Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = β-amyloid anti-aggregating agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 17165 KiB  
Article
Mechanistic Insights into the Neuroprotective Potential of Aegle marmelos (L.) Correa Fruits against Aβ-Induced Cell Toxicity in Human Neuroblastoma SH-SY5Y Cells
by Mohd Adnan, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui and Mitesh Patel
Pharmaceuticals 2025, 18(4), 489; https://doi.org/10.3390/ph18040489 - 28 Mar 2025
Viewed by 926
Abstract
Background/Objectives: Amyloid-β (Aβ) plaque accumulation, oxidative stress, and cholinergic dysfunction are hallmarks of Alzheimer’s disease (AD), a neurodegenerative disability that progresses over time, ultimately resulting in the loss of neurons. The side effects and limitations of current synthetic drugs have shifted attention [...] Read more.
Background/Objectives: Amyloid-β (Aβ) plaque accumulation, oxidative stress, and cholinergic dysfunction are hallmarks of Alzheimer’s disease (AD), a neurodegenerative disability that progresses over time, ultimately resulting in the loss of neurons. The side effects and limitations of current synthetic drugs have shifted attention toward natural alternatives. This study investigates the ethanolic extract of Aegle marmelos (L.) Corrêa fruits for their antioxidant, AChE-inhibitory, and anti-amyloidogenic properties, as well as their neuroprotective effects against amyloid beta-peptide (Aβ1–42). Methods: Phytochemical constituents were identified through HR-LCMS analysis and their antioxidant (DPPH, FRAP) and neuroprotective activities (AChE inhibition, ThT binding, MTT assay, ROS reduction, MMP restoration, and AD-related gene expression via qRT-PCR) were assessed using SHSY-5Y neuroblastoma cells. Results: The extract revealed the existence of flavonoids, phenols, and other bioactive substances. In vitro assays demonstrated strong antioxidant and AChE-inhibitory activities, while the ThT binding assay showed protection against amyloid-β aggregation. The extract exhibited no cytotoxicity in SHSY-5Y cells, even at a concentration of 500 μg/mL, whereas Aβ1–42 at 20 μM induced significant cytotoxicity. Co-treatment with Aβ1–42 (10 μM and 20 μM) and the extract improved cell viability (˃50%) and reduced ROS levels. Additionally, the extract restored mitochondrial membrane potential in Aβ1–42 treated cells, highlighting its role in preserving mitochondrial function. Conclusions: These findings suggest that A. marmelos fruits serve as a powerful source of natural antioxidants, AChE inhibitors, and anti-amyloidogenic agents, positioning them as a compelling option for AD treatment. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neurodegeneration Disorders)
Show Figures

Figure 1

17 pages, 3202 KiB  
Article
Ruthenium(II)–Arene Complexes with a 2,2′-Bipyridine Ligand as Anti-Aβ Agents
by Ryan M. Hacker, Jacob J. Smith, David C. Platt, William W. Brennessel, Marjorie A. Jones and Michael I. Webb
Biomolecules 2025, 15(4), 475; https://doi.org/10.3390/biom15040475 - 25 Mar 2025
Viewed by 1088
Abstract
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several [...] Read more.
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several ruthenium–arene complexes containing 2,2-bipyridine (bpy) ligands were prepared and evaluated for their respective ability to modulate the aggregation of Aβ. This was carried out using the three sequential methods of thioflavin T (ThT) fluorescence, dynamic ligand scattering (DLS), and transmission electron microscopy (TEM). Overall, it was observed that RuBA, the complex with a 4,4-diamino-2,2-bipyridine ligand, had the greatest impact on Aβ aggregation. Further evaluation of the complexes was performed to determine their relative affinity for serum albumin and biocompatibility towards two neuronal cell lines. Ultimately, RuBA outperformed the other Ru complexes, where the structure–activity relationship codified the importance of the amino groups on the bpy for anti-Aβ activity. Full article
(This article belongs to the Special Issue Amyloid-Beta and Alzheimer’s Disease)
Show Figures

Graphical abstract

12 pages, 2257 KiB  
Review
Exploring Quinazoline as a Scaffold for Developing Novel Therapeutics in Alzheimer’s Disease
by Qais Abualassal, Zead Abudayeh, Ala’ Sirhan and Abdulrahman Mkia
Molecules 2025, 30(3), 555; https://doi.org/10.3390/molecules30030555 - 26 Jan 2025
Cited by 1 | Viewed by 2001
Abstract
Quinazoline, a privileged scaffold in medicinal chemistry, offers promising potential in the synthesis of anti-Alzheimer’s disease (AD) drugs. This heterocyclic compound, characterized by its fused benzene and pyrimidine rings, enables the design of multifunctional agents targeting AD pathology. The drug-like aspects and pharmaceutical [...] Read more.
Quinazoline, a privileged scaffold in medicinal chemistry, offers promising potential in the synthesis of anti-Alzheimer’s disease (AD) drugs. This heterocyclic compound, characterized by its fused benzene and pyrimidine rings, enables the design of multifunctional agents targeting AD pathology. The drug-like aspects and pharmaceutical features of quinazoline derivatives have the potential to give rise to various therapeutic drugs. AD is a progressive neurodegenerative condition marked by memory decline, cognitive deterioration, and language disorders. Given its complexity and multifaceted nature, there is a pressing need to discover multi-target drugs to effectively address this debilitating disorder. A comprehensive literature review has demonstrated that quinazoline derivatives exhibit a wide range of therapeutic potential for AD. These compounds function as inhibitors of cholinesterases, β-amyloid aggregation, oxidative stress, and tau protein, among other protective effects. Here, we highlight the most significant and recent research on quinazoline-based anti-AD agents, aiming to support the development and discovery of novel treatments for AD. Full article
Show Figures

Figure 1

18 pages, 4439 KiB  
Article
Chelating Properties of N6O-Donors Toward Cu(II) Ions: Speciation in Aqueous Environments and Catalytic Activity of the Dinuclear Complexes
by Andrea Cendron, Martina Chianese, Kamil Zarzycki, Paolo Ruzza, Claudia Honisch, Justyna Brasuń and Mauro Carraro
Molecules 2024, 29(23), 5708; https://doi.org/10.3390/molecules29235708 - 3 Dec 2024
Viewed by 1089
Abstract
This study focuses on the use of three isostructural N6O donor ligands, specifically known to form complexes with copper ions, to chelate Cu(II) from aqueous solutions. The corresponding Cu(II) complexes feature a dinuclear copper core mimicking the active site of natural [...] Read more.
This study focuses on the use of three isostructural N6O donor ligands, specifically known to form complexes with copper ions, to chelate Cu(II) from aqueous solutions. The corresponding Cu(II) complexes feature a dinuclear copper core mimicking the active site of natural superoxide dismutase (SOD) enzymes while also creating a coordination environment favorable for catalase (CAT) activity, being thus appealing as catalytic antioxidant systems. Given the critical role of copper dysregulation in the pathophysiology of Alzheimer’s disease (AD), these complexes may help mitigate the harmful effects of free Cu(II) ions: the goal is to transform copper’s reactive oxygen species (ROS)-generating properties into beneficial ROS-scavenging action. This study investigates the speciation, chelating efficiency, and metal selectivity of these ligands, as well as the antioxidant activity of the resulting complexes under aqueous and physiologically relevant conditions. Additionally, the ligands, equipped with functional groups for attaching targeting moieties, are conjugated with a small peptide that may act as an anti-aggregating agent of β-amyloid peptides, aiming to develop a multifunctional therapeutic strategy against Alzheimer’s disease. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe)
Show Figures

Graphical abstract

8 pages, 229 KiB  
Perspective
Therapeutic Challenges Derived from the Interaction Among Apolipoprotein E, Cholesterol, and Amyloid in Alzheimer’s Disease
by Manuel Menendez-Gonzalez
Int. J. Mol. Sci. 2024, 25(22), 12029; https://doi.org/10.3390/ijms252212029 - 8 Nov 2024
Cited by 2 | Viewed by 3035
Abstract
The isoform E4 of the Apolipoprotein E (ApoE) represents one of the strongest genetic risk factors for late-onset Alzheimer’s disease (AD). ApoE has key roles in cholesterol transport and amyloid-β (Aβ) metabolism, which are both central to AD pathogenesis. The E4 isoform has [...] Read more.
The isoform E4 of the Apolipoprotein E (ApoE) represents one of the strongest genetic risk factors for late-onset Alzheimer’s disease (AD). ApoE has key roles in cholesterol transport and amyloid-β (Aβ) metabolism, which are both central to AD pathogenesis. The E4 isoform has been implicated in reduced cholesterol homeostasis, increased Aβ aggregation, and heightened tau phosphorylation, contributing to amyloid plaques and neurodegeneration. This manuscript examines the complex interactions among ApoE isoforms, cholesterol metabolism, and amyloid pathology. Moreover, the therapeutic challenges associated with lipid-lowering agents (e.g., statins, PCSK9 inhibitors), anti-amyloid immunotherapies, and anticoagulants are described, focusing on ApoE4 carriers. Decision-making challenges are discussed by analyzing the pros and cons of these therapies. Full article
(This article belongs to the Special Issue New Advances in Research on Alzheimer’s Disease: 2nd Edition)
18 pages, 4154 KiB  
Article
Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer’s Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation
by Kumju Youn and Mira Jun
Int. J. Mol. Sci. 2024, 25(19), 10507; https://doi.org/10.3390/ijms251910507 - 29 Sep 2024
Cited by 1 | Viewed by 1891
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer’s disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 [...] Read more.
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer’s disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood–brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6–90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD. Full article
(This article belongs to the Special Issue Phenolic Compounds in Human Diseases)
Show Figures

Figure 1

13 pages, 1159 KiB  
Article
Neuroprotective Effects of Phenolic Constituents from Drynariae Rhizoma
by Jin Sung Ahn, Chung Hyeon Lee, Xiang-Qian Liu, Kwang Woo Hwang, Mi Hyune Oh, So-Young Park and Wan Kyunn Whang
Pharmaceuticals 2024, 17(8), 1061; https://doi.org/10.3390/ph17081061 - 13 Aug 2024
Cited by 2 | Viewed by 1586
Abstract
This study aimed to provide scientific data on the anti-Alzheimer’s disease (AD) effects of phenolic compounds from Drynariae Rhizoma (DR) extract using a multi-component approach. Screening of DR extracts, fractions, and the ten phenolic compounds isolated from DR against the key AD-related enzymes [...] Read more.
This study aimed to provide scientific data on the anti-Alzheimer’s disease (AD) effects of phenolic compounds from Drynariae Rhizoma (DR) extract using a multi-component approach. Screening of DR extracts, fractions, and the ten phenolic compounds isolated from DR against the key AD-related enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and monoamine oxidase-B (MAO-B) confirmed their significant inhibitory activities. The DR extract was confirmed to have BACE1-inhibitory activity, and the ethyl acetate and butanol fractions were found to inhibit all AD-related enzymes, including BACE1, AChE, BChE, and MAO-B. Among the isolated phenolic compounds, compounds (2) caffeic acid 4-O-β-D-glucopyranoside, (6) kaempferol 3-O-rhamnoside 7-O-glucoside, (7) kaempferol 3-o-b-d-glucopyranoside-7-o-a-L-arabinofuranoside, (8) neoeriocitrin, (9) naringin, and (10) hesperidin significantly suppressed AD-related enzymes. Notably, compounds 2 and 8 reduced soluble Amyloid Precursor Protein β (sAPPβ) and β-secretase expression by over 45% at a concentration of 1.0 μM. In the thioflavin T assay, compounds 6 and 7 decreased Aβ aggregation by approximately 40% and 80%, respectively, and degraded preformed Aβ aggregates. This study provides robust evidence regarding the potential of DR as a natural therapeutic agent for AD, highlighting specific compounds that may contribute to its efficacy. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

20 pages, 823 KiB  
Article
Stepwise Structural Simplification of the Dihydroxyanthraquinone Moiety of a Multitarget Rhein-Based Anti-Alzheimer Lead to Improve Drug Metabolism and Pharmacokinetic Properties
by Caterina Pont, Anna Sampietro, F. Javier Pérez-Areales, Nunzia Cristiano, Agustí Albalat, Belén Pérez, Manuela Bartolini, Angela De Simone, Vincenza Andrisano, Marta Barenys, Elisabet Teixidó, Raimon Sabaté, M. Isabel Loza, José Brea and Diego Muñoz-Torrero
Pharmaceutics 2024, 16(8), 982; https://doi.org/10.3390/pharmaceutics16080982 - 25 Jul 2024
Viewed by 1566
Abstract
Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer’s disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful [...] Read more.
Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer’s disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful to hit targets with large binding cavities, but at the expense of suffering from suboptimal physicochemical/pharmacokinetic properties. Molecular size reduction by removal of superfluous structural elements while retaining the key pharmacophoric motifs may represent a compromise solution to achieve both multitargeting and favorable physicochemical/PK properties. Here, we report the stepwise structural simplification of the dihydroxyanthraquinone moiety of a rhein–huprine hybrid lead by hydroxy group removal—ring contraction—ring opening—ring removal, which has led to new analogs that retain or surpass the potency of the lead on its multiple AD targets while exhibiting more favorable drug metabolism and pharmacokinetic (DMPK) properties and safety profile. In particular, the most simplified acetophenone analog displays dual nanomolar inhibition of human acetylcholinesterase and butyrylcholinesterase (IC50 = 6 nM and 13 nM, respectively), moderately potent inhibition of human BACE-1 (48% inhibition at 15 µM) and Aβ42 and tau aggregation (73% and 68% inhibition, respectively, at 10 µM), favorable in vitro brain permeation, higher aqueous solubility (18 µM) and plasma stability (100/96/86% remaining in human/mouse/rat plasma after 6 h incubation), and lower acute toxicity in a model organism (zebrafish embryos; LC50 >> 100 µM) than the initial lead, thereby confirming the successful lead optimization by structural simplification. Full article
Show Figures

Figure 1

22 pages, 1800 KiB  
Article
Sorghum Grain Polyphenolic Extracts Demonstrate Neuroprotective Effects Related to Alzheimer’s Disease in Cellular Assays
by Nasim Rezaee, Eugene Hone, Hamid R. Sohrabi, Stuart Johnson, Leizhou Zhong, Prakhar Chatur, Stuart Gunzburg, Ralph N. Martins and W. M. A. D. Binosha Fernando
Foods 2024, 13(11), 1716; https://doi.org/10.3390/foods13111716 - 30 May 2024
Cited by 3 | Viewed by 2096
Abstract
Sorghum grain contains high levels and a diverse profile of polyphenols (PPs), which are antioxidants known to reduce oxidative stress when consumed in the diet. Oxidative stress leading to amyloid-β (Aβ) aggregation, neurotoxicity, and mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer’s [...] Read more.
Sorghum grain contains high levels and a diverse profile of polyphenols (PPs), which are antioxidants known to reduce oxidative stress when consumed in the diet. Oxidative stress leading to amyloid-β (Aβ) aggregation, neurotoxicity, and mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer’s disease (AD). Thus, PPs have gained attention as possible therapeutic agents for combating AD. This study aimed to (a) quantify the phenolic compounds (PP) and antioxidant capacities in extracts from six different varieties of sorghum grain and (b) investigate whether these PP extracts exhibit any protective effects on human neuroblastoma (BE(2)-M17) cells against Aβ- and tau-induced toxicity, Aβ aggregation, mitochondrial dysfunction, and reactive oxygen species (ROS) induced by Aβ and tert-butyl hydroperoxide (TBHP). PP and antioxidant capacity were quantified using chemical assays. Aβ- and tau-induced toxicity was determined using the 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTS) assay. The thioflavin T (Th-T) assay assessed anti-Aβ aggregation. The dichlorodihydrofluorescein diacetate (DCFDA) assay determined the levels of general ROS and the MitoSOX assay determined the levels of mitochondrial superoxide. Sorghum varieties Shawaya short black-1 and IS1311C possessed the highest levels of total phenolics, total flavonoids, and antioxidant capacity, and sorghum varieties differed significantly in their profile of individual PPs. All extracts significantly increased cell viability compared to the control (minus extract). Variety QL33 (at 2000 µg sorghum flour equivalents/mL) showed the strongest protective effect with a 28% reduction in Aβ-toxicity cell death. The extracts of all sorghum varieties significantly reduced Aβ aggregation. All extracts except that from variety B923296 demonstrated a significant (p ≤ 0.05) downregulation of Aβ-induced and TBHP-induced ROS and mitochondrial superoxide relative to the control (minus extract) in a dose- and variety-dependent manner. We have demonstrated for the first time that sorghum polyphenolic extracts show promising neuroprotective effects against AD, which indicates the potential of sorghum foods to exert a similar beneficial property in the human diet. However, further analysis in other cellular models and in vivo is needed to confirm these effects. Full article
Show Figures

Figure 1

15 pages, 4912 KiB  
Article
Protection of Si Nanowires against Aβ Toxicity by the Inhibition of Aβ Aggregation
by Xuechun Zhao, Chenye Mou, Jiayi Xu, Wei Cui, Yijing Shi, Yangzhe Wang, Tian Luo, Wei Guo, Jichun Ye and Wanghua Chen
Molecules 2024, 29(9), 1980; https://doi.org/10.3390/molecules29091980 - 25 Apr 2024
Viewed by 1479
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aβ) plaques in the brain. Aβ1–42 is the main component of Aβ plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aβ) plaques in the brain. Aβ1–42 is the main component of Aβ plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aβ aggregation. In this study, we employed the vapor–liquid–solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aβ1–42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aβ1–42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aβ neuroprotective effect by inhibiting Aβ aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of β-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aβ1–42. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 4520 KiB  
Article
A Novel Drosophila Model of Alzheimer’s Disease to Study Aβ Proteotoxicity in the Digestive Tract
by Greta Elovsson, Therése Klingstedt, Mikaela Brown, K. Peter R. Nilsson and Ann-Christin Brorsson
Int. J. Mol. Sci. 2024, 25(4), 2105; https://doi.org/10.3390/ijms25042105 - 9 Feb 2024
Cited by 3 | Viewed by 3300
Abstract
Amyloid-β (Aβ) proteotoxicity is associated with Alzheimer’s disease (AD) and is caused by protein aggregation, resulting in neuronal damage in the brain. In the search for novel treatments, Drosophila melanogaster has been extensively used to screen for anti-Aβ proteotoxic agents in studies where toxic [...] Read more.
Amyloid-β (Aβ) proteotoxicity is associated with Alzheimer’s disease (AD) and is caused by protein aggregation, resulting in neuronal damage in the brain. In the search for novel treatments, Drosophila melanogaster has been extensively used to screen for anti-Aβ proteotoxic agents in studies where toxic Aβ peptides are expressed in the fly brain. Since drug molecules often are administered orally there is a risk that they fail to reach the brain, due to their inability to cross the brain barrier. To circumvent this problem, we have designed a novel Drosophila model that expresses the Aβ peptides in the digestive tract. In addition, a built-in apoptotic sensor provides a fluorescent signal from the green fluorescent protein as a response to caspase activity. We found that expressing different variants of Aβ1–42 resulted in proteotoxic phenotypes such as reduced longevity, aggregate deposition, and the presence of apoptotic cells. Taken together, this gut-based Aβ-expressing fly model can be used to study the mechanisms behind Aβ proteotoxicity and to identify different substances that can modify Aβ proteotoxicity. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine)
Show Figures

Figure 1

13 pages, 6359 KiB  
Article
The Inhibition Effect of Epigallocatechin-3-Gallate on the Co-Aggregation of Amyloid-β and Human Islet Amyloid Polypeptide Revealed by Replica Exchange Molecular Dynamics Simulations
by Xuhua Li, Yu Zhang, Zhiwei Yang, Shengli Zhang and Lei Zhang
Int. J. Mol. Sci. 2024, 25(3), 1636; https://doi.org/10.3390/ijms25031636 - 29 Jan 2024
Cited by 3 | Viewed by 2344
Abstract
Alzheimer’s disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the [...] Read more.
Alzheimer’s disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the fundamental molecular mechanism underlying their pathological association. The green tea extract epigallocatechin-3-gallate (EGCG) has been extensively demonstrated to inhibit the amyloid aggregation of Aβ and hIAPP proteins. However, its potential role in amyloid co-aggregation has not been thoroughly investigated. In this study, we employed the enhanced-sampling replica exchange molecular dynamics simulation (REMD) method to investigate the effect of EGCG on the co-aggregation of Aβ and hIAPP. We found that EGCG molecules substantially diminish the β-sheet structures within the amyloid core regions of Aβ and hIAPP in their co-aggregates. Through hydrogen-bond, π–π and cation–π interactions targeting polar and aromatic residues of Aβ and hIAPP, EGCG effectively attenuates both inter-chain and intra-chain interactions within the co-aggregates. All these findings indicated that EGCG can effectively inhibit the co-aggregation of Aβ and hIAPP. Our study expands the potential applications of EGCG as an anti-amyloidosis agent and provides therapeutic options for the pathological association of amyloid misfolding disorders. Full article
Show Figures

Figure 1

19 pages, 2868 KiB  
Article
Neuroprotective Effects of Davallia mariesii Roots and Its Active Constituents on Scopolamine-Induced Memory Impairment in In Vivo and In Vitro Studies
by Chung Hyeon Lee, Min Sung Ko, Ye Seul Kim, Ju Eon Ham, Jee Yeon Choi, Kwang Woo Hwang and So-Young Park
Pharmaceuticals 2023, 16(11), 1606; https://doi.org/10.3390/ph16111606 - 14 Nov 2023
Cited by 3 | Viewed by 1968
Abstract
Beta-amyloid (Aβ) proteins, major contributors to Alzheimer’s disease (AD), are overproduced and accumulate as oligomers and fibrils. These protein accumulations lead to significant changes in neuronal structure and function, ultimately resulting in the neuronal cell death observed in AD. Consequently, substances that can [...] Read more.
Beta-amyloid (Aβ) proteins, major contributors to Alzheimer’s disease (AD), are overproduced and accumulate as oligomers and fibrils. These protein accumulations lead to significant changes in neuronal structure and function, ultimately resulting in the neuronal cell death observed in AD. Consequently, substances that can inhibit Aβ production and/or accumulation are of great interest for AD prevention and treatment. In the course of an ongoing search for natural products, the roots of Davallia mariesii T. Moore ex Baker were selected as a promising candidate with anti-amyloidogenic effects. The ethanol extract of D. mariesii roots, along with its active constituents, not only markedly reduced Aβ production by decreasing β-secretase expression in APP–CHO cells (Chinese hamster ovary cells which stably express amyloid precursor proteins), but also exhibited the ability to diminish Aβ aggregation while enhancing the disaggregation of Aβ aggregates, as determined through the Thioflavin T (Th T) assay. Furthermore, in an in vivo study, the extract of D. mariesii roots showed potential (a tendency) for mitigating scopolamine-induced memory impairment, as evidenced by results from the Morris water maze test and the passive avoidance test, which correlated with reduced Aβ deposition. Additionally, the levels of acetylcholine were significantly elevated, and acetylcholinesterase levels significantly decreased in the brains of mice (whole brains). The treatment with the extract of D. mariesii roots also led to upregulated brain-derived neurotrophic factor (BDNF) and phospho-cAMP response element-binding protein (p-CREB) in the hippocampal region. These findings suggest that the extract of D. mariesii roots, along with its active constituents, may offer neuroprotective effects against AD. Consequently, there is potential for the development of the extract of D. mariesii roots and its active constituents as effective therapeutic or preventative agents for AD. Full article
Show Figures

Figure 1

27 pages, 5529 KiB  
Article
Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer’s Disease
by Guoxing Wang, Jiyu Du, Jie Ma, Peipei Liu, Siqi Xing, Jucheng Xia, Shuanghong Dong and Zeng Li
Pharmaceuticals 2023, 16(10), 1468; https://doi.org/10.3390/ph16101468 - 16 Oct 2023
Cited by 2 | Viewed by 1774
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective [...] Read more.
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood–brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD. Full article
Show Figures

Graphical abstract

15 pages, 4102 KiB  
Article
Mixed Medicinal Mushroom Mycelia Attenuates Alzheimer’s Disease Pathologies In Vitro and In Vivo
by Ji Heun Jeong, Geum-Lan Hong, Young Gil Jeong, Nam Seob Lee, Do Kyung Kim, Jong Yea Park, Mina Park, Hyun Min Kim, Ya El Kim, Yung Choon Yoo and Seung Yun Han
Curr. Issues Mol. Biol. 2023, 45(8), 6775-6789; https://doi.org/10.3390/cimb45080428 - 15 Aug 2023
Cited by 6 | Viewed by 2573
Abstract
Alzheimer’s disease (AD) is characterized by memory impairment and existence of amyloid-β (Aβ) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed [...] Read more.
Alzheimer’s disease (AD) is characterized by memory impairment and existence of amyloid-β (Aβ) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)—Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus—cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aβ aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aβ immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aβ immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aβ plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aβ plaque accumulation and neuroinflammation, by impeding Aβ-induced neurotoxicity. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics in Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop