Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = δ-tocopherol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 468 KiB  
Article
Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis
by Olivio Fernandes Galãoa, Patrícia Valderrama, Luana Caroline de Figueiredo, Oscar Oliveira Santos Júnior, Alessandro Franscisco Martins, Rafael Block Samulewski, André Luiz Tessaro, Elton Guntendorfer Bonafé and Jesui Vergilio Visentainer
AppliedChem 2025, 5(3), 19; https://doi.org/10.3390/appliedchem5030019 - 7 Aug 2025
Abstract
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition [...] Read more.
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition of phytosterols (β-sitosterol, campesterol, stigmasterol) and tocopherols (α, β, γ, δ) in 20 soybean genotypes—14 non-transgenic and six transgenic—cultivated in two major producing regions of Paraná state, Brazil (Londrina and Ponta Grossa). Lipophilic compounds were extracted from soybean seeds, quantified via gas chromatography and HPLC, and statistically analyzed using ICA with the JADE algorithm. The extracted independent components successfully differentiated soybean varieties based on phytochemical profiles. Notably, transgenic cultivars from Ponta Grossa exhibited higher levels of total tocopherols, including α- and β-tocopherol, while conventional cultivars from both regions showed elevated phytosterol content, particularly campesterol and stigmasterol. ICA proved to be a powerful unsupervised method for visualizing patterns in complex compositional data. These findings highlight the significant influence of genotype and growing region on the nutraceutical potential of soybean, and support the use of multivariate analysis as a strategic tool for cultivar selection aimed at enhancing functional quality in food applications. Full article
Show Figures

Graphical abstract

17 pages, 1692 KiB  
Article
Species- and Age-Dependent Prenyllipid Accumulation in Hypericum Species’ Leaves
by Danija Lazdiņa, Ieva Miķelsone, Inga Mišina, Krists Dukurs, Ana M. Benítez-González, Carla M. Stinco, Antonio J. Meléndez-Martínez and Paweł Górnaś
Plants 2025, 14(14), 2239; https://doi.org/10.3390/plants14142239 - 20 Jul 2025
Viewed by 400
Abstract
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety [...] Read more.
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety of prenyllipids naturally in all parts of the plant, allowing for a glimpse into the relationship between them without genetic or other interference. Consequently, five Hypericum species’ leaves of different ages were investigated—H. androsaemum, H. pseudohenryi, H. hookerianum, H. patulum and one hybrid H. × inodorum (H. androsaemum × H. hircinum). The leaves contained predominantly α-tocopherol, γ-tocotrienol and δ-tocotrienol (30.9–212.8, 8.13–22.43 and 1.87–20.8 mg 100 g−1, respectively). Higher quantities of tocochromanols, a lower chlorophyll content and a higher a/b ratio were observed in the bottom (older) leaves. The predominant carotenoids were lutein (semi-quantitative) and β-carotene (7.60–28.63 and 2.33–12.43 mg 100 g−1, respectively). Carotenoid contents were lower in bottom leaves than in middle or top leaves, and the highest carotenoid content was observed in H. hookerianum and H. patulum. Leaf tocopherol, tocotrienol, chlorophyll and carotenoid accumulation were section and leaf age-dependent, and distinct relationships can be observed between the accumulation of some prenyl lipids, but not others. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

35 pages, 2913 KiB  
Article
Effect of Supplementation of Antioxidant Lipids Synthetized by Enzymatic Acidolysis with EPA/DHA Concentrate and Maqui (Aristotelia chilensis (Mol.) Stuntz) Seed Oil for Mitigating High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice
by Benjamín Claria, Alejandra Espinosa, Alicia Rodríguez, María Elsa Pando, Gretel Dovale-Rosabal, Nalda Romero, Katherynne Mayorga, Evelyn Tapia, Jenifer Saez, Melissa Tsuchida, Karla Vásquez, Rodrigo Valenzuela, Álvaro Pérez, Patricio Díaz and Santiago P. Aubourg
Antioxidants 2025, 14(7), 790; https://doi.org/10.3390/antiox14070790 - 26 Jun 2025
Viewed by 613
Abstract
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were [...] Read more.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were derived from a concentrate of rainbow trout (Oncorhynchus mykiss) belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, Aristotelia chilensis (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg−1, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels (p < 0.01), and enhanced postprandial glucose tolerance (p < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3′s potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

17 pages, 1646 KiB  
Article
Sustainable Extraction of Actinostemma lobatum Kernel Oil by 2-Methyltetrahydrofuran: A Comparative Study on Physicochemical Properties and Bioactive Compounds Against Petro-Sourced Solvents
by Liyou Zheng, Hongyan Guo, Haozhi Song, Miao Yu, Mengxi Xie, Sameh A. Korma and Tao Zhang
Foods 2025, 14(10), 1682; https://doi.org/10.3390/foods14101682 - 9 May 2025
Viewed by 471
Abstract
This study aims to evaluate the effect of extraction solvent type on the physicochemical properties and bioactive compounds of Actinostemma lobatum Maxim. kernel oil for two successive harvest years. Oils were extracted using the bio-based solvent 2-methyltetrahydrofuran (2-MeTHF) and conventional petroleum-derived solvents ( [...] Read more.
This study aims to evaluate the effect of extraction solvent type on the physicochemical properties and bioactive compounds of Actinostemma lobatum Maxim. kernel oil for two successive harvest years. Oils were extracted using the bio-based solvent 2-methyltetrahydrofuran (2-MeTHF) and conventional petroleum-derived solvents (n-hexane and 2-methylpentane). Results indicated that 2-MeTHF achieved significantly higher oil yields (27.60% in 2021 and 29.77% in 2022) compared to n-hexane and 2-methylpentane. Unfortunately, 2-MeTHF-extracted oils exhibited greater susceptibility to oxidation, displaying elevated levels of primary and secondary oxidation products relative to other solvents. Meanwhile, 2-methylpentane-extracted oil showed a relatively high oxidative stability index. In addition, differential scanning calorimetry results also aligned with the oxidative status. Further variance analysis revealed that the harvest year exerted a more pronounced impact on fatty acid and triacylglycerol profiles than the solvent type. Additionally, tocopherols and tocotrienols were abundant, with β- and δ-tocopherols predominating. 2-MeTHF-extracted oils harvested in 2022 contained the highest total tocols (1118.83 mg/kg) among all samples. Also, phytosterols were detected, with β-sitosterol constituting the predominant compound. Furthermore, the 2-MeTHF-extracted oils contained higher β-carotene contents compared to other samples. These above findings concluded that 2-MeTHF is a good alternative to conventional solvents for extracting of A. lobatum kernel oil. Full article
Show Figures

Graphical abstract

14 pages, 534 KiB  
Article
Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics
by Abdolah Dadazadeh, Sodeif Azadmard-Damirchi, Zahra Piravi-Vanak, Mohammadali Torbati and Fleming Martinez
Foods 2025, 14(9), 1483; https://doi.org/10.3390/foods14091483 - 24 Apr 2025
Viewed by 529
Abstract
The Allium plant genus has many species, among which Allium iranicum (AI) from the family Amaryllidaceae is endemic to Iran. There is no report on the oil composition of AI seeds. In this study, oil from AI seeds was extracted by a solvent [...] Read more.
The Allium plant genus has many species, among which Allium iranicum (AI) from the family Amaryllidaceae is endemic to Iran. There is no report on the oil composition of AI seeds. In this study, oil from AI seeds was extracted by a solvent and its composition and quality characteristics were determined. The yield of seed oil was 14.3%. The most predominant unsaturated fatty acid was linoleic acid (64.4%), followed by oleic acid (16.9%), and the main saturated fatty acids were palmitic acid (13.6%) followed by stearic acid (2.8%). Beta-sitosterol (50.7%), campestrol (15.7%), and delta5-avenasterol (8.2%) were the most dominant phytosterols in extracted AI oil. The most dominant tocopherol was α-tocopherol (1188 ppm) along with low amounts of δ- and γ-tocopherols. The obtained results showed that the oil extracted from seeds of AI can be a valuable by-product of this plant with suitable nutritional indices and can be used as a new source of vegetable oil. Further research is required to reveal its potential pharmaceutical and food applications. Full article
Show Figures

Figure 1

18 pages, 2870 KiB  
Article
Tocopherol and Tocotrienol Content in the Leaves of the Genus Hypericum: Impact of Species and Drying Technique
by Ieva Miķelsone, Elise Sipeniece, Dalija Segliņa and Paweł Górnaś
Plants 2025, 14(7), 1079; https://doi.org/10.3390/plants14071079 - 1 Apr 2025
Cited by 1 | Viewed by 417
Abstract
α-Tocopherol (α-T) predominates in photosynthetic tissues, while tocotrienols (T3s) are reported very rarely. The genus Hypericum stands out as one of the few exceptions. Given the potential health benefits associated with tocotrienols, sourcing them from natural origins is of interest. The proper selection [...] Read more.
α-Tocopherol (α-T) predominates in photosynthetic tissues, while tocotrienols (T3s) are reported very rarely. The genus Hypericum stands out as one of the few exceptions. Given the potential health benefits associated with tocotrienols, sourcing them from natural origins is of interest. The proper selection of plant material and the drying conditions are crucial steps in this process. Therefore, in the present study, we investigated the effects of four different drying techniques (freeze-drying, microwave–vacuum-, infrared oven and air-drying) on the tocochromanol content in leaves of three Hypericum species: H. androsaemum, H. pseudohenryi, and H. hookerianum and one hybrid H. × inodorum. The total tocochromanol content in the freeze-dried leaves harvested in September was 68.1–150.6 mg/100 g dry weight. α-T constituted 66.7–85.9% (w/w), while tocotrienols constituted 13–32% (w/w). H. pseudohenryi was characterized by the lowest tocotrienol content, while H. androsaemum and H. hookerianum had the highest, with δ-T3 and γ-T3, respectively, being predominant. Tocotrienols were more stable during drying than α-T. The greatest decrease in α-T content was observed during air-drying in the presence of sunlight, with a 27% difference compared to the absence of sunlight. The species and harvest time are factors that more strongly affect the tocotrienol content in the Hypericum leaves than the selected drying method. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants)
Show Figures

Graphical abstract

14 pages, 3844 KiB  
Article
Cultivated St. John’s Wort Flower Heads Accumulate Tocotrienols over Tocopherols, Regardless of the Year of the Plant
by Ieva Miķelsone, Elise Sipeniece, Inga Mišina, Elvita Bondarenko and Paweł Górnaś
Plants 2025, 14(6), 852; https://doi.org/10.3390/plants14060852 - 9 Mar 2025
Cited by 2 | Viewed by 698
Abstract
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are [...] Read more.
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are natural antidepressants. Recent studies indicate that the inflorescences of wild H. perforatum are a source of rare tocotrienols, primarily δ-T3. Similar studies are lacking for cultivated species. H. perforatum was grown for three years. At full bloom each year, the plant was cut and separated into its parts: stems, leaves, flower buds, and flowers. Tocotrienols (T3s) were present in each part of the H. perforatum. The lowest concentration of tocotrienols was recorded in stems and the highest in flower buds (1.7–4.2 and 88.2–104.7 mg/100 g dry weight, respectively). Flower buds and flowers were the main source of α-T3 and δ-T3 tocotrienols. The plant part has a significant impact on the tocochromanol profile and concentration, while the year of harvest/plant aging does not. The present study demonstrates that cultivated H. perforatum flower heads are the first known flowers with relatively high concentrations of tocotrienols. St. John’s wort flower buds accumulate tocotrienols over tocopherols, regardless of the year of the plant. Full article
Show Figures

Figure 1

24 pages, 5731 KiB  
Article
Antiproliferative Role of Natural and Semi-Synthetic Tocopherols on Colorectal Cancer Cells Overexpressing the Estrogen Receptor β
by Irene Falsetti, Gaia Palmini, Roberto Zonefrati, Kristian Vasa, Simone Donati, Cinzia Aurilia, Allegra Baroncelli, Caterina Viglianisi, Francesco Ranaldi, Teresa Iantomasi, Piero Procacci, Stefano Menichetti and Maria Luisa Brandi
Int. J. Mol. Sci. 2025, 26(5), 2305; https://doi.org/10.3390/ijms26052305 - 5 Mar 2025
Viewed by 766
Abstract
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, [...] Read more.
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, including vitamin E components, affect cell growth by binding to ERs. In the present study, cell proliferation was measured by cell counting in a Bürker hemocytometer, and ERβ expression was measured by Real-Time qPCR and immunoenzymatic methods. The results obtained show that natural δ-tocopherol (δ-Toc) and two of its semi-synthetic derivatives, bis-δ-tocopheryl sulfide (δ-Toc)2S and bis-δ-tocopheryl disulfide (δ-Toc)2S2, play an antiproliferative role and upregulate ERβ expression, similar to 17-β-estradiol (17β-E2), in human colon adenocarcinoma HCT8 cells engineered to overexpress ERβ protein (HCT8-β8). These events are not present in HCT8-pSV2neo and in HCT8-β8 pretreated with ICI 182,780, suggesting that they are mediated by the binding of compounds to ERβ, as also boosted by an in silico assay. The antiproliferative effect is independent of the intracellular redox state and (δ-Toc)2S and (δ-Toc)2S2 reduce cell proliferation at concentrations lower than that of δ-Toc and all tested compounds are also able to upregulate ERβ expression. Taken together, the data indicate that, through the involvement of ERβ activity and expression, δ-Toc, (δ-Toc)2S, and (δ-Toc)2S2 may provide potential therapeutic support against colorectal cancer. Full article
(This article belongs to the Special Issue Hormone/Receptor System in Human Diseases)
Show Figures

Figure 1

18 pages, 850 KiB  
Article
Impact of Soil on Biomass Yield and Accumulation of Lipophilic Secondary Metabolites in Four Hypericum Species
by Ieva Miķelsone, Elise Sipeniece, Inga Mišina, Elvita Bondarenko, Dalija Segliņa and Paweł Górnaś
Agriculture 2025, 15(5), 526; https://doi.org/10.3390/agriculture15050526 - 28 Feb 2025
Cited by 1 | Viewed by 518
Abstract
The genus Hypericum is a widely distributed ornamental and therapeutic herb known for its diverse bioactive compounds, including xanthones. The levels of secondary metabolites in plants are influenced by the specific plant part, agronomic conditions, and environmental factors. Recently, the occurrence of tocotrienols, [...] Read more.
The genus Hypericum is a widely distributed ornamental and therapeutic herb known for its diverse bioactive compounds, including xanthones. The levels of secondary metabolites in plants are influenced by the specific plant part, agronomic conditions, and environmental factors. Recently, the occurrence of tocotrienols, rare tocochromanols, was reported in Hypericum perforatum. Therefore, this study investigated the profiles of tocochromanols in different plant sections—leaves, stems, flowers, and flower bud—of four Hypericum species: H. perforatum, H. annulatum, H. androsaemum, and H. × inodorum, cultivated in three types of soil: potting, sandy, and clay. In the initial growing year, the highest biomass yield was recorded for H. perforatum grown in potting soil. Soil and species significantly influence biomass yield (p < 0.05). The inflorescences of H. perforatum were dominated by tocotrienols (T3s), primarily α-T3 and δ-T3, an observation not noted for H. annulatum. α-Tocopherol (α-T) was dominant in the leaves, while in the stems, except for H. perforatum (α-T), tocotrienols—γ-T3 and δ-T3 in H. inodorum and H. androsaemum and α-T3 and γ-T3 in H. annulatum—were more prevalent. This study demonstrates differences in tocochromanol accumulation in different parts of the four Hypericum species grown in different soils. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

12 pages, 1310 KiB  
Article
Residues of St. John’s Wort (Hypericum perforatum) Tea Infusions/Water Extracts as a Valuable Source of Tocotrienols: An Extraction Study
by Inga Mišina, Ingus Perkons, Aleksander Siger, Arianne Soliven and Paweł Górnaś
Appl. Sci. 2025, 15(4), 2047; https://doi.org/10.3390/app15042047 - 15 Feb 2025
Cited by 4 | Viewed by 924
Abstract
Hypericum perforatum L., commonly known as St. John’s wort, is a widely distributed herbaceous plant utilized in traditional and phytomedicinal applications, particularly for its hydrophilic bioactive compounds. It is often used for treating early depressive states. In this study, we focused on reporting [...] Read more.
Hypericum perforatum L., commonly known as St. John’s wort, is a widely distributed herbaceous plant utilized in traditional and phytomedicinal applications, particularly for its hydrophilic bioactive compounds. It is often used for treating early depressive states. In this study, we focused on reporting the tocotrienols—lipophilic phytochemicals with health-promoting properties—in St. John’s wort. H. perforatum flowerheads predominantly contained tocotrienols compared with tocopherols (54 and 30 mg/100 g dry weight, respectively). The major tocotrienols (T3) were δ-T3 and α-T3 (34.0 and 17.6 mg/100 g dry weight, respectively). Tocopherols and tocotrienols are lipophilic phytochemicals that cannot be present in St. John’s wort water extracts (tea infusions), but they can be recovered from the remaining residues of H. perforatum tea infusions by using hydroethanolic solutions. A 50.0% (v/v) hydroethanolic solution was not effective in the recovery of tocochromanols. The greatest increase in the extractability of tocochromanols was observed for 70.0–80.0% (v/v) hydroethanolic extracts, while increasing the ethanol concentration from 90.0% to 96.2% (v/v) only slightly improved extractability (not statistically significant). For each ethanol concentration, the recovery was proportionally higher for tocotrienols than for tocopherols. Residues of H. perforatum tea infusions can be proposed as valuable by-products rich in tocotrienols. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts and Their Applications)
Show Figures

Figure 1

16 pages, 1871 KiB  
Article
Characterization of Tocochromanols in Wild Hypericum perforatum Populations in Latvia
by Paweł Górnaś, Inga Mišina, Ingus Perkons, Dalija Segliņa and Magdalena Czlapka-Matyasik
Horticulturae 2025, 11(2), 205; https://doi.org/10.3390/horticulturae11020205 - 15 Feb 2025
Cited by 3 | Viewed by 462
Abstract
St. John’s wort (Hypericum perforatum L.) is an ornamental and medical plant, distributed worldwide, which is rich in diverse secondary metabolites. The discovery of the presence of tocotrienols (rare prenyllipids) in H. perforatum marks a new chapter demanding a deeper understanding of [...] Read more.
St. John’s wort (Hypericum perforatum L.) is an ornamental and medical plant, distributed worldwide, which is rich in diverse secondary metabolites. The discovery of the presence of tocotrienols (rare prenyllipids) in H. perforatum marks a new chapter demanding a deeper understanding of the accumulation of these lipophilic biomolecules. Three wild St. John’s wort populations were harvested in Latvia at three different locations from 2022 to 2024 and separated into stems, leaves, flower buds, and flowers. Plant samples were freeze-dried, ground, saponified, and analyzed for tocochromanol profiles using RP-LC-FLD and confirmed by an LC-MS system. Eight tocochromanols, four tocopherols (Ts), and four tocotrienols (T3s), were identified and confirmed in H. perforatum. Leaves were dominated by α-T (82%), and flower buds and flowers by δ-T3 (44%); thus, the lowest concentrations of tocotrienols were recorded in leaves and the highest in flower buds. The other tocotrienols were present as follows: α-T3 > γ-T3 > β-T3. The location of H. perforatum, the year of harvest, the aerial part of the plant, and their interactions all significantly influenced the content of tocochromanols (p < 0.05). The present study demonstrates relevant discoveries regarding the accumulation of tocotrienols in various St. John’s wort organs and their variability. Full article
Show Figures

Graphical abstract

15 pages, 1770 KiB  
Article
Tocochromanols in the Leaves of Plants in the Hypericum and Clusia Genera
by Inga Mišina, Danija Lazdiņa and Paweł Górnaś
Molecules 2025, 30(3), 709; https://doi.org/10.3390/molecules30030709 - 5 Feb 2025
Cited by 7 | Viewed by 748
Abstract
Now under Clusiaceae and Hypericaceae, Clusia and Hypericum were previously categorized under one family until they were divided in 2003 by the APG III system. The Clusia genus is characterized by the presence of tocotrienol derivatives with antiangiogenic properties, and only Hypericum perforatum [...] Read more.
Now under Clusiaceae and Hypericaceae, Clusia and Hypericum were previously categorized under one family until they were divided in 2003 by the APG III system. The Clusia genus is characterized by the presence of tocotrienol derivatives with antiangiogenic properties, and only Hypericum perforatum tocochromanol content has been studied in the Hypericum genus. Twelve species were analyzed: H. aegypticum, H. calycinum, H. empetrifolium, H. lancasteri, H. olympicum f. minus ‘Sulphureum’, H. perforatum, H. xylosteifolium, C. fluminensis, C. minor, C. odorata, C. palmicida, and C. tocuchensis. Plant leaves were analyzed for their tocochromanol (α-, β-, γ-, and δ-tocotrienol and tocopherol) contents using a reverse-phase high-performance liquid chromatography with fluorescent light detector (RP-HPLC-FLD) method. While α-tocopherol (α-T) was present in the highest proportion, the leaves had significant tocotrienol (T3) contents. Following α-T, δ-T3 was present in most Clusia samples, and γ-T3 in most Hypericum samples, except H. olympicum, in which α-T3 followed. C. minor had the highest α-T (112.72 mg 100 g−1) and total tocochromanol (141.43 mg 100 g−1) content, followed by C. palmicida (65.97 and 82.96 mg 100 g−1, respectively) and H. olympicum (α-T 32.08, α-T3 30.68, and total tocochromanols 89.06 mg 100 g−1). The Hypericum genus is a valuable source of tocotrienols, with potential use after purification. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Graphical abstract

15 pages, 1354 KiB  
Article
Tocotrienols in Eleven Species of Hypericum Genus Leaves
by Danija Lazdiņa, Inga Mišina and Paweł Górnaś
Molecules 2025, 30(3), 662; https://doi.org/10.3390/molecules30030662 - 2 Feb 2025
Cited by 9 | Viewed by 948
Abstract
Saint John’s worts or goatweeds are mostly perennial flowering plants in the Hypericaceae family, formerly under the Clusiaceae family. Teas and macerations of the plants are common in traditional medicines and modern depression and cancer therapies. The most notable bioactive compounds in Hypericum [...] Read more.
Saint John’s worts or goatweeds are mostly perennial flowering plants in the Hypericaceae family, formerly under the Clusiaceae family. Teas and macerations of the plants are common in traditional medicines and modern depression and cancer therapies. The most notable bioactive compounds in Hypericum are hyperforin and hypericin. While Hypericum contains a variety of carotenoid and phenolic compounds, which are well documented, there is little available information on tocopherols and almost none on tocotrienols. Considering the frequency of tocotrienol derivatives in Clusiaceae species, this study investigates and reports the presence of tocotrienols in eleven Hypericum species’ leaves: H. hircinum, H. hookerianum, H. calycinum, H. xylosteifolium, H. densifolium, H. prolificum, H. kalmianum, H. frondosum, H. olympicum, and two hybrids: H. × moserianum and H × ‘Rowallane’. Eight tocopherol and tocotrienol forms (α, β, γ, δ) were detected in the leaves, predominantly containing α-tocopherol. Tocotrienol content was most significant in Myriandra section species and was highest in H. prolificum (22.90 ± 0.63 mg 100 g−1), while the highest tocotrienol proportion was observed in H. × ‘Rowallane’ (54.12% of total tocochromanols) and H. prolificum (37.27% of total tocochromanols). The results demonstrated significant tocochromanol accumulation in Hypericum leaves. Full article
Show Figures

Graphical abstract

17 pages, 2077 KiB  
Article
GmGGDR Gene Confers Abiotic Stress Tolerance and Enhances Vitamin E Accumulation in Arabidopsis and Soybeans
by Xiaofang Yu, Jinghong Li, Yanting Bie, Xinfeng Cheng, Qingyun Zheng, Nan Li, Weili Teng, Yongguang Li, Yingpeng Han and Haiyan Li
Agronomy 2025, 15(2), 351; https://doi.org/10.3390/agronomy15020351 - 29 Jan 2025
Viewed by 784
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is a crucial fat-soluble antioxidant that helps maintain intracellular redox homeostasis in plants when they are under stress. Soybeans are a significant source of natural vitamin E. GGDR catalyzes the formation of phytyl diphosphate (PDP), a key [...] Read more.
Vitamin E, comprising tocopherols and tocotrienols, is a crucial fat-soluble antioxidant that helps maintain intracellular redox homeostasis in plants when they are under stress. Soybeans are a significant source of natural vitamin E. GGDR catalyzes the formation of phytyl diphosphate (PDP), a key vitamin E precursor, and it is involved in chlorophyll degradation. The GmGGDR gene, identified via RNA-seq in soybean germplasms with high and low vitamin E contents, encodes GGDR, a key enzyme involved in both vitamin E synthesis and chlorophyll degradation. This study shows that the GmGGDR-encoded protein is hydrophilic and stable, predominantly expressed in leaves, and markedly responsive to gibberellins. The GmGGDR gene enhances the tolerance of transgenic Arabidopsis and soybean plants to salt and drought stresses; transgenic soybeans overexpressing GmGGDR exhibited an approximately 8-fold increase in POD activity, with no significant changes in SOD and CAT activities. Moreover, the GmGGDR gene enhances the levels of α-, γ-, δ-, and total tocopherol content in transgenic soybean and Arabidopsis plants and also increases the chlorophyll a levels in the leaves of these transgenic plants. The increases in α-tocopherol, γ-tocopherol, and δ-tocopherol and total tocopherol in transgenic Arabidopsis seeds ranged from 177.8% to 600.0%, 42.9% to 90.0%, 17.6% to 292.9%, and 71.4% to 127.3% over the control, respectively. Similarly, transgenic soybeans exhibited a minimum increase of 42.9%, 27.8%, 7.1%, and 25.0% in these tocopherol fractions. Overexpression of GmGGDR also significantly elevated chlorophyll a levels in the leaves of these transgenic plants by 33.3–112.5%. This study preliminarily elucidated the function of the GmGGDR gene. It provides a theoretical foundation for further research. It presents a novel strategy for the genetic enhancement of soybean vitamin E content. Full article
Show Figures

Figure 1

21 pages, 5458 KiB  
Article
Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties
by Magdalena Grajzer, Weronika Kozłowska, Iwan Zalewski, Adam Matkowski, Justyna Wiland-Szymańska, Monika Rękoś and Anna Prescha
Foods 2025, 14(3), 354; https://doi.org/10.3390/foods14030354 - 22 Jan 2025
Cited by 1 | Viewed by 1601
Abstract
The oxidative stability of nutritive and bioactive lipids is essential for their functionality. This study evaluated the potential of lipid fractions from pumpkin seeds obtained from eleven high-performing cultivars of Cucurbita maxima Duchesne, C. pepo L., and C. moschata Duchesne cultivated in Poland, [...] Read more.
The oxidative stability of nutritive and bioactive lipids is essential for their functionality. This study evaluated the potential of lipid fractions from pumpkin seeds obtained from eleven high-performing cultivars of Cucurbita maxima Duchesne, C. pepo L., and C. moschata Duchesne cultivated in Poland, aiming to evaluate their stability for nutraceutical applications. This study investigated the intrinsic relationship between chemical composition and oxidative stability to identify cultivars with promising functional potential and commercial value. The fatty acid, sterol, and lipid antioxidant profiles were characterized using gas chromatography (GC), GC–mass spectrometry (GC-MS), and ultra-high-performance liquid chromatography (UPLC), respectively. Antiradical activity was assessed via the DPPH assay, and oxidative stability was evaluated using differential scanning calorimetry (DSC). The oils exhibited high levels of polyunsaturated fatty acids (PUFAs) (59.5–68.6%), with n-6/n-3 fatty acid ratios ranging from 66.5 to 211.6. The lipid extracts contained up to 97.1% Δ7-sterols, while key antioxidants included squalene (616.6–3092.0 mg/kg) and γ-tocopherol (54.1–423.6 mg/kg). Notably, the C. pepo cultivar ‘Moonshine’ was the least abundant in these bioactive compounds. The carotenoid content ranged from 5.7 to 19.4 mg/kg across the extracts. Among the studied cultivars, ‘Show Winner’ and ‘Pink Jumbo Banana’ (C. maxima) stood out as promising candidates for nutraceutical applications due to their elevated levels of tocopherols, carotenoids, and squalene. A moderate n-6/n-3 fatty acid ratio (100–170), coupled with balanced levels of γ-tocopherol and squalene, was found to significantly enhance the oxidative stability of pumpkin seed lipids. These lipid fractions also show potential as stabilizing additives for oils rich in α-linolenic acid but deficient in natural antioxidants. Full article
Show Figures

Figure 1

Back to TopTop