopy. Anal. Chem. 2020, 92, 12891–12899. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.L.; Wissner, R.; Piszkiewicz, S.; Schepartz, A. Cytosolic Delivery of Argininosuccinate Synthetase Using a Cell-Permeant Miniature Protein. ACS Cent. Sci. 2021, 7, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Diez-Fernandez, C.; Rüfenacht, V.; Häberle, J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations. Hum. Mutat. 2017, 38, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Roshanbakhsh, H.; Elahdadi Salmani, M.; Dehghan, S.; Nazari, A.; Javan, M.; Pourabdolhossein, F. Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Sci. 2020, 253, 117671. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, Y.; Zhang, X.S.; Liu, L.; Zhou, B.; Mo, R.; Li, Y.; Li, H.; Li, F.; Tao, Y.; et al. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4(−/−): A double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr. 2020, 39, 2092–2105. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mejia, R.O.; Newman, J.W.; Toh, S.; Yu, G.Q.; Zhou, Y.; Halabisky, B.; Cissé, M.; Scearce-Levie, K.; Cheng, I.H.; Gan, L.; et al. Phospholipase A2 reduction ameliorates cognitive. deficits in a mouse model of Alzheimer’s disease. Nat. Neurosci. 2008, 11, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Zhang, J.; Xie, Q.L.; He, X.; Guo, Z.; Zheng, B.; Wang, S.; Yang, Q.; Du, C. Bergaptol Alleviates LPS-Induced Neuroinflammation, Neurological Damage and Cognitive Impairment via Regulating the JAK2/STAT3/p65 Pathway. J. Inflamm. Res. 2022, 15, 6199–6211. [Google Scholar] [CrossRef]
- Estes, R.E.; Lin, B.; Khera, A.; Davis, M.Y. Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front. Mol. Neurosci. 2021, 14, 788695. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Akeman, P.M. Amino acid metabolism, branched-chain amino acid feeding and brain. Proc. Nutr. Soc. 1998, 57, 35–41. [Google Scholar]
- Emokpae, O.; Ben-Azu, B.; Ajayi, A.M.; Umukoro, S. D-ribose-L-cysteine enhances memory task, attenuates oxidative stress and acetyl-cholinesterase activity in scopolamine amnesic mice. Drug Dev. Res. 2020, 81, 620–627. [Google Scholar] [CrossRef]
- Samad, N.; Rafeeque, M.; Imran, I. Free-L-Cysteine improves corticosterone-induced behavioral. deficits, oxidative stress and neurotransmission in rats. Metab. Brain Dis. 2023, 38, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Li, H.C.; Zhao, Y.; Qin, F.; Wang, L.; Jiang, L.; Wang, X.; Chen, R.; He, Y.; Wei, Q.; et al. Neonatal exposure. to sevoflurane induces adolescent neurobehavioral dysfunction by interfering with hippocampal glycerophoslipid metabolism in rats. Cereb. Cortex 2023, 33, 1955–1971. [Google Scholar] [CrossRef]
Ionization Mode | Metabolite | HMDB ID | Super-Class | Chemical Formula | Trend | VIP | p Value | AUC |
---|---|---|---|---|---|---|---|---|
+ | Lysophosphatidylcholine (14:1(9Z)/0:0) | HMDB0010380 | Lipids and lipid-like molecules | C22H44NO7P | Down | >5 | <0.01 | 1 |
+ | Argininosuccinic acid | HMDB0000052 | Organic acids and derivatives | C10H18N4O6 | Down | >2 | <0.05 | ≥0.92 |
+ | Aacocf3 | HMDB0247736 | \ | C21H31F3O | Down | >4 | <0.01 | 1 |
− | fleroxacin | HMDB0252299 | Organoheterocyclic compounds | C17H18F3N3O3 | Down | >3 | <0.05 | ≥0.92 |
+ | 3-Cyclohexyl-1-propylsulfonic acid | HMDB0244400 | Organic nitrogen compounds | C9H19NO3S | Down | >2 | <0.01 | 1 |
+ | 17a-Ethynylestradiol | HMDB0001926 | Lipids and lipid-like molecules | C20H24O2 | Down | >2 | <0.05 | ≥0.95 |
+ | Inuline | HMDB0248466 | Lipids and lipid-like molecules | C32H46N2O8 | Down | >2 | <0.01 | 1 |
− | Bakkenolide D | HMDB0034998 | Lipids and lipid-like molecules | C21H28O6S | Down | >2 | <0.01 | 1 |
− | 2-Aminoanthracene | HMDB0245007 | Benzenoids | C14H11N | Down | >2 | <0.05 | 1 |
+ | Bergaptol | HMDB0013679 | Phenylpropanoids and polyketides | C11H6O4 | Down | >2 | <0.05 | ≥0.95 |
+ | 2-Chloro-5-methylmaleylacetate | HMDB0060346 | Organic acids and derivatives | C7H7ClO5 | Down | >2 | <0.05 | ≥0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Guan, S.-T.; Ren, K.; Wang, H.; Dong, J.; Wang, H.-Y.; Zhang, J.; Xu, X.-P.; Yao, B.-W.; Zhao, L.; et al. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites 2024, 14, 354. https://doi.org/10.3390/metabo14070354
Xin Y, Guan S-T, Ren K, Wang H, Dong J, Wang H-Y, Zhang J, Xu X-P, Yao B-W, Zhao L, et al. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites. 2024; 14(7):354. https://doi.org/10.3390/metabo14070354
Chicago/Turabian StyleXin, Yu, Shu-Ting Guan, Ke Ren, Hui Wang, Ji Dong, Hao-Yu Wang, Jing Zhang, Xin-Ping Xu, Bin-Wei Yao, Li Zhao, and et al. 2024. "Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus" Metabolites 14, no. 7: 354. https://doi.org/10.3390/metabo14070354
APA StyleXin, Y., Guan, S. -T., Ren, K., Wang, H., Dong, J., Wang, H. -Y., Zhang, J., Xu, X. -P., Yao, B. -W., Zhao, L., Shi, C. -X., & Peng, R. -Y. (2024). Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites, 14(7), 354. https://doi.org/10.3390/metabo14070354