Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = 2-quinolone hybrid derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2170 KiB  
Article
In Silico Evaluation of Quinolone–Triazole and Conazole–Triazole Hybrids as Promising Antimicrobial and Anticancer Agents
by Humaera Noor Suha, Mansour H. Almatarneh, Raymond A. Poirier and Kabir M. Uddin
Int. J. Mol. Sci. 2025, 26(14), 6752; https://doi.org/10.3390/ijms26146752 - 14 Jul 2025
Viewed by 309
Abstract
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that [...] Read more.
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that target resistant infections through unique mechanisms. This study used computational approaches to investigate twenty quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents (120) with nine reference drugs. By studying their interactions with 6 bacterial DNA gyrase and 10 cancer-inducing target proteins (E. faecalis, M. tuberculosis, S. aureus, E. coli, M. smegmatis, P. aeruginosa and EGFR, MPO, VEGFR, CDK6, MMP1, Bcl-2, LSD1, HDAC6, Aromatase, ALOX15) and comparing them with established drugs such as ampicillin, cefatrizine, fluconazole, gemcitabine, itraconazole, ribavirin, rufinamide, streptomycin, and tazobactam, compounds 15 and 16 emerged as noteworthy antimicrobial and anticancer agents, respectively. In molecular dynamics simulations, compounds 15 and 16 had the strongest binding at −10.6 kcal mol−1 and −12.0 kcal mol−1 with the crucial 5CDQ and 2Z3Y proteins, respectively, exceeded drug-likeness criteria, and displayed extraordinary stability within the enzyme’s pocket over varied temperatures (300–320 K). In addition, we used density functional theory (DFT) to calculate dipole moments and molecular orbital characteristics and analyze the thermodynamic stability of putative antimicrobial and anticancer derivatives. This finding reveals a well-defined, possibly therapeutic relationship, supported by theoretical and future in vitro and in vivo studies. Compounds 15 and 16, thus, emerged as intriguing contenders in the fight against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Peptide Self-Assembly)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
Anti-Inflammatory Secondary Metabolites from Penicillium sp. NX-S-6
by Hanyang Peng, Jiawen Sun, Rui Zhang, Yuxuan Qiu, Yu Hong, Fengjuan Zhou, Chang Wang, Yang Hu and Xiachang Wang
Mar. Drugs 2025, 23(7), 280; https://doi.org/10.3390/md23070280 - 4 Jul 2025
Viewed by 531
Abstract
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known [...] Read more.
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known natural products. The structures of new compounds were unambiguously elucidated by comprehensive spectroscopic analyses (NMR, MS), as well as electronic circular dichroism (ECD) calculation. Notably, quinosorbicillinol (1) was identified as a rare hybrid sorbicillinoid incorporating a quinolone moiety, representing a unique structural scaffold in this natural product class. Biological evaluation revealed that Compounds 1, 4 and 8 potently inhibited the production of nitric oxide and interleukin 6 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Mechanistic studies furthermore demonstrated that Compounds 4 and 8 effectively suppressed interleukin-1β secretion in LPS-induced immortalized mouse bone marrow-derived macrophages (iBMDMs) by blocking NLRP3 inflammasome activation. This inhibition was attributed to their ability to disrupt the assembly of the NLRP3-caspase-1 complex, a key event in the pathogenesis of inflammatory disorders. These findings not only expand the structural diversity of endophyte-derived natural products but also highlight their potential as lead compounds for developing anti-inflammatory therapeutics targeting the NLRP3 pathway. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Figure 1

16 pages, 7156 KiB  
Article
Methoxyquinolone–Benzothiazole Hybrids as New Aggregation-Induced Emission Luminogens and Efficient Fluorescent Chemosensors for Cyanide Ions
by Mario Mutis-Ayala, Jorge Trilleras, Richard D’Vries, Mario A. Macías, Alberto Insuasty, Rodrigo Abonia, Jairo Quiroga, Luis A. Illicachi, Edgar Márquez and Daniel Insuasty
Int. J. Mol. Sci. 2024, 25(23), 12896; https://doi.org/10.3390/ijms252312896 - 30 Nov 2024
Viewed by 1318
Abstract
This work describes the synthesis and characterization of new quinolone–benzothiazole hybrids, the study of their aggregation-induced emission (AIE) properties, and the use of these systems as efficient fluorescent probes for cyanide ions. These conjugated derivatives are linked through a double bond favoring electronic [...] Read more.
This work describes the synthesis and characterization of new quinolone–benzothiazole hybrids, the study of their aggregation-induced emission (AIE) properties, and the use of these systems as efficient fluorescent probes for cyanide ions. These conjugated derivatives are linked through a double bond favoring electronic communication, and together with their planar geometry, can strongly aggregate under solvophobic environments, leading to aggregation and exhibiting significant AIE behavior. The double bond between electroactive units is prone to nucleophilic addition reactions by cyanide ions, selectively, conducive to turning off the fluorescence properties, making this hybrid system an efficient probe for cyanide ions. These studies were theoretically explained using DFT and TD-DFT calculations. Full article
Show Figures

Figure 1

18 pages, 2827 KiB  
Article
Naphthoquinone-Quinolone Hybrids with Antitumor Effects on Breast Cancer Cell Lines—From the Synthesis to 3D-Cell Culture Effects
by Vanessa da Gama Oliveira, Marcelly Muxfeldt, Mariana Muniz da Paz, Mayra Silva Coutinho, Raissa Eduardo dos Santos, Giulia Diniz da Silva Ferretti, Danielly C. Ferraz da Costa, Pedro Fonseca Regufe, Ivson Lelis Gama, Fernanda da Costa Santos Boechat, Emersom Silva Lima, Vitor Francisco Ferreira, Marcela Cristina de Moraes, Maria Cecília Bastos Vieira de Souza, Pedro Netto Batalha and Luciana Pereira Rangel
Int. J. Mol. Sci. 2024, 25(12), 6490; https://doi.org/10.3390/ijms25126490 - 12 Jun 2024
Cited by 1 | Viewed by 1527
Abstract
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. [...] Read more.
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy. Full article
(This article belongs to the Special Issue Molecular and Cellular Biology of Breast Cancer)
Show Figures

Figure 1

8 pages, 2133 KiB  
Article
Characteristics of tet(X4)−Producing Escherichia coli in Chicken and Pig Farms in Hunan Province, China
by Jie Yang, Gang Xiao, Ning Xiao, Zonghan Jiang, Chao Jiang, Yujuan Li, Wenxin Chen, Hongguang Lin, Zhiliang Sun and Jiyun Li
Antibiotics 2023, 12(1), 147; https://doi.org/10.3390/antibiotics12010147 - 11 Jan 2023
Cited by 5 | Viewed by 2118
Abstract
Background: The plasmid−mediated tigecycline resistance gene tet(X4) confers a high level of resistance to tigecycline. The experiment aims to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from chicken and pig farms in Hunan province, China. Methods: A [...] Read more.
Background: The plasmid−mediated tigecycline resistance gene tet(X4) confers a high level of resistance to tigecycline. The experiment aims to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from chicken and pig farms in Hunan province, China. Methods: A total of six tet(X4) positive strains were identified in 257 E. coli derived from chicken samples in Xiangtan city (n = 2), pig samples in Xiangxiang city (n = 1), Chenzhou city (n = 2), and Zhuzhou city (n = 1). The presence of tet(X4) was directly detected by PCR assay, and then the broth dilution method determined the antimicrobial susceptibility profile of the tet(X4)−positive isolates. Genomic locations were identified by whole−genome sequencing (WGS) and bioinformatics. Results: Almost all tet(X4)−positive strains showed high resistance to multidrug, including tigecycline. Resistome analysis revealed many antibiotic resistance genes, including those with resistance to tetracyclines, β−lactams, phenicols, quinolones, lincosamides chloramphenicol, aminoglycosides and sulfamids. These tet(X4)−bearing strains exhibited six distract STs, such as ST10, 202, ST218, ST362, ST2077, ST7068. The plasmid replicon types carrying tet(X4) were the hybrid plasmid IncFIA(HI1)/IncHIA/IncHIB(R27) (5/6) and IncX1 (1/6). Conclusions: The presence of similar genetic environments in E. coli from different cities suggests there may be horizontal transmission pathways promoting the broad spread of drug−resistant genes in Hunan Province, putting great pressure on multidrug resistance monitoring. Full article
(This article belongs to the Special Issue Antimicrobial Use and Antimicrobial Resistance in Food Animals)
Show Figures

Figure 1

13 pages, 2497 KiB  
Article
Aminoquinolones and Their Benzoquinone Dimer Hybrids as Modulators of Prion Protein Conversion
by Amanda Rodrigues Pinto Costa, Marcelly Muxfeldt, Fernanda da Costa Santos Boechat, Maria Cecília Bastos Vieira de Souza, Jerson Lima Silva, Marcela Cristina de Moraes, Luciana Pereira Rangel, Tuane Cristine Ramos Gonçalves Vieira and Pedro Netto Batalha
Molecules 2022, 27(22), 7935; https://doi.org/10.3390/molecules27227935 - 16 Nov 2022
Cited by 5 | Viewed by 2059
Abstract
Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein—PrPC—in its infectious isoform—PrPSc—which can form [...] Read more.
Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein—PrPC—in its infectious isoform—PrPSc—which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics—with a shortening of the lag phase—and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 1915 KiB  
Article
Preliminary Studies of Antimicrobial Activity of New Synthesized Hybrids of 2-Thiohydantoin and 2-Quinolone Derivatives Activated with Blue Light
by Agnieszka Kania, Waldemar Tejchman, Anna M. Pawlak, Krystian Mokrzyński, Bartosz Różanowski, Bogdan M. Musielak and Magdalena Greczek-Stachura
Molecules 2022, 27(3), 1069; https://doi.org/10.3390/molecules27031069 - 5 Feb 2022
Cited by 31 | Viewed by 3352
Abstract
Thiohydantoin and quinolone derivatives have attracted researchers’ attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid [...] Read more.
Thiohydantoin and quinolone derivatives have attracted researchers’ attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds. Full article
Show Figures

Figure 1

37 pages, 11273 KiB  
Review
Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones—Shaping the Fifth Generation
by Aura Rusu, Ioana-Andreea Lungu, Octavia-Laura Moldovan, Corneliu Tanase and Gabriel Hancu
Pharmaceutics 2021, 13(8), 1289; https://doi.org/10.3390/pharmaceutics13081289 - 18 Aug 2021
Cited by 41 | Viewed by 10300
Abstract
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into [...] Read more.
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into generations is a valuable tool for physicians, pharmacists, and researchers. In addition, the transition from one generation to another has brought new representatives with improved properties. In the last two decades, several representatives of antibacterial quinolones received approval for therapy. This review sets out to chronologically outline the group of approved antibacterial quinolones since 2000. Special attention is given to eight representatives: besifloxacin, delafoxacin, finafloxacin, lascufloxacin, nadifloxacin and levonadifloxacin, nemonoxacin, and zabofloxacin. These compounds have been characterized regarding physicochemical properties, formulations, antibacterial activity spectrum and advantageous structural characteristics related to antibacterial efficiency. At present these new compounds (with the exception of nadifloxacin) are reported differently, most often in the fourth generation and less frequently in a new generation (the fifth). Although these new compounds’ mechanism does not contain essential new elements, the question of shaping a new generation (the fifth) arises, based on higher potency and broad spectrum of activity, including resistant bacterial strains. The functional groups that ensured the biological activity, good pharmacokinetic properties and a safety profile were highlighted. In addition, these new representatives have a low risk of determining bacterial resistance. Several positive aspects are added to the fourth fluoroquinolones generation, characteristics that can be the basis of the fifth generation. Antibacterial quinolones class continues to acquire new compounds with antibacterial potential, among other effects. Numerous derivatives, hybrids or conjugates are currently in various stages of research. Full article
Show Figures

Graphical abstract

14 pages, 3010 KiB  
Article
Design, Synthesis and Anticancer Evaluation of Substituted Cinnamic Acid Bearing 2-Quinolone Hybrid Derivatives
by Ali H. Abu Almaaty, Nermeen A. Elgrahy, Eman Fayad, Ola A. Abu Ali, Ahmed R. E. Mahdy, Lamiaa A. A. Barakat and Mohammed El Behery
Molecules 2021, 26(16), 4724; https://doi.org/10.3390/molecules26164724 - 4 Aug 2021
Cited by 20 | Viewed by 3669
Abstract
A new series of hybrid molecules containing cinnamic acid and 2-quinolinone derivatives were designed and synthesized. Their structures were confirmed by 1H-NMR, 13C-NMR and mass analyses. All the synthesized hybrid molecules were assessed for their in vitro antiproliferative activity against more [...] Read more.
A new series of hybrid molecules containing cinnamic acid and 2-quinolinone derivatives were designed and synthesized. Their structures were confirmed by 1H-NMR, 13C-NMR and mass analyses. All the synthesized hybrid molecules were assessed for their in vitro antiproliferative activity against more than one cancer cell lines. Compound 3-(3,5-dibromo-7,8-dihydroxy-4-methyl-2-oxoquinolin-1(2H)-ylamino)-3-phenylacrylic acid (5a) with IC50 = 1.89 μM against HCT-116 was proved to the most potent compound in this study, as compared to standard drug staurosporin. DNA flow cytometry assay of compound 5a revealed G2/M phase arrest and pre-G1 apoptosis. Annexin V-FITC showed that the percentage of early and late apoptosis was increased. The results of topoisomerase enzyme inhibition activity showed that the hybrid molecule 5a displays potent inhibitory activity compared with control. Full article
Show Figures

Figure 1

15 pages, 1361 KiB  
Article
Lipophilicity Determination of Quaternary (Fluoro)Quinolones by Chromatographic and Theoretical Approaches
by Krzesimir Ciura, Joanna Fedorowicz, Filip Andrić, Katarzyna Ewa Greber, Alina Gurgielewicz, Wiesław Sawicki and Jarosław Sączewski
Int. J. Mol. Sci. 2019, 20(21), 5288; https://doi.org/10.3390/ijms20215288 - 24 Oct 2019
Cited by 37 | Viewed by 3484
Abstract
Lipophilicity is a vital physicochemical parameter of a molecule, which affects several biological processes such as absorption, tissue distribution, and pharmacokinetic properties. In this study, evaluation of lipophilicities of a series of novel fluoroquinolone-Safirinium dye hybrids using chromatographic and computational methods is [...] Read more.
Lipophilicity is a vital physicochemical parameter of a molecule, which affects several biological processes such as absorption, tissue distribution, and pharmacokinetic properties. In this study, evaluation of lipophilicities of a series of novel fluoroquinolone-Safirinium dye hybrids using chromatographic and computational methods is presented. Fluoroquinolone-Safirinium dye hybrids have been synthesized as new dual-acting hydrophilic antibacterial agents. Reversed phase thin-layer chromatography and micellar electrokinetic chromatography experiments were carried out. Furthermore, logP values of the target structures were predicted by means of different software platforms and algorithms. In order to assess similarities and dissimilarities of the obtained lipophilicity indexes, cluster analysis and sum of ranking differences were performed. The significant differences of calculated logP values (α = 0.05, p < 0.001) indicated that an experimental approach is necessary for lipophilicity prediction of this class of antibiotics. Chromatographic data indicated that the newly synthesized hybrid (fluoro)quinolone-based quaternary ammonium derivatives show less lipophilic character than the parent (fluoro)quinolones. Additionally, the chromatographically obtained lipophilicity indexes were evaluated for possible application in quantitative retention–activity relationships. The established lipophilicity models have the potential to predict antimicrobial activities of a series of quaternary (fluoro)quinolones against Bacillus subtilis, Escherichia coli, and Proteus vulgaris. Full article
Show Figures

Figure 1

11 pages, 2836 KiB  
Article
Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents
by Hai-Gen Fu, Zhi-Wen Li, Xin-Xin Hu, Shu-Yi Si, Xue-Fu You, Sheng Tang, Yan-Xiang Wang and Dan-Qing Song
Molecules 2019, 24(3), 548; https://doi.org/10.3390/molecules24030548 - 2 Feb 2019
Cited by 65 | Viewed by 7204
Abstract
Nineteen new quinoline derivatives were prepared via the Mannich reaction and evaluated for their antibacterial activities against both Gram-positive (G+) and Gram-negative (G) bacteria, taking compound 1 as the lead. Among the target compounds, quinolone coupled hybrid 5d exerted [...] Read more.
Nineteen new quinoline derivatives were prepared via the Mannich reaction and evaluated for their antibacterial activities against both Gram-positive (G+) and Gram-negative (G) bacteria, taking compound 1 as the lead. Among the target compounds, quinolone coupled hybrid 5d exerted the potential effect against most of the tested G+ and G strains with MIC values of 0.125–8 μg/mL, much better than those of 1. Molecular-docking assay showed that compound 5d might target both bacterial LptA and Top IV proteins, thereby displaying a broad-spectrum antibacterial effect. This hybridization strategy was an efficient way to promote the antibacterial activity of this kind, and compound 5d was selected for the further investigation, with an advantage of a dual-target mechanism of action. Full article
Show Figures

Graphical abstract

Back to TopTop