Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = β-amyloid aggregation inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3161 KB  
Review
Oral Dysbiosis and Neuroinflammation: Implications for Alzheimer’s, Parkinson’s and Mood Disorders
by Laura Carolina Zavala-Medina, Joan Sebastian Salas-Leiva, Carlos Esteban Villegas-Mercado, Juan Antonio Arreguín-Cano, Uriel Soto-Barreras, Sandra Aidé Santana-Delgado, Ana Delia Larrinua-Pacheco, María Fernanda García-Vega and Mercedes Bermúdez
Microorganisms 2026, 14(1), 143; https://doi.org/10.3390/microorganisms14010143 - 8 Jan 2026
Viewed by 506
Abstract
Background: Growing evidence indicates that oral microbiome dysbiosis contributes to systemic inflammation, immune activation, and neural dysfunction. These processes may influence the onset and progression of major neuropsychiatric and neurodegenerative disorders. This review integrates clinical, epidemiological, and mechanistic findings linking periodontal pathogens and [...] Read more.
Background: Growing evidence indicates that oral microbiome dysbiosis contributes to systemic inflammation, immune activation, and neural dysfunction. These processes may influence the onset and progression of major neuropsychiatric and neurodegenerative disorders. This review integrates clinical, epidemiological, and mechanistic findings linking periodontal pathogens and oral microbial imbalance to Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, and anxiety. Methods: A narrative review was conducted using PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar to identify recent studies examining alterations in the oral microbiota, microbial translocation, systemic inflammatory responses, blood–brain barrier disruption, cytokine signaling, and neural pathways implicated in brain disorders. Results: Evidence from human and experimental models demonstrates that oral pathogens, particularly Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, can disseminate systemically, alter immune tone, and affect neural tissues. Their virulence factors promote microglial activation, cytokine release (IL-1β, IL-6, TNF-α), amyloid-β aggregation, and α-synuclein misfolding. Epidemiological studies show associations between oral dysbiosis and cognitive impairment, motor symptoms in PD, and alterations in mood-related taxa linked to stress hormone profiles. Immunometabolic pathways, HPA-axis activation, and the oral–gut–brain axis further integrate these findings into a shared neuroinflammatory framework. Conclusions: Oral dysbiosis emerges as a modifiable contributor to neuroinflammation and brain health. Periodontal therapy, probiotics, prebiotics, synbiotics, and targeted inhibitors of bacterial virulence factors represent promising strategies to reduce systemic and neural inflammation. Longitudinal human studies and standardized microbiome methodologies are still needed to clarify causality and evaluate whether restoring oral microbial balance can modify the course of neuropsychiatric and neurodegenerative disorders. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

42 pages, 6181 KB  
Article
1-Azinyl-1′-Alkenylferrocenes with Anticholinesterase, Antioxidant, and Antiaggregating Activities as Multifunctional Agents for Potential Treatment of Alzheimer’s Disease
by Galina F. Makhaeva, Irina A. Utepova, Elena V. Rudakova, Nadezhda V. Kovaleva, Natalia P. Boltneva, Elena Yu. Zyryanova, Alexandra A. Musikhina, Vladimir F. Lazarev, Snezhana A. Vladimirova, Irina V. Guzhova, Ilya N. Ganebnykh, Tatiana Y. Astakhova, Elena N. Timokhina, Oleg N. Chupakhin, Valery N. Charushin and Rudy J. Richardson
Pharmaceuticals 2025, 18(12), 1862; https://doi.org/10.3390/ph18121862 - 5 Dec 2025
Viewed by 627
Abstract
Background/Objectives: This study focused on synthesizing novel alkenyl derivatives of azinylferrocenes and evaluating their potential as Alzheimer’s disease (AD) therapeutics. Methods: 1-Azinyl-1′-acetylferrocenes were obtained by regioselective acetylation of azinylferrocenes, followed by the Wittig reaction or reduction of 1-azinyl-1′-acetylferrocenes and subsequent dehydration [...] Read more.
Background/Objectives: This study focused on synthesizing novel alkenyl derivatives of azinylferrocenes and evaluating their potential as Alzheimer’s disease (AD) therapeutics. Methods: 1-Azinyl-1′-acetylferrocenes were obtained by regioselective acetylation of azinylferrocenes, followed by the Wittig reaction or reduction of 1-azinyl-1′-acetylferrocenes and subsequent dehydration of the resulting alcohols. The synthesized compounds underwent the following biological activity testing relevant to AD: inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and off-target carboxylesterase (CES); antioxidant capacity (ABTS and FRAP assays); inhibition of Aβ42 self-aggregation (thioflavin method); blocking AChE-induced β-amyloid aggregation (propidium displacement); and cytotoxicity in SH-SY5Y and MSC-Neu cells (MTT assay). Results: Quinoline and bipyridine derivatives demonstrated effective cholinesterase inhibition, especially quinoline 7b (AChE IC50 3.32 μM; BChE IC50 3.68 μM), while acridine derivatives were poor inhibitors. Quantum chemical (QC) calculations predicted that acridine derivatives were especially prone to form stable dimers. Molecular docking into protein targets generated by an AlphaFold3 reproduction code showed that these dimers were too bulky to access enzyme active sites, yet they could bind to protein surfaces to inhibit Aβ42 self-aggregation and displace propidium from the AChE peripheral anionic site. All compounds showed high antioxidant activity in ABTS and FRAP assays, with quinoline derivatives being 2–4 times more potent than Trolox. QC calculations supported these findings. Quinoline and bipyridine derivatives also exhibited low cytotoxicity and scant CES inhibition. Conclusions: Overall, the synthesized ferrocenes, particularly the quinoline and bipyridine derivatives, appear promising for further research as multifunctional therapeutic agents targeting AD due to their anticholinesterase, antiaggregating, and antioxidant activities combined with low toxicity. Full article
Show Figures

Graphical abstract

39 pages, 3412 KB  
Review
Alpha-Synuclein Neurobiology in Parkinson’s Disease: A Comprehensive Review of Its Role, Mechanisms, and Therapeutic Perspectives
by Jamir Pitton Rissardo, Andrew McGarry, Yiwen Shi, Ana Leticia Fornari Caprara and George T. Kannarkat
Brain Sci. 2025, 15(12), 1260; https://doi.org/10.3390/brainsci15121260 - 25 Nov 2025
Viewed by 3338
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and the presence of intracellular α-synuclein (αSyn) aggregates known as Lewy bodies (LB). αSyn, a presynaptic protein, is believed to play a crucial [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and the presence of intracellular α-synuclein (αSyn) aggregates known as Lewy bodies (LB). αSyn, a presynaptic protein, is believed to play a crucial role in synaptic function, neurotransmitter release, and neuronal plasticity. However, its misfolding and aggregation are thought to be central to PD pathogenesis. This review provides a comprehensive analysis of αSyn’s role in PD, exploring its normal physiological functions, pathological mechanisms, and therapeutic potential. The pathological transformation of αSyn involves structural alterations that promote oligomerization and fibrillization, leading to toxic gain-of-function effects. These aggregates disrupt cellular homeostasis through mechanisms including mitochondrial dysfunction, oxidative stress, lysosomal impairment, and endoplasmic reticulum stress. Furthermore, pathogenic αSyn is thought to exacerbate neurodegeneration via prion-like spread along interconnected neuronal circuits. Emerging evidence highlights the frequent co-occurrence of other proteinopathies, such as tau and amyloid-β, which may synergistically accelerate disease progression. Targeting αSyn has emerged as a potential therapeutic strategy. Approaches such as immunotherapy, small-molecule inhibitors, gene silencing, and modulation of protein degradation pathways (e.g., autophagy and proteasomal systems) are actively being explored. Additionally, lifestyle-based interventions, particularly exercise, have shown neuroprotective effects, potentially mediated by irisin—a myokine implicated in protein clearance and synaptic resilience—underscoring the importance of multimodal strategies in PD management. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

23 pages, 3985 KB  
Review
Polyoxometalates’ Progress for the Treatment of Alzheimer’s Disease
by Manuel Aureliano, João Mateus and David Manjua Rijo
BioChem 2025, 5(4), 41; https://doi.org/10.3390/biochem5040041 - 20 Nov 2025
Cited by 1 | Viewed by 1105
Abstract
Alzheimer’s disease (AD) signifies a devastating impact on the quality of life of patients and their families. At a biomolecular level, AD is characterized by the deposition of extracellular plaques of β-amyloid (Aβ), affecting language, spatial navigation, recognition abilities and memory. Among the [...] Read more.
Alzheimer’s disease (AD) signifies a devastating impact on the quality of life of patients and their families. At a biomolecular level, AD is characterized by the deposition of extracellular plaques of β-amyloid (Aβ), affecting language, spatial navigation, recognition abilities and memory. Among the selected 30 articles about polyoxometalates (POMs) and AD published from 2011 to 2025, pure POMs, hybrid POMs and POM nanoparticles can be found. The majority of POMs are polyoxotungstates (62%), the Keggin-type SiW11O39 being the most studied in AD. The main effect described is the inhibition of Aβ aggregates. Other effects include reversing the neurotoxicity induced by Aβ aggregates, decreasing ROS production and neuroinflammation, restoring memory and sequestering Zn2+ and Cu2+, among others, features that are well known to be associated with the pathology of AD. POMs have also shown the ability to induce the disaggregation of Aβ fibrils, particularly after irradiation, and to inhibit acetylcholinesterase activity at an nM range. Putting it all together, this review highlights a predominant trend in the exploration of POMs to act directly at the level of the formation and/or disaggregation of Aβ aggregates in the treatment of AD. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Graphical abstract

35 pages, 8589 KB  
Review
The Selectivity of Butyrylcholinesterase Inhibitors Revisited
by Michael D. Gambardella, Yigui Wang and Jiongdong Pang
Molecules 2025, 30(21), 4201; https://doi.org/10.3390/molecules30214201 - 27 Oct 2025
Cited by 1 | Viewed by 1483
Abstract
Acetylcholinesterase (AChE) inhibitors are the primary target for single-molecule anti-Alzheimer’s disease (AD) therapeutics. Though AChE has historically been the focus of investigation for small-molecule inhibitors, interest in another cholinergic enzyme, butyrylcholinesterase (BChE), has grown in recent years. Attention stems from BChE’s role in [...] Read more.
Acetylcholinesterase (AChE) inhibitors are the primary target for single-molecule anti-Alzheimer’s disease (AD) therapeutics. Though AChE has historically been the focus of investigation for small-molecule inhibitors, interest in another cholinergic enzyme, butyrylcholinesterase (BChE), has grown in recent years. Attention stems from BChE’s role in β-amyloid (Aβ) protein aggregation and an increase in BChE concentration during the late stages of AD, where a decrease in AChE concentration is also observed. Currently, five FDA-approved drugs are on the market for inhibiting AChE, though no BChE-selective drugs have been approved so far. In this review, we focus on newly identified BChE selective inhibitors and present the ideas behind these discoveries. Full article
Show Figures

Figure 1

25 pages, 1071 KB  
Review
Therapeutic Advances in Targeting the Amyloid-β Pathway for Alzheimer’s Disease
by Beiyu Zhang, Yunan Li, Huan Li, Xinai Shen and Zheying Zhu
Brain Sci. 2025, 15(10), 1101; https://doi.org/10.3390/brainsci15101101 - 13 Oct 2025
Viewed by 2614
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions aiming to reduce Aβ production, aggregation, or downstream toxicity. This review first outlines the historical development of the Aβ hypothesis and the two major APP processing pathways (α-cleavage and β-cleavage), highlighting the role of biomarkers in early diagnosis, patient stratification, and regulatory approval. We then summarize the development and clinical outcomes of anti-Aβ small-molecule drugs, including β-secretase inhibitors, γ-secretase modulators, Aβ aggregation inhibitors, receptor/synapse modulators, and metabolic or antioxidant modalities. We further review the progression of biologic therapies, with a particular focus on monoclonal antibodies, vaccines, and emerging gene-silencing strategies, such as small interfering RNA (siRNA) and antisense oligonucleotides. Finally, we discuss future perspectives, including next-generation biologics, multi-target approaches, optimized delivery platforms, and early-prevention strategies. Collectively, these efforts underscore both the challenges and opportunities in translating anti-Aβ therapies into meaningful clinical benefits for patients with AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 3102 KB  
Article
Synaptic Plasticity-Enhancing and Cognitive-Improving Effects of Standardized Ethanol Extract of Perilla frutescens var. acuta in a Scopolamine-Induced Mouse Model
by Jihye Lee, Eunhong Lee, Hyunji Kwon, Somin Moon, Ho Jung Bae, Joon-Ho Hwang, Gun Hee Cho, Haram Kong, Mi-Houn Park, Sung-Kyu Kim, Dong Hyun Kim and Ji Wook Jung
Int. J. Mol. Sci. 2025, 26(20), 9925; https://doi.org/10.3390/ijms26209925 - 12 Oct 2025
Cited by 1 | Viewed by 1024
Abstract
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts [...] Read more.
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts additional cognitive benefits independent of Aβ pathology remained unclear. Here, we aimed to evaluate the effects of PE on synaptic plasticity and learning and memory functions. Male ICR mice were used, and cognitive impairment was induced by scopolamine administration. PE was orally administered at doses determined from previous studies, and cognitive performance was assessed using the passive avoidance, Y-maze, and Morris water maze tests. In parallel, hippocampal slices were employed to examine the effects of PE on synaptic plasticity. PE (100 and 300 μg/mL) significantly enhanced long-term potentiation (LTP) in a concentration-dependent manner without altering basal synaptic transmission. This facilitation of LTP was blocked by scopolamine (1 μM), a muscarinic acetylcholine receptor (mAChR) antagonist, and IEM-1460 (50 μM), a calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) inhibitor, indicating the involvement of mAChR and CP-AMPAR pathways. In vivo, PE (100, 250, and 500 mg/kg) treatment improved memory performance across all behavioral tasks and upregulated hippocampal synaptic proteins including GluN2B, PSD-95, and CaMKII. Collectively, these results demonstrate that PE ameliorates scopolamine (1 mg/kg)-induced cognitive impairment by enhancing synaptic plasticity, likely through modulation of mAChR, CP-AMPAR, and NMDA receptor signaling. These findings highlight the therapeutic potential of PE for memory deficits associated with cholinergic dysfunction. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 9662 KB  
Article
Modeling Synucleinopathy Using hESC-Derived Cerebral Organoids
by So Jin Kim, Won Hee Jung, Mu Seog Choe, Ye Seong Jeon and Min Young Lee
Cells 2025, 14(18), 1436; https://doi.org/10.3390/cells14181436 - 15 Sep 2025
Viewed by 1043
Abstract
Animal and cellular models harboring SNCA gene mutations have been instrumental in synucleinopathy, but faithful human brain models remain limited. Here, we report the development of a human cerebral organoid (CO) model of synucleinopathy carrying the Ala53Thr mutation in SNCA (SNCAA53T [...] Read more.
Animal and cellular models harboring SNCA gene mutations have been instrumental in synucleinopathy, but faithful human brain models remain limited. Here, we report the development of a human cerebral organoid (CO) model of synucleinopathy carrying the Ala53Thr mutation in SNCA (SNCAA53T). Using a human embryonic stem cell (hESC) line overexpressing SNCAA53T (A53T hESC line), we generated COs (A53T COs) that recapitulate hallmark features of synucleinopathy. These A53T COs exhibited elevated α-synuclein (α-Syn) expression, the increased phosphorylation of α-Syn, and Lewy body-like aggregations. Notably, we also observed the increased expression of phosphorylated tau and neurofibrillary tangle-like silver deposits, although amyloid β expression and accumulation remained unchanged. To evaluate the utility of this model in drug screening, we treated A53T COs with synuclean D (SynD), an inhibitor of α-Syn aggregation, which significantly reduced both α-Syn and tau phosphorylation without affecting total α-Syn levels. Together, our findings establish a robust hESC-derived synucleinopathy CO model harboring the SNCAA53T mutation, demonstrating its potential as a valuable tool for therapeutic drug screening. Full article
(This article belongs to the Special Issue Brain Organoids for Disease Modeling)
Show Figures

Figure 1

18 pages, 930 KB  
Review
Acetylcholinesterase as a Multifunctional Target in Amyloid-Driven Neurodegeneration: From Dual-Site Inhibitors to Anti-Agregation Strategies
by Weronika Grabowska, Michal Bijak, Rafał Szelenberger, Leslaw Gorniak, Marcin Podogrocki, Piotr Harmata and Natalia Cichon
Int. J. Mol. Sci. 2025, 26(17), 8726; https://doi.org/10.3390/ijms26178726 - 7 Sep 2025
Cited by 4 | Viewed by 3589
Abstract
Acetylcholinesterase (AChE) has emerged not only as a cholinergic enzyme but also as a modulator of β-amyloid (Aβ) aggregation via its peripheral anionic site (PAS), making it a dual-purpose target in Alzheimer’s disease. While classical AChE inhibitors provide symptomatic relief, they lack efficacy [...] Read more.
Acetylcholinesterase (AChE) has emerged not only as a cholinergic enzyme but also as a modulator of β-amyloid (Aβ) aggregation via its peripheral anionic site (PAS), making it a dual-purpose target in Alzheimer’s disease. While classical AChE inhibitors provide symptomatic relief, they lack efficacy against the amyloidogenic cascade. This review highlights recent advances in multifunctional AChE pharmacophores that inhibit enzymatic activity while simultaneously interfering with Aβ aggregation, oxidative stress, metal dyshomeostasis, and neuroinflammation. Particular emphasis is placed on dual-site inhibitors targeting both catalytic and peripheral domains, multi-target-directed ligands (MTDLs) acting on multiple neurodegenerative pathways, and metal-chelating hybrids that address redox-active metal ions promoting Aβ fibrillization. We also discuss enabling technologies such as AI-assisted drug design, high-resolution structural tools, and human induced pluripotent stem cell (iPSC)-derived neuronal models that support physiologically relevant validation. These insights reflect a paradigm shift towards disease-modifying therapies that bridge molecular pharmacology and pathophysiological relevance. Full article
Show Figures

Figure 1

17 pages, 328 KB  
Review
Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease?
by Urszula Kochman, Hanna Sitka, Julia Kuźniar, Magdalena Czaja, Patrycja Kozubek, Jan Aleksander Beszłej and Jerzy Leszek
Cells 2025, 14(17), 1356; https://doi.org/10.3390/cells14171356 - 30 Aug 2025
Viewed by 1854
Abstract
Alzheimer’s disease (AD) is marked by the pathological aggregation of amyloid β (Aβ) and tau proteins. Emerging research reveals that these proteins undergo liquid–liquid phase separation (LLPS), forming biomolecular condensates that promote aggregation and neurotoxicity. These phase-separated structures reshape the intracellular environment, facilitating [...] Read more.
Alzheimer’s disease (AD) is marked by the pathological aggregation of amyloid β (Aβ) and tau proteins. Emerging research reveals that these proteins undergo liquid–liquid phase separation (LLPS), forming biomolecular condensates that promote aggregation and neurotoxicity. These phase-separated structures reshape the intracellular environment, facilitating protein misfolding and spreading. This review highlights recent advances in understanding the role of condensates in AD pathogenesis and explores novel therapeutic strategies targeting condensate dynamics. Promising approaches include small molecules that disrupt LLPS, epigenetic drugs influencing nuclear condensates, and compounds like DDL 920 and RI AG03 that modulate tau phase separation and neuroinflammation, respectively. Additionally, anti-inflammatory agents, such as nucleotide reverse transcriptase inhibitors (NRTIs), offer potential for upstream intervention. Targeting biomolecular condensates presents a next-generation strategy for AD treatment. Future research should focus on in vivo profiling of condensate composition, biomarker development, and the development of patient-specific therapies to enable early, disease-modifying interventions. Full article
Show Figures

Graphical abstract

42 pages, 31030 KB  
Article
Unlocking Therapeutic Potential of Novel Thieno-Oxazepine Hybrids as Multi-Target Inhibitors of AChE/BChE and Evaluation Against Alzheimer’s Disease: In Vivo, In Vitro, Histopathological, and Docking Studies
by Khulood H. Oudah, Mazin A. A. Najm, Triveena M. Ramsis, Maha A. Ebrahim, Nirvana A. Gohar, Karema Abu-Elfotuh, Ehsan Khedre Mohamed, Ahmed M. E. Hamdan, Amira M. Hamdan, Reema Almotairi, Shaimaa R. Abdelmohsen, Khaled Ragab Abdelhakim, Abdou Mohammed Ahmed Elsharkawy and Eman A. Fayed
Pharmaceuticals 2025, 18(8), 1214; https://doi.org/10.3390/ph18081214 - 17 Aug 2025
Cited by 3 | Viewed by 1595
Abstract
Background: Alzheimer’s disease (AD) is largely linked with oxidative stress, the accumulation of amyloid-β plaques, and hyperphosphorylated τ-protein aggregation. Alterations in dopaminergic and serotonergic neurotransmission have also been implicated in various AD-related symptoms. Methods: To explore new therapeutic agents, a [...] Read more.
Background: Alzheimer’s disease (AD) is largely linked with oxidative stress, the accumulation of amyloid-β plaques, and hyperphosphorylated τ-protein aggregation. Alterations in dopaminergic and serotonergic neurotransmission have also been implicated in various AD-related symptoms. Methods: To explore new therapeutic agents, a series of bicyclic and tricyclic thieno-oxazepine derivatives were synthesized as potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The resultant compounds were purified via HPLC and characterized using spectral analysis techniques. Histopathological examinations, other antioxidants, and anti-inflammatory biomarkers were evaluated, and in silico ADMET calculations were performed for synthetic hybrids. Molecular docking was utilized to validate the new drugs’ binding mechanisms. Results: The most powerful AChE inhibitors were 14 and 16, with respective values of IC50 equal to 0.39 and 0.76 µM. Derivative 15 demonstrated remarkable BChE-inhibitory efficacy, on par with tacrine, with IC50 values of 0.70 µM. Hybrids 13 and 15 showed greater selectivity towards BChE, despite substantial inhibition of AChE. Compounds 13 and 15 reduced escape latency and raised residence time, with almost equal activity to donepezil. Conclusions: According to these findings, the designed hybrids constitute multipotent lead compounds that could be used in the creation of novel anti-AD medications. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Modern Drug Development)
Show Figures

Graphical abstract

24 pages, 3712 KB  
Article
Elucidation of Artemisinin as a Potent GSK3β Inhibitor for Neurodegenerative Disorders via Machine Learning-Driven QSAR and Virtual Screening of Natural Compounds
by Hassan H. Alhassan, Malvi Surti, Mohd Adnan and Mitesh Patel
Pharmaceuticals 2025, 18(6), 826; https://doi.org/10.3390/ph18060826 - 31 May 2025
Viewed by 1408
Abstract
Background/Objectives: Glycogen synthase kinase-3 beta (GSK3β) is a key enzyme involved in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, contributing to tau hyperphosphorylation, amyloid-beta (Aβ) aggregation, and neuronal dysfunction. Methods: This study applied a machine learning-driven virtual screening approach to identify potent [...] Read more.
Background/Objectives: Glycogen synthase kinase-3 beta (GSK3β) is a key enzyme involved in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, contributing to tau hyperphosphorylation, amyloid-beta (Aβ) aggregation, and neuronal dysfunction. Methods: This study applied a machine learning-driven virtual screening approach to identify potent natural inhibitors of GSK3β. A dataset of 3092 natural compounds was analyzed using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), with feature selection focusing on key molecular descriptors, including lipophilicity (ALogP: −0.5 to 5.0), hydrogen bond acceptors (0–10), and McGowan volume (0.5–2.5). RF outperformed SVM and KNN, achieving the highest test accuracy (83.6%), specificity (87%), and lowest RMSE (0.3214). Results: Virtual screening using AutoDock Vina and molecular dynamics simulations (100 ns, GROMACS 2022) identified artemisinin as the top GSK3β inhibitor, with a binding affinity of −8.6 kcal/mol, interacting with key residues ASP200, CYS199, and LEU188. Dihydroartemisinin exhibited a binding affinity of −8.3 kcal/mol, reinforcing its neuroprotective potential. Pharmacokinetic predictions confirmed favorable drug-likeness (TPSA: 26.3–70.67 Å2) and non-toxicity. Conclusions: While these findings highlight artemisinin-based inhibitors as promising candidates, experimental validation and structural optimization are needed for clinical application. This study demonstrates the effectiveness of machine learning and computational screening in accelerating neurodegenerative drug discovery. Full article
Show Figures

Figure 1

26 pages, 2448 KB  
Review
Iron-Mediated Overexpression of Amyloid Precursor Protein via Iron Responsive mRNA in Alzheimer’s Disease
by Mateen A. Khan
Int. J. Mol. Sci. 2025, 26(11), 5283; https://doi.org/10.3390/ijms26115283 - 30 May 2025
Cited by 2 | Viewed by 2003
Abstract
Iron accumulation in the brain is widespread in Alzheimer’s disease (AD), the most common cause of dementia. According to numerous studies, too much iron triggers the development of neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaques, both of which accelerate the onset of AD. [...] Read more.
Iron accumulation in the brain is widespread in Alzheimer’s disease (AD), the most common cause of dementia. According to numerous studies, too much iron triggers the development of neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaques, both of which accelerate the onset of AD. Iron sequestration and storage were disrupted by high iron, and the pattern of interaction between iron regulatory proteins (IRPs) and iron-responsive elements (IREs) was altered. The 5′-untranslated regions (5′-UTRs) of their APP mRNA transcripts have an IRE stem-loop, which is where iron influx enhances the translation of the amyloid precursor protein (APP). Iron regulated APP expression via the release of the repressor interaction of APP mRNA with IRP1 by a pathway similar to the iron control translation of the ferritin mRNA by the IREs in their 5′-UTRs. This leads to an uncontrolled buildup of redox active Fe2+, which exacerbates neurotoxic oxidative stress and neuronal death. Fe2+ overload upregulates the APP expression and increases the cleavage of APP and the accumulation of Aβ in the brain. The level of APP and Aβ, and protein aggregates, can be downregulated by IRPs, but are upregulated in the presence of iron overload. Therefore, the inhibition of the IRE-modulated expression of APP or Fe2+ chelation offers therapeutic significance to AD. In this article, I discuss the structural and functional features of IRE in the 5′-UTR of APP mRNA in relation to the cellular Fe2+ level, and the link between iron and AD through the amyloid translational mechanism. Although there are currently no treatments for AD, a progressive neurodegenerative disease, there are a number of promising RNA inhibitor and Fe2+ chelating agent therapeutic candidates that have been discovered and are being validated in April 2025 clinical trials. Future studies are expected to further show the therapeutic efficacy of iron-chelating medications, which target the APP 5′-UTR and have the ability to lower APP translation and, consequently, Aβ levels. As a result, these molecules have a great deal of promise for the development of small-molecule RNA inhibitors for the treatment of AD. Full article
(This article belongs to the Special Issue Molecular Insight into Alzheimer’s Disease)
Show Figures

Figure 1

15 pages, 1998 KB  
Article
Rationally Designed Pentapeptide Analogs of Aβ19–23 Fragment as Potent Inhibitors of Aβ42 Aggregation
by Sachin B. Baravkar, Yan Lu, Qi Zhao, Hongying Peng, Weilie Zhou and Song Hong
Molecules 2025, 30(9), 2071; https://doi.org/10.3390/molecules30092071 - 7 May 2025
Viewed by 1222
Abstract
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, [...] Read more.
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, we report pentapeptides 14, based on the β-turn-inducing fragment Aβ19–23 (FFAED). The synthesis of peptides 14 was carried out using Fmoc/tBu-based solid-phase peptide synthesis technique, and it was found that pentapeptide 3 potently inhibit the aggregation propensity of Aβ42, when incubated with it at 37 °C for 48 h. The aggregation inhibition study was conducted using thioflavin T-based fluorescence assay and circular dichroism spectroscopy, and supported by transmission electron microscope imaging. The conformational change on the aggregation of Aβ42 and aggregation inhibition by peptides 14 was further evaluated using 1H–15N HSQC NMR spectroscopy. The results demonstrated that the most potent analog, peptide 3, effectively disrupts the aggregation process. This study is the first to demonstrate that an Aβ19–23 fragment mimic can disrupt the aggregation propensity of Aβ42. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

27 pages, 997 KB  
Review
The Role of Selected Flavonoids in Modulating Neuroinflammation in Alzheimer’s Disease: Mechanisms and Therapeutic Potential
by Joanna Kruszka, Jakub Martyński, Karolina Szewczyk-Golec, Alina Woźniak and Jarosław Nuszkiewicz
Brain Sci. 2025, 15(5), 485; https://doi.org/10.3390/brainsci15050485 - 5 May 2025
Cited by 9 | Viewed by 3607
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, amyloid-β (Aβ) deposition, tau hyperphosphorylation, oxidative stress, and chronic neuroinflammation. Growing evidence highlights neuroinflammation—driven by microglial activation and pro-inflammatory cytokine release—as a key contributor to AD pathogenesis and progression. In the [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, amyloid-β (Aβ) deposition, tau hyperphosphorylation, oxidative stress, and chronic neuroinflammation. Growing evidence highlights neuroinflammation—driven by microglial activation and pro-inflammatory cytokine release—as a key contributor to AD pathogenesis and progression. In the absence of effective disease-modifying therapies, attention has turned to natural compounds with multi-target potential. Flavonoids, a diverse class of plant-derived polyphenols, have demonstrated neuroprotective properties through antioxidant activity, modulation of neuroinflammatory pathways, and interference with both Aβ aggregation and tau pathology. This narrative review provides an integrative overview of current findings on the mechanisms of action of key flavonoids—such as quercetin, luteolin, and apigenin—in both preclinical and clinical models. Emphasis is placed on their effects on microglial polarization, oxidative stress reduction, mitochondrial support, and synaptic function enhancement. Moreover, flavonoids show synergistic potential when combined with standard pharmacotherapies, such as acetylcholinesterase inhibitors, and may offer broader cognitive benefits in patients with mild cognitive impairment (MCI). Despite these promising findings, significant challenges persist, including poor bioavailability, inter-individual variability, and limited long-term clinical data. This review identifies critical gaps in knowledge and outlines future directions, including targeted drug delivery systems, biomarker-guided personalization, and long-duration trials. Flavonoids thus emerge not only as promising neuroprotective agents but also as complementary candidates in the development of future multi-modal strategies for AD treatment. Full article
Show Figures

Figure 1

Back to TopTop