Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = 15dPGJ2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3409 KiB  
Article
3-O-Ethyl Ascorbic Acid and Cannabigerol in Modulating the Phospholipid Metabolism of Keratinocytes
by Iwona Jarocka-Karpowicz, Izabela Dobrzyńska, Anna Stasiewicz and Elżbieta Skrzydlewska
Antioxidants 2024, 13(11), 1285; https://doi.org/10.3390/antiox13111285 - 24 Oct 2024
Cited by 1 | Viewed by 1773
Abstract
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and [...] Read more.
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and regenerative effect on keratinocyte phospholipids, the effectiveness of two antioxidant compounds has been tested: a stable derivative of ascorbic acid, 3-O-ethyl ascorbic acid (EAA) and cannabigerol (CBG), both of which are primarily located in the membrane structures of keratinocytes. In addition, this study has demonstrated that EAA and CBG, especially in a two-component combination, enhance the antioxidant properties of keratinocytes and reduce lipid peroxidation assessed at the level of MDA (malondialdehyde)/neuroprostanes. Moreover, by reducing the activity of enzymes that metabolise phospholipids, free PUFAs (polyunsaturated fatty acids) and endocannabinoids (PLA2; phospholipase A2, COX1/2; cyclooxygenases 1/2, LOX-5; lipoxygenase 5, FAAH; fatty acid amide hydrolase, MAGL; monoacylglycerol lipase), antioxidants have been found to regulate the levels of endocannabinoids (AEA; anandamide, 2-AG; 2-arachidonoylglycerol, PEA; palmitoylethanolamide) and eicosanoids (PGD2; prostaglandin D2, PGE2; prostaglandin E2, 15-d-PGJ2; 15-deoxy-Δ12,14-prostaglandin J2, 15-HETE; 15-hydroxyeicosatetraenoic acid), that are enhanced by UVB radiation. The metabolic effect of both groups of PUFA metabolites is mainly related to the activation of G protein-related receptors (CB1/2; cannabinoid receptor 1 and 2, PPARγ; peroxisome proliferator-activated receptor gamma, TRPV1; transient receptor potential cation channel subfamily V member 1), the expression of which is reduced under the influence of EAA, CBG, and especially the two-component combination. It promotes the regeneration of keratinocyte metabolism disrupted by UVB, particularly in relation to redox balance and inflammation. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 2792 KiB  
Article
Nannochloropsis oceanica Lipid Extract Moderates UVB-Irradiated Psoriatic Keratinocytes: Impact on Protein Expression and Protein Adducts
by Adam Wroński, Agnieszka Gęgotek, Tiago Conde, Maria Rosário Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Antioxidants 2024, 13(10), 1236; https://doi.org/10.3390/antiox13101236 - 14 Oct 2024
Viewed by 1435
Abstract
Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae Nannochloropsis oceanica [...] Read more.
Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae Nannochloropsis oceanica on the proteomic alterations induced by lipid derivatives in non-irradiated and UVB-irradiated keratinocytes from psoriatic skin lesions compared to keratinocytes from healthy individuals. The findings revealed that the microalgae extract diminished the viability of psoriatic keratinocytes without affecting the viability of these cells following UVB exposure. Notably, the microalgae extract led to an increased level of 4-HNE-protein adducts in non-irradiated cells and a reduction in 4-hydroxynonenal (4-HNE)-protein and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2)-protein adducts in UVB-exposed keratinocytes from psoriasis patients. In healthy skin cells, the extract decreased the UV-induced elevation of 4-HNE-protein and 15d-PGJ2-protein adducts. The antioxidant/anti-inflammatory attributes of the lipid extract from the Nannochloropsis oceanica suggest its potential as a protective agent for keratinocytes in healthy skin against UVB radiation’s detrimental effects. Moreover, it could offer therapeutic benefits to skin cells afflicted with psoriatic lesions by mitigating their proliferation and inflammatory responses during UV radiation treatment. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

32 pages, 4744 KiB  
Article
Comparison of the Regenerative Metabolic Efficiency of Lipid Extracts from Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis on Fibroblasts
by Anna Stasiewicz, Tiago Conde, Maria do Rosario Domingues, Pedro Domingues, Michał Biernacki and Elżbieta Skrzydlewska
Antioxidants 2024, 13(3), 276; https://doi.org/10.3390/antiox13030276 - 24 Feb 2024
Cited by 6 | Viewed by 2400
Abstract
UVA radiation leads to oxidative stress and inflammation in skin cells. Therefore, the aim of this study was to compare the effect of lipid extracts from microalgae Nannochloropsis oceanica (N.o.) (marine) and Chlorococcum amblystomatis (C.a.) (freshwater) on the redox [...] Read more.
UVA radiation leads to oxidative stress and inflammation in skin cells. Therefore, the aim of this study was to compare the effect of lipid extracts from microalgae Nannochloropsis oceanica (N.o.) (marine) and Chlorococcum amblystomatis (C.a.) (freshwater) on the redox balance and PUFA metabolism in human skin fibroblasts modified by UVA. Lipid extracts from both types of microalgae introduced into the fibroblast medium after UVA irradiation significantly reduced the level of ROS and enhanced expression of Nrf2, which increased the activity/level of antioxidants (SOD1/2, CAT, GSH, Trx). The reduction in oxidative stress was accompanied by a decrease in the level of 4-HNE, its protein adducts and protein carbonyl groups. Microalgae also reduced the activity of COX1/2, FAAH and MAGL increased by UVA, and as a consequence, the level of lipid mediators (especially after N.o.) decreased, both from the group of endocannabinoids (AEA, 2-AG, PEA) and eicosanoids (PGE2, 15d-PGJ2, TXB2, 15-HETE), acting mainly through receptors related to G protein, the expression of which increases after UVA. This further contributed to the reduction in oxidative stress and pro-inflammatory signaling at NF-κB and TNFα levels. Therefore, it is suggested that lipid extracts from both N.o. and C.a. microalgae can be used to regenerate fibroblast metabolism disturbed by UVA radiation. Full article
(This article belongs to the Special Issue Pharmacological Properties of Natural Antioxidants)
Show Figures

Figure 1

11 pages, 935 KiB  
Systematic Review
Antinociceptive Efficacy of 15-Deoxy-Δ12,14-Prostaglandin J2 Therapy in Response to Experimentally Induced Temporomandibular Joint Arthritis: A Systematic Review of Studies in Rats
by Fraser Hart, Dimitrios Michelogiannakis, P. Emile Rossouw and Fawad Javed
Prosthesis 2024, 6(1), 63-73; https://doi.org/10.3390/prosthesis6010005 - 10 Jan 2024
Cited by 1 | Viewed by 1541
Abstract
The aim of the present systematic review was to assess the antinociceptive efficacy of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) therapy in rats with experimentally induced temporomandibular joint (TMJ) arthritis. The focused question was “Is 15d-PGJ2 therapy effective in the management of [...] Read more.
The aim of the present systematic review was to assess the antinociceptive efficacy of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) therapy in rats with experimentally induced temporomandibular joint (TMJ) arthritis. The focused question was “Is 15d-PGJ2 therapy effective in the management of TMJ nociception?” Indexed databases were searched without time and language restrictions up to and including September 2023 using different key words. Original studies were included. Risk of Bias (RoB) was assessed using the SYRCLE tool. Six studies performed in male Wistar rats with experimentally induced TMJ arthritis were included. The observation or follow-up period ranged between 45 min and 14 days. Four studies reported that 15d-PGJ2 therapy retards the production of proinflammatory cytokines in TMJ tissues. Four studies reported that 15d-PGJ2 therapy inhibits leukocyte migration and plasma extravasation in TMJ tissues. In one study, the expression of decay-accelerating factor in TMJ tissues increased after 15d-PGJ2 therapy. One study showed that 15d-PGJ2 inhibits nociception in a dose-dependent manner via the activation of peripheral kappa/delta opioid receptors. Prior sample-size-estimation (SSE) was performed in none of the studies and all studies had a high RoB. Due to a high RoB, methodological variations, and the absence of prior SSE within the included studies, it is demanding to derive an absolute verdict regarding the antinociceptive efficacy of 15d-PGJ2 therapy in response to experimentally induced TMJ arthritis. Full article
(This article belongs to the Special Issue Digital Technologies, Materials and Telemedicine in Dentistry)
Show Figures

Figure 1

15 pages, 4987 KiB  
Article
Short Survey on the Protein Modifications in Plasma during SARS-CoV-2 Infection
by Agnieszka Gęgotek, Neven Zarkovic, Biserka Orehovec, Morana Jaganjac, Suzana Borovic Sunjic and Elżbieta Skrzydlewska
Int. J. Mol. Sci. 2023, 24(18), 14109; https://doi.org/10.3390/ijms241814109 - 14 Sep 2023
Cited by 4 | Viewed by 1860
Abstract
Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased [...] Read more.
Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products—protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Molecular Research and Insights into COVID-19)
Show Figures

Figure 1

17 pages, 1703 KiB  
Article
Preliminary Comparison of Molecular Antioxidant and Inflammatory Mechanisms Determined in the Peripheral Blood Granulocytes of COVID-19 Patients
by Elżbieta Skrzydlewska, Wojciech Łuczaj, Michał Biernacki, Piotr Wójcik, Iwona Jarocka-Karpowicz, Biserka Orehovec, Bruno Baršić, Marko Tarle, Marta Kmet, Ivica Lukšić, Zlatko Marušić, Georg Bauer and Neven Žarković
Int. J. Mol. Sci. 2023, 24(17), 13574; https://doi.org/10.3390/ijms241713574 - 1 Sep 2023
Cited by 1 | Viewed by 1721
Abstract
The aim of this study was to evaluate selected parameters of redox signaling and inflammation in the granulocytes of COVID-19 patients who recovered and those who died. Upon admission, the patients did not differ in terms of any relevant clinical parameter apart from [...] Read more.
The aim of this study was to evaluate selected parameters of redox signaling and inflammation in the granulocytes of COVID-19 patients who recovered and those who died. Upon admission, the patients did not differ in terms of any relevant clinical parameter apart from the percentage of granulocytes, which was 6% higher on average in those patients who died. Granulocytes were isolated from the blood of 15 healthy people and survivors and 15 patients who died within a week, and who were selected post hoc for analysis according to their matching gender and age. They differed only in the lethal outcome, which could not be predicted upon arrival at the hospital. The proteins level (respective ELISA), antioxidant activity (spectrophotometry), and lipid mediators (UPUPLC–MS) were measured in the peripheral blood granulocytes obtained via gradient centrifugation. The levels of Nrf2, HO-1, NFκB, and IL-6 were higher in the granulocytes of COVID-19 patients who died within a week, while the activity of cytoplasmic Cu,Zn-SOD and mitochondrial Mn-SOD and IL-2/IL-10 were lower in comparison to the levels observed in survivors. Furthermore, in the granulocytes of those patients who died, an increase in pro-inflammatory eicosanoids (PGE2 and TXB2), together with elevated cannabinoid receptors 1 and 2 (associated with a decrease in the anti-inflammatory 15d-PGJ2), were found. Hence, this study suggests that by triggering transcription factors, granulocytes activate inflammatory and redox signaling, leading to the production of pro-inflammatory eicosanoids while reducing cellular antioxidant capacity through SOD, thus expressing an altered response to COVID-19, which may result in the onset of systemic oxidative stress, ARDS, and the death of the patient. Full article
(This article belongs to the Special Issue Molecular Research and Insights into COVID-19)
Show Figures

Figure 1

14 pages, 8988 KiB  
Article
Analysis of Metabolite Distribution in Rat Liver of High-Fat Model by Mass Spectrometry Imaging
by Hongmei Mao, Wenjun Wang, Xuesong Xiang, Yan Li, Jinpeng Zhao, Yin Huang, Shuangshuang Di, Qin Zhuo and Honggang Nie
Metabolites 2023, 13(3), 411; https://doi.org/10.3390/metabo13030411 - 10 Mar 2023
Cited by 7 | Viewed by 2664
Abstract
Hyperlipidemia is a medical condition characterized by elevated levels of blood lipids, especially triglycerides (TG). However, it remains unclear whether TG levels remain consistently elevated throughout the entire developmental stage of the high-lipid state. In our animal experiment, we found that TG levels [...] Read more.
Hyperlipidemia is a medical condition characterized by elevated levels of blood lipids, especially triglycerides (TG). However, it remains unclear whether TG levels remain consistently elevated throughout the entire developmental stage of the high-lipid state. In our animal experiment, we found that TG levels were significantly higher in the early stage of the high-lipid model but significantly decreased at the 14th week of the late stage, reaching levels similar to those of the control group. This suggests that TG levels in the high-lipid model are not always higher than those of the control group. To determine the reason for this observation, we used in situ mass spectrometry imaging (MSI) to detect the distribution of metabolites in the liver of rats. The metabolite distribution of the control rats at different stages was significantly different from that of the model rats, and the high-lipid model differed significantly from the control rats. We identified nine functional metabolites that showed differences throughout the period, namely, PA(20:3-OH/i-21:0), PA(20:4-OH/22:6), PG(20:5-OH/i-16:0), PG(22:6-2OH/i-13:0), PG(O-18:0/20:4), PGP(18:3-OH/i-12:0), PGP(PGJ2/i-15:0), SM(d18:0/18:1-2OH), and TG(14:0/14:0/16:0), among which TG was most significantly correlated with hyperlipidemia and high lipid. This study is unique in that it used MSI to reveal the changes in metabolites in situ, showing the distribution of different metabolites or the same metabolite in liver tissue. The findings highlight the importance of considering the animal’s age when using TG as a biomarker for hyperlipidemia. Additionally, the MSI images of the liver in the high-lipid model clearly indicated the distribution and differences of more significant metabolites, providing valuable data for further research into new biomarkers and mechanisms of hyperlipidemia. This new pathway of in situ, visualized, and data-rich metabolomics research provides a more comprehensive understanding of the characteristics of high lipid and its implications for disease prevention and treatment. Full article
Show Figures

Figure 1

56 pages, 3598 KiB  
Review
Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis
by Jan Korbecki, Ewa Rębacz-Maron, Patrycja Kupnicka, Dariusz Chlubek and Irena Baranowska-Bosiacka
Cancers 2023, 15(3), 946; https://doi.org/10.3390/cancers15030946 - 2 Feb 2023
Cited by 24 | Viewed by 7239
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid [...] Read more.
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment. Full article
(This article belongs to the Special Issue Oncogenes and Tumor Suppressor Genes in Brain Tumor)
Show Figures

Figure 1

14 pages, 2868 KiB  
Article
Effects of Fatty Acid Metabolites on Adipocytes Britening: Role of Thromboxane A2
by Cécilia Colson, Pierre-Louis Batrow, Sebastian Dieckmann, Laura Contu, Christian H. Roux, Laurence Balas, Claire Vigor, Baptiste Fourmaux, Nadine Gautier, Nathalie Rochet, Nathalie Bernoud-Hubac, Thierry Durand, Dominique Langin, Martin Klingenspor and Ez-Zoubir Amri
Cells 2023, 12(3), 446; https://doi.org/10.3390/cells12030446 - 30 Jan 2023
Cited by 7 | Viewed by 3023
Abstract
Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for [...] Read more.
Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis. The purpose of this work was to analyze the role of several lipokines in the control of brown/brite adipocyte formation. We used a validated human adipocyte model, human multipotent adipose-derived stem cell model (hMADS). In the absence of rosiglitazone, hMADS cells differentiate into white adipocytes, but convert into brite adipocytes upon rosiglitazone or prostacyclin 2 (PGI2) treatment. Gene expression was quantified using RT-qPCR and protein levels were assessed by Western blotting. We show here that lipokines such as 12,13-diHOME, 12-HEPE, 15dPGJ2 and 15dPGJ3 were not able to induce browning of white hMADS adipocytes. However, both fatty acid esters of hydroxy fatty acids (FAHFAs), 9-PAHPA and 9-PAHSA potentiated brown key marker UCP1 mRNA levels. Interestingly, CTA2, the stable analog of thromboxane A2 (TXA2), but not its inactive metabolite TXB2, inhibited the rosiglitazone and PGI2-induced browning of hMADS adipocytes. These results pinpoint TXA2 as a lipokine inhibiting brown adipocyte formation that is antagonized by PGI2. Our data open new horizons in the development of potential therapies based on the control of thromboxane A2/prostacyclin balance to combat obesity and associated metabolic disorders. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Adipose Organ Remodelling)
Show Figures

Figure 1

14 pages, 1478 KiB  
Article
Prostaglandin D2 Added during the Differentiation of 3T3-L1 Cells Suppresses Adipogenesis via Dysfunction of D-Prostanoid Receptor P1 and P2
by Michael N. N. Nartey, Mitsuo Jisaka, Pinky Karim Syeda, Kohji Nishimura, Hidehisa Shimizu and Kazushige Yokota
Life 2023, 13(2), 370; https://doi.org/10.3390/life13020370 - 29 Jan 2023
Cited by 1 | Viewed by 2074
Abstract
We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition [...] Read more.
We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition of PGD2 or 11d-11m-PGD2 to 3T3-L1 cells during the differentiation phase on adipogenesis. We found that both PGD2 and 11d-11m-PGD2 suppressed adipogenesis through the downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, the latter suppressed adipogenesis more potently than PGD2, most likely because of its higher resistance to spontaneous transformation into PGJ2 derivatives. In addition, this anti-adipogenic effect was attenuated by the coexistence of an IP receptor agonist, suggesting that the effect depends on the intensity of the signaling from the IP receptor. The D-prostanoid receptors 1 (DP1) and 2 (DP2, also known as a chemoattractant receptor-homologous molecule expressed on Th2 cells) are receptors for PGD2. The inhibitory effects of PGD2 and 11d-11m-PGD2 on adipogenesis were slightly attenuated by a DP2 agonist. Furthermore, the addition of PGD2 and 11d-11m-PGD2 during the differentiation phase reduced the DP1 and DP2 expression during the maturation phase. Overall, these results indicated that the addition of PGD2 or 11d-11m-PGD2 during the differentiation phase suppresses adipogenesis via the dysfunction of DP1 and DP2. Therefore, unidentified receptor(s) for both molecules may be involved in the suppression of adipogenesis. Full article
(This article belongs to the Special Issue New Updates in Adipocytes and Adipose Tissue)
Show Figures

Figure 1

12 pages, 2955 KiB  
Article
Autologous Bone Marrow Mononuclear Cells (BMMC)-Associated Anti-Inflammatory Nanoparticles for Cardiac Repair after Myocardial Infarction
by Laercio Uemura, Rossana Baggio Simeoni, Paulo André Bispo Machado Júnior, Gustavo Gavazzoni Blume, Luize Kremer Gamba, Murilo Sgarbossa Tonial, Paulo Ricardo Baggio Simeoni, Victoria Stadler Tasca Ribeiro, Rodrigo Silvestre, Katherine Athayde Teixeira de Carvalho, Marcelo Henrique Napimoga, Júlio Cesar Francisco and Luiz Cesar Guarita-Souza
J. Funct. Biomater. 2022, 13(2), 59; https://doi.org/10.3390/jfb13020059 - 13 May 2022
Cited by 1 | Viewed by 2903
Abstract
To investigate the effect of transplantation of stem cells from the bone marrow mononuclear cells (BMMC) associated with 15d-PGJ2-loaded nanoparticles in a rat model of chronic MI. Chronic myocardial infarction (MI) was induced by the ligation of the left anterior descending artery in [...] Read more.
To investigate the effect of transplantation of stem cells from the bone marrow mononuclear cells (BMMC) associated with 15d-PGJ2-loaded nanoparticles in a rat model of chronic MI. Chronic myocardial infarction (MI) was induced by the ligation of the left anterior descending artery in 40 male Wistar rats. After surgery, we transplanted bone marrow associated with 15d-PGJ2-loaded nanoparticle by intramyocardial injection (106 cells/per injection) seven days post-MI. Myocardial infarction was confirmed by echocardiography, and histological analyses of infarct morphology, gap junctions, and angiogenesis were obtained. Our results from immunohistochemical analyses demonstrated the presence of angiogenesis identified in the transplanted region and that there was significant expression of connexin-43 gap junctions, showing a more effective electrical and mechanical integration of the host myocardium. This study suggests that the application of nanoparticle technology in the prevention and treatment of MI is an emerging field and can be a strategy for cardiac repair. Full article
Show Figures

Figure 1

21 pages, 3696 KiB  
Article
Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells
by Chien-Chung Yang, Li-Der Hsiao, Ya-Fang Shih, Ching-I Chang and Chuen-Mao Yang
Antioxidants 2022, 11(4), 719; https://doi.org/10.3390/antiox11040719 - 6 Apr 2022
Cited by 8 | Viewed by 3166
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate [...] Read more.
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells. Full article
(This article belongs to the Special Issue Pharmacological and Clinical Significance of Heme Oxygenase-1 2022)
Show Figures

Figure 1

18 pages, 28060 KiB  
Article
15d-PGJ2 Promotes ROS-Dependent Activation of MAPK-Induced Early Apoptosis in Osteosarcoma Cell In Vitro and in an Ex Ovo CAM Assay
by Mateja Mikulčić, Nassim Ghaffari Tabrizi-Wizsy, Eva M. Bernhart, Martin Asslaber, Christopher Trummer, Werner Windischhofer, Wolfgang Sattler, Ernst Malle and Andelko Hrzenjak
Int. J. Mol. Sci. 2021, 22(21), 11760; https://doi.org/10.3390/ijms222111760 - 29 Oct 2021
Cited by 8 | Viewed by 3101
Abstract
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in [...] Read more.
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth. Full article
(This article belongs to the Special Issue Molecular and Translational Research on Bone Tumors)
Show Figures

Figure 1

18 pages, 29926 KiB  
Article
Untargeted Metabolic Profiling of Extracellular Vesicles of SARS-CoV-2-Infected Patients Shows Presence of Potent Anti-Inflammatory Metabolites
by Faisal A. Alzahrani, Mohammed Razeeth Shait Mohammed, Saleh Alkarim, Esam I. Azhar, Mohammed A. El-Magd, Yousef Hawsawi, Wesam H. Abdulaal, Abdulaziz Yusuf, Abdulaziz Alhatmi, Raed Albiheyri, Burhan Fakhurji, Bassem Kurdi, Tariq A. Madani, Hassan Alguridi, Roaa S. Alosaimi and Mohammad Imran Khan
Int. J. Mol. Sci. 2021, 22(19), 10467; https://doi.org/10.3390/ijms221910467 - 28 Sep 2021
Cited by 22 | Viewed by 5324
Abstract
Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this [...] Read more.
Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections. Full article
Show Figures

Figure 1

20 pages, 13753 KiB  
Article
Disease-Dependent Antiapoptotic Effects of Cannabidiol for Keratinocytes Observed upon UV Irradiation
by Piotr Wójcik, Agnieszka Gęgotek, Neven Žarković and Elżbieta Skrzydlewska
Int. J. Mol. Sci. 2021, 22(18), 9956; https://doi.org/10.3390/ijms22189956 - 15 Sep 2021
Cited by 17 | Viewed by 3139
Abstract
Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. [...] Read more.
Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. UVB phototherapy is commonly used to treat psoriasis, although this has undesirable side effects, and is often combined with anti-inflammatory compounds. The aim of this study was to analyze if cannabidiol (CBD), a phytocannabinoid that has anti-inflammatory and antioxidant properties, may modify the proapoptotic effects of UVB irradiation in vitro by influencing apoptotic signaling pathways in donor psoriatic and healthy human keratinocytes obtained from the skin of five volunteers in each group. While CBD alone did not have any major effects on keratinocytes, the UVB treatment activated the extrinsic apoptotic pathway, with enhanced caspase 8 expression in both healthy and psoriatic keratinocytes. However, endoplasmic reticulum (ER) stress, characterized by increased expression of caspase 2, was observed in psoriatic cells after UVB irradiation. Furthermore, decreased p-AKT expression combined with increased 15-d-PGJ2 level and p-p38 expression was observed in psoriatic keratinocytes, which may promote both apoptosis and necrosis. Application of CBD partially attenuated these effects of UVB irradiation both in healthy and psoriatic keratinocytes, reducing the levels of 15-d-PGJ2, p-p38 and caspase 8 while increasing Bcl2 expression. However, CBD increased p-AKT only in UVB-treated healthy cells. Therefore, the reduction of apoptotic signaling pathways by CBD, observed mainly in healthy keratinocytes, suggests the need for further research into the possible beneficial effects of CBD. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Skin Aging and Atopic Dermatitis)
Show Figures

Figure 1

Back to TopTop