Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,387)

Search Parameters:
Keywords = “green” synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 6247 KB  
Article
Urban Resilience and Fluvial Adaptation: Comparative Tactics of Green and Grey Infrastructure
by Lorena del Rocio Castañeda Rodriguez, Maria Jose Diaz Shimidzu, Marjhory Nayelhi Castro Rivera, Alexander Galvez-Nieto, Yuri Amed Aguilar Chunga, Jimena Alejandra Ccalla Chusho and Mirella Estefania Salinas Romero
Urban Sci. 2026, 10(1), 62; https://doi.org/10.3390/urbansci10010062 (registering DOI) - 20 Jan 2026
Abstract
Rapid urbanization and climate change have intensified flood risk and ecological degradation along urban riverfronts. Recent literature suggests that combining green and grey infrastructure can enhance resilience while delivering ecological and social co-benefits. This study analyzes and compares five riverfront projects in China [...] Read more.
Rapid urbanization and climate change have intensified flood risk and ecological degradation along urban riverfronts. Recent literature suggests that combining green and grey infrastructure can enhance resilience while delivering ecological and social co-benefits. This study analyzes and compares five riverfront projects in China and Spain, assessing how their tactic mixes operationalize three urban flood-resilience strategies—Resist, Delay, and Store/reuse—and how these mixes translate into ecological, social, and urban impacts. A six-phase framework was applied: (1) literature review; (2) case selection; (3) categorization of resilience strategies; (4) systematization and typification of tactics into green vs. grey infrastructure; (5) percentage analysis and qualitative matrices; and (6) comparative synthesis supported by an alluvial diagram. Across cases, Delay emerges as the structural backbone—via wetlands, terraces, vegetated buffers, and floodable spaces—while Resist is used selectively where exposure and erodibility require it. Store/reuse appears in targeted settings where operational capacity and water-quality standards enable circular use. The comparison highlights hybrid, safe-to-fail configurations that integrate public space, ecological restoration, and hydraulic performance. Effective urban riverfront resilience does not replace grey infrastructure but hybridizes it with nature-based solutions. Planning should prioritize Delay with green systems, add Resist where necessary, and enable Store/reuse when governance, operation and maintenance, and water quality permit, using iterative monitoring to adapt the green–grey mix over time. Full article
22 pages, 862 KB  
Article
Energy Justice, Critical Minerals, and the Geopolitical Metabolism of the Global Energy Transition: Insights from Copper Extraction in Chile and Peru
by Axel Bastián Poque González and Yunesky Masip Macia
Sustainability 2026, 18(2), 1032; https://doi.org/10.3390/su18021032 - 20 Jan 2026
Abstract
The global energy transition (ET) is widely portrayed as a technological shift toward low-carbon systems; however, it also entails profound geopolitical and socio-environmental transformations. While energy justice (EJ) has become a key framework for assessing fairness in energy systems, it seldom incorporates the [...] Read more.
The global energy transition (ET) is widely portrayed as a technological shift toward low-carbon systems; however, it also entails profound geopolitical and socio-environmental transformations. While energy justice (EJ) has become a key framework for assessing fairness in energy systems, it seldom incorporates the geopolitical restructuring of material, energy, and economic flows that underpin contemporary transitions. This article develops a geopolitically informed approach to EJ, trying to capture how the new flows of energy, matter, and power shape—and are shaped by—enduring centre–periphery inequalities. Using a guided literature synthesis that combines EJ, political ecology, decolonial critiques, and green extractivism, the study enhances classical EJ tenets by incorporating transboundary flows, ecological unequal exchange, ontological plurality, and local self-determination. An illustrative application to copper extraction in Chile and Peru demonstrates how critical-mineral supply chains reproduce new sacrifice zones within emerging geopolitical configurations. By connecting local socio-environmental conflicts to global energy dynamics, the framework advances a more comprehensive, multidimensional approach to justice in the ET. The findings offer conceptual and practical insights for designing more equitable and geopolitically aware sustainability policies. Full article
Show Figures

Figure 1

20 pages, 8176 KB  
Article
Manganese–Iron-Supported Biomass-Derived Carbon Catalyst for Efficient Hydrazine Oxidation
by Karina Vjūnova, Huma Amber, Dijana Šimkūnaitė, Zenius Mockus, Aleksandrs Volperts, Ance Plavniece, Galina Dobele, Aivars Zhurinsh, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Molecules 2026, 31(2), 354; https://doi.org/10.3390/molecules31020354 - 19 Jan 2026
Abstract
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread [...] Read more.
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread adoption of green, energy-saving hydrazine-based technologies in energy applications. Highly efficient and cost-effective iron (Fe) and manganese–iron (MnFe)-supported nitrogen-doped carbon (N–C) materials were developed using hydrothermal synthesis. Meanwhile, the N–C material was obtained from biomass—birch-wood chips—using hydrothermal carbonisation (HTC), followed by activation and nitrogen doping of the resulting hydrochar. The morphology, structure, and composition of the MnFe, MnFe/N–C, and Fe/N–C catalysts were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS). The activity of the catalysts for HzOR in an alkaline medium was evaluated using cyclic voltammetry (CV). Depositing MnFe particles onto N–C was shown to significantly enhance electrocatalytic activity for HzOR compared to the Fe/N–C catalyst and especially to the MnFe particles catalyst in terms of highly developed porous structure, which offers the largest surface area, lowest onset potential, and highest current density response, resulting in the strongest catalytic activity. These results suggest that the MnFe/N–C catalyst could be a highly promising anode material for HzOR in direct hydrazine fuel cells (DHFCs). Full article
48 pages, 681 KB  
Review
Organic Amendments for Sustainable Agriculture: Effects on Soil Function, Crop Productivity and Carbon Sequestration Under Variable Contexts
by Oluwatoyosi O. Oyebiyi, Antonio Laezza, Md Muzammal Hoque, Sounilan Thammavongsa, Meng Li, Sophia Tsipas, Anastasios J. Tasiopoulos, Antonio Scopa and Marios Drosos
C 2026, 12(1), 7; https://doi.org/10.3390/c12010007 - 19 Jan 2026
Abstract
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. [...] Read more.
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. This review synthesizes current knowledge on a wide range of soil amendments, including compost, biosolids, green and animal manure, biochar, hydrochar, bagasse, humic substances, algae extracts, chitosan, and newer engineered options such as metal–organic framework (MOF) composites, highlighting their underlying principles, modes of action, and contributions to soil function, crop productivity, and soil carbon dynamics. Across the literature, three main themes emerge: improvement of soil physicochemical properties, enhancement of nutrient cycling and nutrient-use efficiency, and reinforcement of plant resilience to biotic and abiotic stresses. Organic nutrient-based amendments mainly enrich the soil and build organic matter, influencing soil carbon inputs and short- to medium-term increases in soil organic carbon stocks. Biochar, hydrochar, and related materials act mainly as soil conditioners that improve structure, water retention, and soil function. Biostimulant-type amendments, such as algae extracts and chitosan, influence plant physiological responses and stress tolerance. Humic substances exhibit multifunctional effects at the soil–root interface, contributing to improved nutrient efficiency and, in some systems, enhanced carbon retention. The review highlights that no single amendment is universally superior, with outcomes governed by soil–crop context. Its novelty lies in its mechanism-based, cross-amendment synthesis that frames both yield and carbon outcomes as context-dependent rather than universally transferable. Within this framework, humic substances and carbon-rich materials show potential for climate-smart soil management, but long-term carbon sequestration effects remain uncertain and context-dependent. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

18 pages, 6934 KB  
Article
Metabolomic and Transcriptomic Analysis Reveal the Impact of Delayed Harvest on the Aroma Profile of ‘Shine Muscat’ Grapes
by Yanshuai Xu, Yang Dong, Meng Yan, Shumin Lei, Rong Wang, Muhammad Khalil-Ur-Rehman, Xueyan Wang, Jun Tan and Guoshun Yang
Horticulturae 2026, 12(1), 109; https://doi.org/10.3390/horticulturae12010109 - 19 Jan 2026
Abstract
Delayed harvesting of grapes can alter fruit quality and plays an important role in alleviating the problem of market saturation during peak seasons, as well as in regulating the supply period of grapes. In this study, by conducting a comparative analysis of fruit [...] Read more.
Delayed harvesting of grapes can alter fruit quality and plays an important role in alleviating the problem of market saturation during peak seasons, as well as in regulating the supply period of grapes. In this study, by conducting a comparative analysis of fruit quality, metabolomics (aroma compounds) and transcriptome sequencing of ‘Shine Muscat’ grapes harvested at six different on-tree ripening stages after maturity, we found that: (1) delayed harvesting led to dramatic variation in berry color change (light green to yellow) with a significant increase in soluble solids (19.5 to 20.89 Brix); (2) A total of 25 volatile aroma compounds was identified in collected berry samples, while trans-2-hexenal and hexanal exhibited the highest concentrations in all samples, marking them as key volatile compounds in ‘Shine Muscat’ grapes. Notable variation in the concentrations of linalool, n-butanol, benzyl alcohol, phenylethanol, β-citronellol, and propionic anhydride were recorded in selected harvest periods. OAV analysis results show that linalool has the largest OAV among the detected compounds, and its OAV proportion increased from 53% to 95% during the six sampling periods of ‘Shine Muscat’; (3) Transcriptome sequencing of selected samples demonstrated a positive correlation between eight terpene-synthesis-related genes and linalool accumulation. Furthermore, genes within the MEP pathway (specifically VvTPS55, VvTPS59) and several transcription factors were associated with terpenoids metabolism. Based on soluble solids and OAV results, T18–T22 period (18–22 weeks post-flowering) can become good quality on-vine storge berries. The gene expression profile and developmental patterns of metabolites in MEP pathway may helpful in functional characterization of candidate genes related to terpenoid metabolism in future studies. Full article
Show Figures

Figure 1

24 pages, 7155 KB  
Review
Advances in Plant Mediated Iron Oxide Nanoparticles for Dye Colorant Degradation—A Review
by Louisah Mmabaki Mahlaule-Glory and Nomso Charmaine Hintsho-Mbita
Colorants 2026, 5(1), 3; https://doi.org/10.3390/colorants5010003 - 19 Jan 2026
Abstract
Water polluted by dye colorants has been on the rise in the last decade. This is due to the over reliance on the textile industry, and it is holding a high economic value in most countries. This industry is the highest consumer of [...] Read more.
Water polluted by dye colorants has been on the rise in the last decade. This is due to the over reliance on the textile industry, and it is holding a high economic value in most countries. This industry is the highest consumer of fresh water whilst also discharging several natural and synthetic pollutants to the environment. Several methods have been used for the removal of these pollutants and one of the most efficient technologies to be developed includes the photocatalysis method, via advanced oxidation processes. This review highlights the developments of green iron oxide nanoparticles as photocatalysts in the last decade. It was noted that tuning and controlling the phytochemical concentration and synthesis conditions, can assist with forming uniform and non-agglomerated materials, as this has limited the vast usage of these materials in major applications. Also, upon controlling the synthesis conditions, improved surface area and charge separation efficiency was noted. Their limitations and need for modification through forming composites are highlighted. Moreover, future perspectives are given on the use of green IONPs as photocatalysts. Full article
Show Figures

Figure 1

12 pages, 4673 KB  
Article
Study on the Relationship Between Exogenous Salicylic Acid-Induced Pear Resistance to Black Spot Disease and Lignin Synthesis
by Qi Yan, Weiyi Chen, Yarui Wei, Hui Zhang, Na Liu and Yuxing Zhang
Horticulturae 2026, 12(1), 104; https://doi.org/10.3390/horticulturae12010104 - 18 Jan 2026
Viewed by 58
Abstract
Pear black spot disease is a serious fungal disease during pear production; salicylic acid is a core signaling molecule that regulates the expression of plant disease resistance genes. To elucidate the intrinsic association between salicylic acid-induced resistance to pear black spot disease and [...] Read more.
Pear black spot disease is a serious fungal disease during pear production; salicylic acid is a core signaling molecule that regulates the expression of plant disease resistance genes. To elucidate the intrinsic association between salicylic acid-induced resistance to pear black spot disease and lignin biosynthesis, in vitro plantlets of two pear cultivars, ‘Xinli No.7’ and ‘Xueqing’, were employed as experimental materials. After 60 h SA pretreatment, the leaves were inoculated with the pathogen Alternaria alternata. Leaf samples were harvested at 0, 8, 16, 24, and 48 h post-inoculation to determine phenylalanine ammonia-lyase activity, quantify lignin content, and analyze the transcript levels of genes involved in lignin synthesis. The results demonstrated that, relative to the untreated control group, SA treatment significantly enhanced phenylalanine ammonia-lyase activity and promoted lignin accumulation in both ‘Xinli No.7’ and ‘Xueqing’. Moreover, multiple key genes associated with lignin biosynthesis—including PbrPAL1, Pbr4CL1, PbrCOMT, PbrCCoAOMT, PbrCAD, and PbrPOD—were markedly upregulated, with their expression levels increasing by 3.5–15 fold. Transcript profiles of PbrHCT1, PbrHCT4, and PbrC3H1 exhibited cultivar-specific divergence between the two varieties. Notably, the susceptible cultivar ‘Xueqing’ displayed a distinct lag phase and attenuated response in the expression of all lignin-related genes compared with the other cultivar. This study provides reference for green prevention and sustainable development of pear. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
20 pages, 3566 KB  
Article
In Situ Green Synthesis of Red Wine Silver Nanoparticles on Cotton Fabrics and Investigation of Their Antibacterial Effects
by Alexandria Erasmus, Nicole Remaliah Samantha Sibuyi, Mervin Meyer and Abram Madimabe Madiehe
Int. J. Mol. Sci. 2026, 27(2), 952; https://doi.org/10.3390/ijms27020952 - 18 Jan 2026
Viewed by 188
Abstract
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in [...] Read more.
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in situ synthesis improves stability, uniformity, cost efficiency, and bioactivity while minimising contamination. These features make AgNPs well-suited for incorporation into textiles and wound dressings. Red wine extract (RW-E), rich in antioxidant and anti-inflammatory compounds was used to hydrothermally synthesise RW-AgNPs and RW-AgNPs-loaded on cotton (RWALC) by optimising pH and RW-E concentration. Characterisation was performed using UV–Vis spectroscopy, dynamic light scattering (DLS), and High Resolution and Scanning electron microscopy (HR-TEM and SEM). Antibacterial activities were evaluated against human pathogens through agar disc diffusion assay for RWALC and microdilution assay for RW-AgNPs. RWALC showed higher potency against both Gram-negative and Gram-positive bacteria, with inhibition zones of 12.33 ± 1.15 to 23.5 ± 5.15 mm, that surpassed those of ciprofloxacin (10 ± 3 to 19.17 ± 1.39 mm at 10 μg/mL). RW-AgNPs exhibited low minimum inhibitory concentrations (MIC: 0.195–3.125 μg/mL) and minimum bactericidal concentrations (MBC: 0.78–6.25 μg/mL). Preincubation with β-mercaptoethanol (β-ME) inhibited the antibacterial activity of RWALC, suggesting that thiolated molecules are involved in AgNPs-mediated effects. This study demonstrated that green-synthesised RW-AgNPs, incorporated in situ into cotton, conferred strong antibacterial properties, warranting further investigation into their mechanisms of action. Full article
Show Figures

Graphical abstract

17 pages, 2272 KB  
Article
Regulation of Microstructure and Properties of Konjac Glucomannan Gels via Ethanol Under Low-Alkali Conditions
by Meiqiu Xu, Hongtao Du, Solairaj Dhanasekaran, Yin Jia, Yange Ren, Hong Chen and Wei Xu
Gels 2026, 12(1), 83; https://doi.org/10.3390/gels12010083 - 17 Jan 2026
Viewed by 54
Abstract
Despite their potential, alkali-treated konjac glucomannan (KGM) gels are limited by excessive brittleness and a lack of eco-friendly synthesis methods, creating an urgent need for more durable and ‘green’ alternatives. In this study, highly stable KGM gels were constructed under low-alkali conditions by [...] Read more.
Despite their potential, alkali-treated konjac glucomannan (KGM) gels are limited by excessive brittleness and a lack of eco-friendly synthesis methods, creating an urgent need for more durable and ‘green’ alternatives. In this study, highly stable KGM gels were constructed under low-alkali conditions by adjusting the ethanol content. The results showed that intermolecular hydrogen bonding and hydrophobic interactions were enhanced with increasing ethanol concentration (0–20% v/v) under low-alkaline conditions. The physicochemical properties of KGM gels showed dynamic improvement, with denser micro-network morphology and simultaneous enhancement of thermal stability. However, the addition of a high ethanol concentration (20% v/v) tended to trigger local aggregation, disrupting the gel network structure. At an ethanol addition of 15%, the hydrogen bonding and hydrophobic interactions of KGM gels reached an optimal equilibrium, exhibiting the most compact gel network and excellent resistance to deformation. This study reveals the regulation of the microstructure and macroscopic properties of KGM gels by ethanol, which provides theoretical support for the construction of high-performance KGM gels under low-alkali conditions. Full article
(This article belongs to the Special Issue Application of Composite Gels in Food Processing and Engineering)
21 pages, 3893 KB  
Article
Microwave-Assisted Synthesis of 1,4-Dihydropyridines via the Hantzsch Reaction Using a Recyclable HPW/PEG-400 Catalytic System
by Wender Alves Silva, Sayuri Cristina Santos Takada, Claudia Cristina Gatto and Izabella Vitoria Maravalho
Catalysts 2026, 16(1), 96; https://doi.org/10.3390/catal16010096 - 17 Jan 2026
Viewed by 72
Abstract
1,4-Dihydropyridines (1,4-DHPs) are privileged heterocycles with broad relevance in medicinal chemistry and redox-related applications. However, conventional Hantzsch syntheses typically require prolonged thermal heating and often suffer from limited efficiency and regioselectivity. Herein, we report a sustainable and efficient microwave-assisted protocol for the synthesis [...] Read more.
1,4-Dihydropyridines (1,4-DHPs) are privileged heterocycles with broad relevance in medicinal chemistry and redox-related applications. However, conventional Hantzsch syntheses typically require prolonged thermal heating and often suffer from limited efficiency and regioselectivity. Herein, we report a sustainable and efficient microwave-assisted protocol for the synthesis of 1,4-DHPs, employing phosphotungstic acid (HPW) as a heteropolyacid catalyst in PEG-400 as a green reaction medium. The multicomponent cyclocondensation proceeds rapidly under microwave irradiation, affording the desired 1,4-DHP derivatives in good to excellent yields within short reaction times. Compared with classical acid-catalyzed conditions, the HPW/PEG-400 system markedly enhances regioselectivity toward the 1,4-DHP framework while simultaneously reducing energy input. Moreover, the catalytic system exhibits good recyclability, underscoring its potential as a practical and environmentally responsible platform for the synthesis of bioactive 1,4-dihydropyridine scaffolds. Full article
Show Figures

Graphical abstract

18 pages, 904 KB  
Review
Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China
by Shulian Shan, Qiantong Wei, Chongyi Liu, Sirui Zhao, Feng Ge, Hongying Cui and Fajun Chen
Plants 2026, 15(2), 281; https://doi.org/10.3390/plants15020281 - 17 Jan 2026
Viewed by 174
Abstract
Cnidium monnieri (L.) Cusson is a species of Umbelliferae plants, and it is one of China’s traditional medicinal herbs, widely distributed in China owing to its strong adaptability in fields. In this article, the research progress on the taxonomy, distribution, cultivation techniques, active [...] Read more.
Cnidium monnieri (L.) Cusson is a species of Umbelliferae plants, and it is one of China’s traditional medicinal herbs, widely distributed in China owing to its strong adaptability in fields. In this article, the research progress on the taxonomy, distribution, cultivation techniques, active components, analysis methods, antibacterial and insecticidal properties, and ecological applications of C. monnieri was reviewed. The main active components in C. monnieri are coumarins (mainly osthole) and volatile compounds, exhibiting multiple pharmacological effects, e.g., anti-inflammatory, antibacterial, antioxidant, anti-tumor, and immune-regulating effects. Some modern analytical techniques (e.g., HPLC, GC-MS, and UPLC-QTOF-MS) have enabled more precise detection and quality control of these chemical components in C. monnieri. The specific active constituents in C. monnieri (e.g., coumarins and volatile components) exhibit significant inhibitory effects against various pathogenic fungi and insect pests. Simultaneously, the resources provided during its flowering stage (e.g., pollen and nectar) and the specific volatiles released can repel herbivorous insect pests while attracting natural enemies, such as ladybugs, lacewings, and hoverflies, thereby enhancing ecological control of insect pests in farmland through a “push–pull” strategy. Additionally, C. monnieri has the ability to accumulate heavy metals, e.g., Zn and Cu, indicating its potential value for ecological restoration in agroecosystems. Overall, C. monnieri has medicinal, ecological, and economic value. Future research should focus on regulating active-component synthesis, improving our understanding of ecological mechanisms, and developing standardized cultivation systems to enhance the applications of C. monnieri in modernized traditional Chinese medicine and green agriculture production. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

52 pages, 4273 KB  
Review
Sustainable Polyurethane Systems: Integrating Green Synthesis and Closed-Loop Recovery
by Tae Hui Kim, Hyeong Seo Kim and Sang-Ho Lee
Polymers 2026, 18(2), 246; https://doi.org/10.3390/polym18020246 - 16 Jan 2026
Viewed by 142
Abstract
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. [...] Read more.
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. Consequently, most end-of-life PU waste is currently managed through landfilling or incineration, resulting in significant resource loss and environmental impact. To address these challenges, this review presents an integrated perspective on sustainable PU systems by unifying green synthesis strategies with closed-loop recovery approaches. First, recent advances in bio-based polyols and phosgene-free isocyanate synthesis derived from renewable resources—such as plant oils, carbohydrates, and lignin—are discussed as viable means to reduce dependence on petrochemical feedstocks and mitigate toxicity concerns. Next, emerging chemical recycling methodologies, including acidolysis and aminolysis, are reviewed with a focus on the selective recovery of high-purity monomers. Finally, PU vitrimers and dynamic covalent polymer networks (DCPNs) based on urethane bond exchange reactions are examined as reprocessable architectures that combine thermoplastic-like processability with the mechanical robustness of thermosets. By integrating synthesis, recovery, and reuse within a unified framework, this review aims to outline a coherent pathway toward establishing a sustainable circular economy for PU materials. Full article
(This article belongs to the Special Issue Advanced Cross-Linked Polymer Network)
Show Figures

Graphical abstract

36 pages, 7496 KB  
Review
Constructed Wetlands Beyond the Fenton Limit: A Systematic Review on the Circular Photo-Biochemical Catalysts Design for Sustainable Wastewater Treatment
by M. M. Nour, Maha A. Tony and Hossam A. Nabwey
Catalysts 2026, 16(1), 92; https://doi.org/10.3390/catal16010092 - 16 Jan 2026
Viewed by 160
Abstract
Constructed wetlands (CWs) are signified as green, self-sustaining systems for wastewater treatment. To date, their conventional designs struggle with slow kinetics and poor removal of refractory pollutants. This review redefines CWs as photo-reactive engineered systems, integrating near-neutral Fenton and photo-Fenton processes and in-situ [...] Read more.
Constructed wetlands (CWs) are signified as green, self-sustaining systems for wastewater treatment. To date, their conventional designs struggle with slow kinetics and poor removal of refractory pollutants. This review redefines CWs as photo-reactive engineered systems, integrating near-neutral Fenton and photo-Fenton processes and in-situ oxidant generation to overcome diffusion limits, acid dosing, and sludge formation. By coupling catalytic fillers, solar utilization, and plant–microbe–radical (ROS) synergies, the approach enables intensified pollutant degradation while preserving the low-energy nature of CWs. Bibliometric trends indicate a sharp rise in studies linking CWs with advanced oxidation and renewable energy integration, confirming the emergence of a circular treatment paradigm. A decision framework is proposed that aligns material selection, reactor hydrodynamics, and solar light management with sustainability indicators such as energy efficiency, Fe-leach budget, and ROS-to-photon yield. This synthesis bridges environmental biotechnology with solar-driven catalysis, paving the way for next-generation eco-engineered wetlands capable of operating efficiently beyond the classical Fenton constraints. This work introduces the concept of “Constructed Wetlands Beyond the Fenton Limit”, where CWs are reimagined as photo-reactive circular systems that unify catalytic, biological, and solar processes under near-neutral conditions. It provides the first integrated decision matrix and performance metrics connecting catalyst design, ROS efficiency, and circular sustainability that offers a scalable blueprint for real-world hybrid wetland applications. Full article
Show Figures

Figure 1

30 pages, 990 KB  
Review
Perceptions to Precision: Bridging the Gap Between Behavioral Drivers and Digital Tools for Sustainable Pesticide Use in Europe
by Carmen Adriana Cocian and Cristina Bianca Pocol
Agronomy 2026, 16(2), 214; https://doi.org/10.3390/agronomy16020214 - 15 Jan 2026
Viewed by 133
Abstract
Reducing dependency on chemical pesticides is a core ambition of the European Green Deal, yet adoption of low-input practices remains uneven. This systematic review synthesizes evidence on the behavioural determinants of European farmers’ knowledge, attitudes, and practices (KAP) regarding sustainable pesticide use and [...] Read more.
Reducing dependency on chemical pesticides is a core ambition of the European Green Deal, yet adoption of low-input practices remains uneven. This systematic review synthesizes evidence on the behavioural determinants of European farmers’ knowledge, attitudes, and practices (KAP) regarding sustainable pesticide use and evaluates the role of digital tools in facilitating Integrated Pest Management (IPM). Following PRISMA 2020 guidelines, we analysed 65 peer-reviewed articles published between 2011 and 2025, which were identified through Scopus and Web of Science. The synthesis reveals that while pro-environmental attitudes drive the intention to change, actual behaviour is frequently inhibited by loss aversion, ‘clean field’ social norms, and perceived economic risks. Digital tools—specifically Decision Support Systems (DSSs) and precision technologies—demonstrate technical potential to reduce pesticide loads but are constrained by the same behavioural barriers: a lack of trust in models, perceived complexity, and costs. Consequently, we propose a Psycho-Digital Integration Framework which posits that digital innovation acts as a catalyst only when embedded in systemic enablers—specifically green insurance schemes and independent advisory networks. These mechanisms are critical to redistribute perceived agricultural risk and bridge the gap between technical potential and behavioral adoption. Full article
Show Figures

Figure 1

36 pages, 3743 KB  
Article
Tri-Layer Composite Nanofiber Wound Dressing Incorporating Glucantime and Silver Nanoparticles for Cutaneous Leishmaniasis Management
by Hilal Topuz, Murat Inal, Atiye Turker, Zisan Toprak, Emrah Sefik Abamor, Sezen Canim Ates and Serap Acar
J. Funct. Biomater. 2026, 17(1), 41; https://doi.org/10.3390/jfb17010041 - 15 Jan 2026
Viewed by 231
Abstract
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems [...] Read more.
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems are required to enhance drug penetration and reduce systemic toxicity. To address these challenges, silver nanoparticles (AgNPs) were synthesized using propolis extract through a green synthesis approach, and a tri-layer wound dressing composed of polyvinyl alcohol and gelatin containing synthesized AgNPs and Glucantime was fabricated by electrospinning. Characterization (SEM-EDX, FTIR, TGA) confirmed uniform morphology, chemical structure, and thermal stability; the wound dressing exhibited hydrophilicity, antioxidant activity, and biphasic release. Biological evaluations against Leishmania tropica demonstrated significant antiparasitic activity. Promastigote viability decreased from 76.3% in neat fibers to 31.6% in nanofibers containing AgNPs and 7.9% in tri-layer nanofibers containing both AgNPs and Glucantime. Similarly, the amastigote infection index dropped from 410 in controls to 250 in neat nanofibers, 204 in AgNPs-containing nanofibers, and 22 in tri-layer nanofibers containing AgNPs and Glucantime. The tri-layer nanofibers demonstrated enhanced antileishmanial activity over AgNPs-containing fibers, confirming synergistic efficacy. All nanofibers were biocompatible, supporting their use as a safe platform for cutaneous leishmaniasis treatment. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

Back to TopTop