Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = θ′/Al interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2079 KB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 664
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

17 pages, 9262 KB  
Article
Infrared Absorption of Laser Patterned Sapphire Al2O3 for Radiative Cooling
by Nan Zheng, Daniel Smith, Soon Hock Ng, Hsin-Hui Huang, Dominyka Stonytė, Dominique Appadoo, Jitraporn Vongsvivut, Tomas Katkus, Nguyen Hoai An Le, Haoran Mu, Yoshiaki Nishijima, Lina Grineviciute and Saulius Juodkazis
Micromachines 2025, 16(4), 476; https://doi.org/10.3390/mi16040476 - 16 Apr 2025
Cited by 1 | Viewed by 1824
Abstract
The reflectance (R) of linear and circular micro-gratings on c-plane sapphire Al2O3 ablated by a femtosecond (fs) laser were spectrally characterised for thermal emission (1R) in the mid-to-far infrared (IR) spectral range. An [...] Read more.
The reflectance (R) of linear and circular micro-gratings on c-plane sapphire Al2O3 ablated by a femtosecond (fs) laser were spectrally characterised for thermal emission (1R) in the mid-to-far infrared (IR) spectral range. An IR camera was used to determine the blackbody radiation temperature from laser-patterned regions, which showed (3–6)% larger emissivity dependent on the grating pattern. The azimuthal emission curve closely followed the Lambertian angular profile cosθa at the 7.5–13 μm emission band. The back-side ablation method on transparent substrates was employed to prevent debris formation during energy deposition as it applies a forward pressure of >0.3 GPa to the debris and molten skin layer. The back-side ablation maximises energy deposition at the exit interface where the transition occurs from the high-to-low refractive index. Phononic absorption in the Reststrahlen region 20–30 μm can be tailored with the fs laser inscription of sensor structures/gratings. Full article
Show Figures

Figure 1

31 pages, 14436 KB  
Article
Investigating Plastic Anisotropy of Single and Two-Phase (α2-Ti3Al + γ-TiAl) PST-TiAl Through Computational Yield Surface Analysis
by Mohammad Rizviul Kabir and Muhammed Bahadir Murat
Metals 2025, 15(2), 132; https://doi.org/10.3390/met15020132 - 28 Jan 2025
Viewed by 1051
Abstract
The anisotropic mechanical behaviour of multi-phase TiAl alloys is intrinsically governed by the anisotropic crystal properties and morphology of their constituent phases, which control the initiation of local plasticity. To advance the understanding of macroscopic plastic anisotropy in multi-phase alloys, this study presents [...] Read more.
The anisotropic mechanical behaviour of multi-phase TiAl alloys is intrinsically governed by the anisotropic crystal properties and morphology of their constituent phases, which control the initiation of local plasticity. To advance the understanding of macroscopic plastic anisotropy in multi-phase alloys, this study presents a comprehensive numerical investigation of a two-phase (α2-Ti3Al + γ-TiAl) lamellar TiAl alloy, with a focus on the evolution of plasticity across multiple structural scales. Utilizing the crystal plasticity finite element method (CPFEM), the influence of lamellar orientation (φ) and applied loading angles (θ) on plastic deformation and yield surface evolution was analysed in both the individual phases and in the combined two-phase system. The findings reveal that phase-specific anisotropy stems from the activation of distinct slip systems in the α2 and γ phases, with the activation closely tied to the type of loading (e.g., proportional biaxial loading) and the direction of the load path. Furthermore, the anisotropy of the two-phase system is significantly influenced by the alignment between the lamellar interface orientation and the load-path direction. Analysis with varying load-path directions across different stress planes clarifies how local deformation constraints within the embedded phases modulate slip system activation, leading to either the enhancement or suppression of specific deformation mechanisms. This, in turn, alters the overall yield behaviour of the material. Based on these simulation results, this study provides a detailed understanding of the internal constraints within embedded phases and their role in the evolution of plasticity. It elucidates how anisotropy develops under diverse loading conditions and underscores the importance of hierarchical plasticity in shaping the global anisotropic response of TiAl alloys. Full article
(This article belongs to the Special Issue Self-Organization in Plasticity of Metals and Alloys)
Show Figures

Figure 1

19 pages, 14262 KB  
Article
Study on the Microstructure and Properties of Al Alloy/Steel CMT Welding–Brazing Joints Under Different Pulse Magnetic Field Intensities
by Juan Pu, Tingmu Chen, Jiawei Rao, Yubo Sun, Yunxia Chen, Changhua Jiang and Huawei Sun
Coatings 2024, 14(12), 1515; https://doi.org/10.3390/coatings14121515 - 30 Nov 2024
Cited by 3 | Viewed by 1255
Abstract
Butt welding experiments on 6061 Al alloy and Q235B steel of 2 mm thickness were conducted using an ER4047F flux-cored wire as the filler metal, after adding a pulsed magnetic field into the process of cold metal transfer (CMT) welding. The effect of [...] Read more.
Butt welding experiments on 6061 Al alloy and Q235B steel of 2 mm thickness were conducted using an ER4047F flux-cored wire as the filler metal, after adding a pulsed magnetic field into the process of cold metal transfer (CMT) welding. The effect of the pulsed magnetic field intensity on the macro morphology, microstructure, tensile strength and corrosion resistance of the welding–brazing joint was analyzed. The results showed that when the pulsed magnetic field intensity increased from 0 to 60 mT, the wettability and spreadability of the liquid metal were improved. As a result, the appearance of the Al alloy/steel joint was nice. However, when the pulsed magnetic field intensity was 80 mT, the stability of the arc and the forming quality of the joint decreased, which resulted in a deterioration in the appearance of the joint. A pulsed magnetic field with different intensities did not alter the microstructure of the joint. All of the joint was composed of θ-Fe2(Al,Si)5 and τ5-Al7.2Fe1.8Si at the interface and Al-Si eutectic phase and α-Al solid solution at the weld seam zone. Actually, with the pulsed magnetic field intensity increasing from 0 mT to 60 mT, the IMC thickness in the interfacial layer gradually reduced under the action of electromagnetic stirring. Also, the grain in the weld seam was refined, and elements were distributed uniformly. But when the pulsed magnetic field intensity was 80 mT, the grain in the weld seam began to coarsen, and the intermetallic compound (IMC) thickness was too small, which was unfavorable for the metallurgical bonding of Al alloy and steel. Therefore, with the increase in pulsed magnetic field intensity, the tensile strength of the joints first increased and then decreased, and it reached its maximum of 187.7 MPa with a pulsed magnetic field intensity of 60 mT. Similarly, the corrosion resistance of the joint first increased and then decreased, and it was best when the pulse magnetic field intensity was 60 mT. The Nyquist plot and Bode plot confirmed this result. The addition of a pulsed magnetic field caused less fluctuation in the anode current density, resulting in less localized corrosion of the joint using the scanning vibrating electrode technique (SVET). The XPS analysis showed the Al-Fe-Si compounds replacing the Fe-Al compounds in the joint was the main reason for improving its corrosion resistance under the action of a pulsed magnetic field. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Figure 1

17 pages, 12728 KB  
Article
Effect of an Ultrasonic Vibration on the Microstructure and Properties of Al Alloy/Steel Laser Welding-Brazing Joints
by Chao Zhang, Daozhong Du, Ziqian Wu, Yubo Sun, Xiaoyang Wang, Weimin Long and Juan Pu
Coatings 2024, 14(9), 1219; https://doi.org/10.3390/coatings14091219 - 21 Sep 2024
Cited by 4 | Viewed by 1900
Abstract
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints [...] Read more.
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints but refined them. The joints were all composed of θ-Fe(Al, Si)3 and τ5-Al7.2Fe1.8Si formed at the interface reaction zone, as well as an α-Al solid solution and Al-Si eutectic phase generated in the weld seam zone. Meanwhile, the thickness of the IMCs at the interface decreased with an increase in the ultrasonic amplitude. When the ultrasonic amplitude was 8 μm, the IMCs thickness was a minimum of 1.62 μm. In this condition, the reduction of the IMCs thickness and the refined grain of joints made the microhardness and tensile strength reach the maximum. The fracture of joints with ultrasonic amplitudes of 0 and 4.8 μm began at the weld seam and extended to the interface reaction zone at the steel side, while the fracture of joints was located in the heat-affected zone (HAZ) of the Al alloy side when the ultrasonic amplitude was 8.0 and 11.2 μm. The fracture mode of the former presented a typical mixed fracture with cleavage steps and tearing edges, and that of the latter showed ductile fracture with uniform and fine ductile dimples. The corrosion resistance of the joints was improved by adding ultrasonic vibration. When the ultrasonic amplitude was 8 μm, its corrosion resistance was optimum; it was ascribed to a dense oxide film formed on the surface of the metal under the action of ultrasonic vibration. Full article
(This article belongs to the Special Issue Tribology and Mechanical Characteristics of Films)
Show Figures

Figure 1

10 pages, 4494 KB  
Article
Stabilization Effect of Interfacial Solute Segregation on θ′ Precipitates in Al-Cu Alloys
by Shangshang Liang, Shengping Wen, Baosheng Liu, Yong Hu, Wu Wei, Xiaolan Wu, Hui Huang, Kunyuan Gao, Xiangyuan Xiong and Zuoren Nie
Metals 2024, 14(8), 848; https://doi.org/10.3390/met14080848 - 24 Jul 2024
Cited by 1 | Viewed by 1864
Abstract
The effects of Sc, Mg and Si elements in an Al-Cu alloy have been studied by means of hardness tests and transmission electron microscopy analysis. The experimental results show that additions of Sc, Mg and Si can improve the heat resistance of the [...] Read more.
The effects of Sc, Mg and Si elements in an Al-Cu alloy have been studied by means of hardness tests and transmission electron microscopy analysis. The experimental results show that additions of Sc, Mg and Si can improve the heat resistance of the Al-Cu alloy. The Sc/Mg/Si segregation-sandwiched structure is the most stable, when compared with Sc segregation or Si/Sc co-segregation at the interface of θ′/Al. The additions of Si and Mg promote the aging–hardening response of the Al-Cu alloy. Mg is a micro-alloying element with great potential in stabilizing the size of θ′ phases, which further promotes the number density greatly. Consequently, the Al-Cu alloy achieves a high strength, matched with excellent thermal stability, due to the microalloying of Sc/Mg/Si solutes. Full article
Show Figures

Graphical abstract

11 pages, 4100 KB  
Article
The Effects on Stability and Electronic Structure of Si-Segregated θ′/Al Interface Systems in Al-Cu Alloys
by Lu Jiang, Zhihao Zhao and Gaosong Wang
Coatings 2024, 14(7), 879; https://doi.org/10.3390/coatings14070879 - 13 Jul 2024
Cited by 3 | Viewed by 1758
Abstract
This study systematically investigates the energy and electronic properties of Si-segregated θ′(Al2Cu)/Al semi-coherent and coherent interface systems in Al-Cu alloys using ab initio calculations. By evaluating the bonding strength at the interface, it has been revealed that Si segregated at the [...] Read more.
This study systematically investigates the energy and electronic properties of Si-segregated θ′(Al2Cu)/Al semi-coherent and coherent interface systems in Al-Cu alloys using ab initio calculations. By evaluating the bonding strength at the interface, it has been revealed that Si segregated at the A1 site (Al slab) of the semi-coherent interface systems exhibits the most negative segregation energy, resulting in a noticeable decrease in total energy and an increase in interface adhesion. The electronic structure analysis indicates the presence of Al-Cu and Al-Al bonds, with Si occupying the A1 site. The strong bond formation between Al-Cu and Al-Al is essential for improving interface bonding strength. The results of the calculating analyses are consistent with the results of the previous experiments, and Si can be used as a synergistic element to reduce the θ′/Al interface energy and further reduce the coarsening drive of the θ′ precipitated phase, which can provide new perspectives and computational ideas for the compositional design of heat-resistant Al-Cu alloys. Full article
(This article belongs to the Special Issue Research and Application of High Entropy Alloys)
Show Figures

Figure 1

19 pages, 8231 KB  
Article
Effect of Mn/Ag Ratio on Microstructure and Mechanical Properties of Heat-Resistant Al-Cu Alloys
by Xiangzhou Fu, Hailong Yang, Hanzhang Wang, Chifu Huang, Yongbin Chen, Qiangang Huang, Anmin Li and Liwen Pan
Materials 2024, 17(6), 1371; https://doi.org/10.3390/ma17061371 - 17 Mar 2024
Cited by 5 | Viewed by 2222
Abstract
This paper mainly investigated the effect of the Mn/Ag ratio on the microstructure and room temperature and high-temperature (350 °C) tensile mechanical properties of the as-cast and heat-treated Al-6Cu-xMn-yAg (x + y = 0.8, wt.%) alloys. The as-cast alloy has α-Al, Al2 [...] Read more.
This paper mainly investigated the effect of the Mn/Ag ratio on the microstructure and room temperature and high-temperature (350 °C) tensile mechanical properties of the as-cast and heat-treated Al-6Cu-xMn-yAg (x + y = 0.8, wt.%) alloys. The as-cast alloy has α-Al, Al2Cu, and a small amount of Al7Cu2 (Fe, Mn) and Al20Cu2 (Mn, Fe)3 phases. After T6 heat treatment, a massive dispersive and fine θ′-Al2Cu phase (100~400 nm) is precipitated from the matrix. The Mn/Ag ratio influences the quantity and size of the precipitates; when the Mn/Ag ratio is 1:1, the θ′-Al2Cu precipitation quantity reaches the highest and smallest. Compared with the as-cast alloy, the tensile strength of the heat-treated alloy at room temperature and high temperature is greatly improved. The strengthening effect of the alloy is mainly attributed to the nanoparticles precipitated from the matrix. The Mn/Ag ratio also affects the high-temperature tensile mechanical properties of the alloy. The high-temperature tensile strength of the alloy with a 1:1 Mn/Ag ratio is the highest, reaching 135.89 MPa, 42.95% higher than that of the as-cast alloy. The analysis shows that a synergistic effect between Mn and Ag elements can promote the precipitation and refinement of the θ′-Al2Cu phase, and there is an optimal ratio (1:1) that obtains the lowest interfacial energy for co-segregation of Mn and Ag at the θ′/Al interface that makes θ′-Al2Cu have the best resistance to coarsening. Full article
(This article belongs to the Special Issue Advances in High-Performance Non-ferrous Materials—2nd Volume)
Show Figures

Figure 1

16 pages, 6335 KB  
Article
Research on the Microstructure and Properties of Al Alloy/Steel CMT Welding-Brazing Joints with Al–Si Flux-Cored Welding Wires
by Haodong Liu, Juan Pu, Mingfang Wu, Chao Zhang, Jiawei Rao, Weimin Long and Yuanxun Shen
Coatings 2023, 13(9), 1590; https://doi.org/10.3390/coatings13091590 - 12 Sep 2023
Cited by 8 | Viewed by 2058
Abstract
Al alloy/steel composite structures combine the advantage of a lightweight Al alloy and high-strength steel and are widely used in new energy vehicles, solar photovoltaic, and other fields. The main problems with the connection of an Al alloy and steel are poor weld [...] Read more.
Al alloy/steel composite structures combine the advantage of a lightweight Al alloy and high-strength steel and are widely used in new energy vehicles, solar photovoltaic, and other fields. The main problems with the connection of an Al alloy and steel are poor weld formation and difficulty in controlling the thickness of the intermetallic compounds (IMCs) at the interface of the Al alloy and steel, which deteriorates the mechanical properties and corrosion resistance of the Al alloy/steel joints. Therefore, experiments on Al alloy/steel CMT (cold metal transfer, CMT) welding brazing were conducted by using AlSi5 and AlSi12 flux-cored welding wires as filler metals. The macro morphology, microstructure composition, tensile strength, and corrosion resistance of the Al alloy/steel joints were then analyzed. The mechanism of the Noclock flux on the wettability and spreadability of the Al–Si welding wire to a low-carbon steel surface was discussed and the formation behavior of the IMCs at the interface layer of the Al alloy/steel joints was clarified. The results showed that the NH4F and NH4AlF4 of the Noclock flux induced and accelerated the removal of oxide films on the surface of the Al alloy and Al–Si welding wire at a high temperature. It promoted the wettability and spreadability of the Al–Si welding wire, which resulted in the improvement of the Al alloy/steel joint formation. Under the CMT arc heat source, the Al–Si welding wire melted, and then a chemical metallurgical reaction occurred among the Al, Si, and Fe elements. The τ5-Al7.2Fe1.8Si phase formed preferentially near the Al alloy fusion zone while the θ-Fe (Al, Si)3 phase formed near the steel side. Actually, the interface reaction layer was composed of a double-layer compound including the τ5-Al7.2Fe1.8Si phase and θ-Fe (Al, Si)3 phase. Additionally, the IMC thickness of the Al alloy/steel joint with the AlSi12 flux-cored welding wire was 3.01 μm, which was less than that with the AlSi5 flux-cored welding wire, so its tensile strength was less but its corrosion resistance was superior. The main reason for the corrosion resistance of Al alloy/steel joints was the presence of a large amount of Al2O3, FeO, and Fe2O3 in the passive film. Full article
Show Figures

Figure 1

15 pages, 12176 KB  
Article
Dynamic Spheroidization Mechanism and Its Orientation Dependence of Ti-6Al-2Mo-2V-1Fe Alloy during Subtransus Hot Deformation
by Jinyang Ge, Xiaodong Zhan, Chao Li, Xiaoyong Zhang and Kechao Zhou
Materials 2023, 16(17), 5752; https://doi.org/10.3390/ma16175752 - 22 Aug 2023
Cited by 8 | Viewed by 1730
Abstract
The dynamic spheroidization mechanism and its orientation dependence in Ti-6Al-2Mo-2V-1Fe alloys during subtransus hot deformation were studied in this work. For this purpose, hot compression tests were carried out at temperatures of 780–880 °C, with strain rates of 0.001–0.1 s−1. Based [...] Read more.
The dynamic spheroidization mechanism and its orientation dependence in Ti-6Al-2Mo-2V-1Fe alloys during subtransus hot deformation were studied in this work. For this purpose, hot compression tests were carried out at temperatures of 780–880 °C, with strain rates of 0.001–0.1 s−1. Based on SEM, EBSD and TEM characterization, the results showed that the aspect ratio of the α phase decreased with increasing deformation temperatures and decreasing strain rates. At 880 °C/0.001 s−1, the aspect ratio of the α phase was the smallest at 2.05. The proportion of HAGBs decreased with increasing temperatures and strain rates, which was different from the trend of the spheroidization; this indicated that the formation of HAGBs was not necessary for the spheroidization process. Furthermore, the formation of the α/α interface was related to the evolution of dislocations and twin boundaries at high (880 °C) and low temperatures (780 °C), respectively. Moreover, the dependence of lamellar spheroidization on the crystallographic orientation tilt from the compression direction (θ) was clarified: when θ was between 45° and 60°, both the prism <a> slip and basal <a> slip systems were activated together, which was more favorable for spheroidization. This study could provide guidance for titanium alloy process designs and microstructure regulation. Full article
Show Figures

Figure 1

21 pages, 10324 KB  
Article
Effect of Zn on Phase Evolution and Shear Resistance of Stainless Steel and Aluminum Alloy Interface by Laser Cladding
by Keyan Wang, Xianqing Yin, Chengxin Li and Kaiping Du
Coatings 2023, 13(7), 1267; https://doi.org/10.3390/coatings13071267 - 19 Jul 2023
Cited by 1 | Viewed by 1791
Abstract
The connection between aluminum and iron alloys is of immense significance in the pursuit of lightweight industrial products. However, the Fe-Al interface’s inherent weakness restricts its widespread application. This study investigates the impact of Zn at the interface of Al-Fe laser cladding on [...] Read more.
The connection between aluminum and iron alloys is of immense significance in the pursuit of lightweight industrial products. However, the Fe-Al interface’s inherent weakness restricts its widespread application. This study investigates the impact of Zn at the interface of Al-Fe laser cladding on the phase and mechanical properties of the interface. Specifically, we examine the influence of the applied Zn powder layer and alloying Zn layer on the morphology of the Fe-based cladding layer. The inclusion of Zn enhances the spreadability of the Fe-based cladding layer. Additionally, we elucidate the effect of Zn on the composition and phase of the Fe-Al laser cladding interface. Notably, the affinity between Zn and the η phase surpasses that of the θ phase, and an increased Zn content significantly thickens the η phase. Shear tests reveal that the failure mode of shear fracture encompasses both brittle and ductile fractures. Density functional theory (DFT) calculations indicate that Zn has a limited effect on the strength of the η phase but reduces the enthalpy of formation of the η phase. Our findings demonstrate that the alloyed Zn layer initially facilitates the formation of a continuous and uniform η layer, while an increased Zn content enhances and stabilizes the shear strength of the interface. Full article
(This article belongs to the Special Issue Laser Cladding Coatings: Microstructure, Properties, and Applications)
Show Figures

Figure 1

13 pages, 10958 KB  
Article
The Effect of Cu Addition on the Precipitation Sequence in the Al-Si-Mg-Cr Alloy
by Bin Chen, Liang Dong, Bin Hu and Zhenyang Liu
Materials 2022, 15(22), 8221; https://doi.org/10.3390/ma15228221 - 19 Nov 2022
Cited by 8 | Viewed by 2121
Abstract
In this work, the effect of Cu additives and heat treatment on the precipitation sequence of an Al-Si-Mg-Cr alloy has been systematically studied by means of advanced spherical aberration-corrected electron microscopy. Cu atoms tend to gather at the interface between the precipitates and [...] Read more.
In this work, the effect of Cu additives and heat treatment on the precipitation sequence of an Al-Si-Mg-Cr alloy has been systematically studied by means of advanced spherical aberration-corrected electron microscopy. Cu atoms tend to gather at the interface between the precipitates and the matrix at the beginning of the aging process. Then, Cu atoms diffuse into the precipitates. Two types of GP zones are formed in the first stage of precipitation: one is the type I GP zone and the other is the type II GP zone. The type I GP zone βCu evolved into the Q′ phase, while the type II GP zone evolved into the θ′ phase during the aging process. The aging sequence of the Al-Si-Mg-Cr alloy can be determined as a supersaturated solid solution (SSSS) → GP zones → β″→ β′/B′(→β). The aging sequence of the Al-7%Si-0.3%Mg-0.3%Cr-1.5%Cu alloy can be determined as a supersaturated solid solution (SSSS)→GP zone→βCu→Q′ + θ′(→Q + θ). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 10318 KB  
Article
In-Depth Characterization of Laser-Welded Aluminum-and-Copper Dissimilar Joint for Electric Vehicle Battery Connections
by Sajid Ali and Joonghan Shin
Materials 2022, 15(21), 7463; https://doi.org/10.3390/ma15217463 - 25 Oct 2022
Cited by 25 | Viewed by 5979
Abstract
With advancements in the automotive industry, the demand for electric vehicles (EVs) has remarkably increased in recent years. However, the EV battery, which is a vital part of the EV, poses certain challenges that limit the performance of the EVs. The joining of [...] Read more.
With advancements in the automotive industry, the demand for electric vehicles (EVs) has remarkably increased in recent years. However, the EV battery, which is a vital part of the EV, poses certain challenges that limit the performance of the EVs. The joining of dissimilar materials for different components affects the electrical and mechanical performances of EV batteries. Laser beam welding is a promising technique for joining Al and Cu for application in secondary battery fabrication because of the precise control over heat input and high process speed. However, the production of Al–Cu joints remains challenging because of the differences between their thermal and metallurgical properties and the resulting formation of brittle and hard intermetallic compounds, which reduce mechanical and electric properties. Thus, it is vital to characterize the weld to improve joint performance and enhance the laser welding process. This study investigates the joining of an Al alloy (AA1050) with Ni-coated Cu using a continuous-wave Yb fiber laser. The evaluation of the weld morphology showed a correlation between the weld characteristics and process parameters (laser power and welding speed). The weld interface width and penetration depth into the lower sheet (Cu) both increased with increasing heat input. Optical microscopy of the weld cross-section revealed many defects, such as voids and cracks. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) was employed to examine the weld microstructure. The composition analysis revealed the presence of mixed morphology of Al–Cu eutectic alloy (α-Al+Θ-Al2Cu) phase in the form of dendrites in the weld fusion zone with traces of the highly brittle Al4Cu9 phase at a high heat input condition. Furthermore, the electrical contact resistance of the weld seam was measured to determine the correlation between heat input and resistance. In addition, Vickers microhardness measurements were performed on the weld cross-section to validate the SEM/EDS results. Full article
(This article belongs to the Special Issue Laser Processing of Advanced Materials)
Show Figures

Figure 1

20 pages, 7161 KB  
Article
Structure and Oxidation Behavior of NiAl-Based Coatings Produced by Non-Vacuum Electron Beam Cladding on Low-Carbon Steel
by Tatiana S. Ogneva, Alexey A. Ruktuev, Daria V. Lazurenko, Kemal I. Emurlaev, Yulia N. Malyutina, Mikhail G. Golkovsky, Kirill D. Egoshin and Ivan A. Bataev
Metals 2022, 12(10), 1679; https://doi.org/10.3390/met12101679 - 8 Oct 2022
Cited by 5 | Viewed by 2218
Abstract
NiAl-based intermetallic coatings were obtained using non-vacuum electron beam cladding on low-carbon steel. The structure of the coatings was investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The coatings mostly [...] Read more.
NiAl-based intermetallic coatings were obtained using non-vacuum electron beam cladding on low-carbon steel. The structure of the coatings was investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The coatings mostly consisted of grains elongated perpendicular to the substrates, with a strong <100> texture along the grain growth direction. The coatings contained about 14 at. % Fe, which appeared due to the partial melting of the steel substrate. At the bottom of the coatings, an inhomogeneous mixing zone with an increased concentration of Fe was formed; at the “substrate–coating” interface, a thick layer with a Fe50-Ni25-Al25 at. % composition was observed. The samples exhibited weight gains of 0.1, 0.8, 2.14, and 3.4 mg/cm2 after 100 h of oxidation at 700, 800, 900, and 1000 °C, respectively. The oxide layer contained α-Al2O3 and θ-Al2O3, and the presence of iron atoms contributed to the formation of a small amount of spinel. During the oxidation process, a layer with a high Fe content (~60 at. %) formed along the boundary between the oxide film and the NiAl-based material, which had a positive effect on the formation of a non-porous “oxide–coating” interface. Full article
(This article belongs to the Special Issue Intermetallic-Based Materials and Composites)
Show Figures

Figure 1

13 pages, 4927 KB  
Article
Effect of Cu Coating on Microstructure and Properties of Al/Steel Welding–Brazing Joints Obtained by Cold Metal Transfer (CMT)
by Chao Zhang, Mingfang Wu, Juan Pu, Qi Shan, Yubo Sun, Shuiqing Wang and Seseke Koyro Ulrich Georg Hermann
Coatings 2022, 12(8), 1123; https://doi.org/10.3390/coatings12081123 - 5 Aug 2022
Cited by 12 | Viewed by 2794
Abstract
Adding alloy elements to develop excellent properties in Al alloy/steel welding–brazing joints to realize lightweight vehicle structures has become a feasible task. Here, CMT welding–brazing was used to realize the reliable connection of Al/steel with a Cu coating. Al alloy/steel welding–brazing joints with [...] Read more.
Adding alloy elements to develop excellent properties in Al alloy/steel welding–brazing joints to realize lightweight vehicle structures has become a feasible task. Here, CMT welding–brazing was used to realize the reliable connection of Al/steel with a Cu coating. Al alloy/steel welding–brazing joints with different thicknesses of Cu coating were designed to study the influence of Cu on microstructure composition, mechanical properties and corrosion resistance. Then, the action rule of the Cu element on the interfacial microstructure evolution was clarified. The results showed that the appropriate Cu coating could effectively inhibit the reaction of Al and Fe and reduce the thickness of interfacial brittle intermetallic compounds (IMCs). Moreover, Cu could react with Al, Fe and Si to promote the formation of the τ5-Al7.2(Cu,Fe)1.8Si phase and control the formation of the brittle θ-Fe(Al,Si)3 phase, which improved the toughness of IMCs. When the thickness of the Cu coating on the surface of steel was 10 μm, the tensile strength of the Al alloy/steel CMT welding–brazing joint reached a maximum of 138.7 MPa and the corrosion resistance of the joint reached the optimum level. However, when the thickness of the Cu coating increased to 20 μm, the IMCs’ thickness at the interface of the joint reached the minimum, but Cu reacted with Al to form a brittle Al2Cu phase under the higher Cu content, which deteriorated the tensile strength and corrosion resistance of joints. This work will provide an experimental and theoretical basis for developing good properties in Al/Cu-coating/steel welding joints. Full article
Show Figures

Figure 1

Back to TopTop