Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = α-herpesvirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2318 KiB  
Article
Extracellular Vesicles Released by Bovine Alphaherpesvirus 1-Infected A549 Cells May Limit Subsequent Infections of the Progeny Virus
by Yuanshan Luo, Hao Yang, Yike Huang, Renee V. Goreham, Xiuyan Ding and Liqian Zhu
Int. J. Mol. Sci. 2025, 26(13), 6181; https://doi.org/10.3390/ijms26136181 - 26 Jun 2025
Viewed by 444
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. [...] Read more.
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. Here, we found that extracellular vesicles (EVs) secreted by BoAHV-1-infected A549 cells (referred to as EDVs) contain 59 viral proteins, including both viral structure proteins (such as gC and gD) and viral regulatory proteins (such as bICP4 and bICP22), as identified via a proteomic analysis. These EDVs can bind to and enter target cells, inhibit viral particles binding to cells, and stimulate the production of IFN-α and IFN-β in A549 cells. When EDVs are inoculated into rabbits via either the conjunctival sacs or intravenously, they can be readily detected in neurons within the trigeminal ganglia (TG), where they reduce viral replication and promote the transcription of IFN-γ. Furthermore, incorporation of the known anti-herpesvirus drug Acyclovir (ACY) into the EDVs leads to synergistically enhanced antiviral efficacy. Collectively, the EDVs exhibit antiviral effects by blocking viral binding to target cells and stimulating the innate immune response, thereby leading to the failure of the serial passaging of viral progeny in these cells, and these EDVs may serve as a promising vector for delivering drugs targeting TG tissues for antiviral purposes. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

23 pages, 4464 KiB  
Article
Expression Profiles of lncRNAs and mRNAs in the Mouse Brain Infected with Pseudorabies Virus: A Bioinformatic Analysis
by Yanwei Li, Teng Tu, Yan Luo, Xueping Yao, Zexiao Yang and Yin Wang
Viruses 2025, 17(4), 580; https://doi.org/10.3390/v17040580 - 17 Apr 2025
Viewed by 662
Abstract
Pseudorabies virus (PRV) is a pathogen that causes severe neurological dysfunction in the host, leading to extensive neuronal damage and inflammation. Despite extensive research on the neuropathogenesis of α-herpesvirus infections, many scientific questions remain unresolved, such as the largely unknown functions of long [...] Read more.
Pseudorabies virus (PRV) is a pathogen that causes severe neurological dysfunction in the host, leading to extensive neuronal damage and inflammation. Despite extensive research on the neuropathogenesis of α-herpesvirus infections, many scientific questions remain unresolved, such as the largely unknown functions of long non-coding RNAs (lncRNAs) in herpesvirus-infected nervous systems. To address these questions, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the brains of mice infected with PRV. Through bioinformatic analysis, we identified 316 differentially expressed lncRNAs and 886 differentially expressed mRNAs. We predicted the biological functions of these differentially expressed lncRNAs and mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the results showed that the differentially expressed transcripts were mainly involved in the innate immune response. Finally, we validated the differential expression trends of lncRNAs and mRNAs using quantitative real-time PCR (q-PCR), which were consistent with the sequencing data. To our knowledge, this is the first report analyzing the lncRNA expression profile in the central nervous system (CNS) of mice infected with PRV. Our findings provide new insights into the roles of lncRNAs and mRNAs during PRV infection of the host CNS. Full article
(This article belongs to the Special Issue Pseudorabies Virus, Third Edition)
Show Figures

Figure 1

13 pages, 7816 KiB  
Communication
Characterization and Pathogenicity of Equine Herpesvirus Type 8 Using In-Vitro and In-Vivo Models
by Yanfei Ji, Dandan Xu, Wenxuan Si, Yu Zhang, Muhammad Zahoor Khan, Xia Zhao and Wenqiang Liu
Vet. Sci. 2025, 12(4), 367; https://doi.org/10.3390/vetsci12040367 - 15 Apr 2025
Viewed by 634
Abstract
Equine herpesvirus type 8 (EHV-8) is predominantly isolated from donkeys, but its biological properties and pathogenic potential remain underexplored. This study aimed to investigate the biological characteristics and pathogenicity of the EHV-8 LCDC01 isolate by examining its effects in rabbit kidney (RK-13) cells [...] Read more.
Equine herpesvirus type 8 (EHV-8) is predominantly isolated from donkeys, but its biological properties and pathogenic potential remain underexplored. This study aimed to investigate the biological characteristics and pathogenicity of the EHV-8 LCDC01 isolate by examining its effects in rabbit kidney (RK-13) cells and BALB/c mice. The virus was assessed for its ability to induce viral replication, pathological changes, and alterations in pro-inflammatory responses. In vitro, the EHV-8 infection of RK-13 cells induced characteristic cytopathic effects, including cell contraction, the formation of grapevine bundle-like structures, and detachment. In vivo, mice infected with the virus exhibited no clinical signs other than weight loss. Polymerase chain reaction (PCR) analysis detected viral DNA exclusively in the lungs of infected mice, while TaqMan PCR further confirmed the presence of EHV-8 nucleic acids in the lungs, liver, brain, and intestines. Furthermore, ELISA assays revealed a significant increase in the secretion of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8, and IFN-α, in the lungs (p < 0.05). These findings suggest that EHV-8 primarily replicates in the lung tissue of mice and can induce inflammatory responses. This study provides valuable insights into the pathogenic mechanisms of EHV-8 and lays the groundwork for further investigation into its potential impact on equine and other animal populations. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Figure 1

9 pages, 405 KiB  
Review
How Does a Porcine Herpesvirus, PCMV/PRV, Induce a Xenozoonosis
by Joachim Denner
Int. J. Mol. Sci. 2025, 26(8), 3542; https://doi.org/10.3390/ijms26083542 - 9 Apr 2025
Viewed by 570
Abstract
Porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), a porcine herpesvirus, has been shown to significantly reduce the survival time of porcine xenotransplants in non-human primates. The virus was detected in all the examined organs of baboons transplanted with PCMV/PRV-positive organs and it was also transmitted to [...] Read more.
Porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), a porcine herpesvirus, has been shown to significantly reduce the survival time of porcine xenotransplants in non-human primates. The virus was detected in all the examined organs of baboons transplanted with PCMV/PRV-positive organs and it was also transmitted to the first human recipient of a pig heart, contributing to the patient’s death. PCMV/PRV induces consumptive coagulopathy and thrombocytopenia in xenotransplant recipients. Initial studies in baboons revealed that the virus triggered increased release of tumor necrosis factor α (TNFα) and interleukin 6 (IL-6), along with elevated levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) complexes. Since there is no evidence that PCMV/PRV infects primate cells, including human cells, the virus appears to directly interact with immune and endothelial cells, disrupting cytokine signaling and coagulation pathways. The highest viral load was detected in the explanted pig heart, suggesting active replication at this site. Additionally, cells expressing PCMV/PRV proteins were identified in all the examined baboon organs, where pig cells were also found. Since PCMV/PRV affects only xenotransplant recipients and not healthy humans, this condition should be classified as a xenozoonosis. Interestingly, antibodies against human herpesvirus 6 (HHV-6) cross-react with PCMV/PRV and may contribute to protection against infection in humans. Further research is needed to uncover the molecular mechanisms underlying this xenozoonotic disease. Full article
(This article belongs to the Special Issue Molecular Insights into Zoonotic Diseases)
Show Figures

Figure 1

14 pages, 640 KiB  
Review
The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity
by Diqiu Liu, Xiaoyang Zhao and Xiaojun Wang
Vet. Sci. 2025, 12(3), 228; https://doi.org/10.3390/vetsci12030228 - 3 Mar 2025
Viewed by 919
Abstract
Equine herpesvirus 1 (EHV-1), EHV-4, EHV-8, and EHV-9, are classified within the subfamily Alphaherpesvirinae and are recognized as causative agents of respiratory, urogenital, and neurological disorders in horses. These viruses, collectively referred to as αEHVs, exhibits both unique and shared characteristics in terms [...] Read more.
Equine herpesvirus 1 (EHV-1), EHV-4, EHV-8, and EHV-9, are classified within the subfamily Alphaherpesvirinae and are recognized as causative agents of respiratory, urogenital, and neurological disorders in horses. These viruses, collectively referred to as αEHVs, exhibits both unique and shared characteristics in terms of host interaction, pathogenesis, epidemiology, and immune evasion, which arise from both the identities and discrepancies among respective genomic homologs. The genomic architecture of αEHVs is similar to other members of the same subfamily, such as well-known HSV-1, VZV, and PRV. However, research on the molecular mechanisms underlying αEHV infection and immune response remains significantly less advanced compared to studies on human, porcine, and bovine herpesviruses. This paper systematically describes the genomic structure, function, and genetic similarities of αEHVs and conducts a comparative analysis of selected αEHVs through pairwise sequence alignments of nucleotides and amino acids. This review offers an extensive synthesis of the current understanding related to the study of αEHVs, highlighting the challenges and potential solutions for future research endeavors. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Graphical abstract

11 pages, 1311 KiB  
Article
A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility
by Souichi Yamada, Shizuko Harada, Hikaru Fujii, Hitomi Kinoshita, Phu Hoang Anh Nguyen, Miho Shibamura, Tomoki Yoshikawa, Madoka Kawahara, Hideki Ebihara, Masayuki Saijo and Shuetsu Fukushi
Viruses 2024, 16(12), 1813; https://doi.org/10.3390/v16121813 - 21 Nov 2024
Viewed by 1431
Abstract
Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its [...] Read more.
Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV. The ACV-resistant clone bore normal TK and DNApol genes. Here, we deployed next-generation full-genome sequencing of HSV-1_VZV_TK_clone α and identified a single nucleotide substitution, resulting in a P597L missense mutation in the UL29 gene product, the ICP8 protein. Recombinant HSV-1 encoding a P597L ICP8 protein was generated, and its properties and ability to confer drug resistance were analyzed. No difference in virus growth and UL29 expression was observed between the mutant recombinant, the wild type, and a revertant mutant viral strain, and susceptibility tests of these strains to ACV and other drugs using Vero, HEL, and ARPE19 cells identified that the recombinant UL29 mutant virus was resistant only to ACV. These results indicate that ICP8 may be involved in the anti-herpesvirus drugs’ mechanism of action on HSV-1. Full article
(This article belongs to the Special Issue Mechanisms of Herpesvirus Resistance)
Show Figures

Figure 1

10 pages, 3762 KiB  
Article
Evaluation of Tissue Tropism and Horizontal Transmission of a Duck Enteritis Virus Vectored Vaccine in One-Day-Old Chicken
by Yassin Abdulrahim, Yingying You, Linggou Wang, Zhixiang Bi, Lihua Xie, Saisai Chen, Benedikt B. Kaufer, Armando Mario Damiani, Kehe Huang and Jichun Wang
Viruses 2024, 16(11), 1681; https://doi.org/10.3390/v16111681 - 29 Oct 2024
Cited by 1 | Viewed by 1823 | Correction
Abstract
Herpesvirus of turkey (HVT) recombinant vector vaccines are widely used in the poultry industry. However, due to limitations in loading multiple foreign antigens into a single HVT vector, other viral vectors are urgently needed. Since chickens lack maternal immunity to duck enteritis virus [...] Read more.
Herpesvirus of turkey (HVT) recombinant vector vaccines are widely used in the poultry industry. However, due to limitations in loading multiple foreign antigens into a single HVT vector, other viral vectors are urgently needed. Since chickens lack maternal immunity to duck enteritis virus (DEV), vector vaccines using DEV as a backbone are currently under study. Even though a recently developed DEV vector vaccine expressing the influenza hemagglutinin H5 of highly pathogenic avian influenza (DEV-H5) induces highly detectable anti-HA antibodies, safety issues hamper further vaccine development. In this work, tissue affinity and horizontal transmission in 1-day-old chickens were systematically evaluated after DEV-H5 vector vaccine inoculation. Sixty percent of DEV-H5-inoculated chickens died between day 2 and day 7 post-inoculation. The displayed clinical signs consisted of lethargy, anorexia, and diarrhea, and virus was shed in feces. Gross and/or histological lesions were recorded in the kidney, heart, intestine, liver, lung, and spleen. Moreover, DEV-H5 replication in intestinal cells caused an increment in interferon-α expression, while occluding junction proteins and ZO-1 expression were significantly upregulated. As a control, birds inoculated with a commercial recombinant turkey herpesvirus expressing the VP2 protein of the infectious bursal disease virus (HVT-VP2) vector vaccine showed neither clinical signs nor mortality. Overall, while the HVT-VP2 vaccine demonstrated complete safety in 1-day-old chickens, our potential DEV-H5 vaccine requires further attenuation for consideration as a vector vaccine candidate in chickens. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 2069 KiB  
Article
Human Herpesvirus-6B Infection and Alterations of Gut Microbiome in Patients with Fibromyalgia: A Pilot Study
by Lauma Ievina, Nikita Fomins, Dita Gudra, Viktorija Kenina, Anda Vilmane, Sabine Gravelsina, Santa Rasa-Dzelzkaleja, Modra Murovska, Davids Fridmanis and Zaiga Nora-Krukle
Biomolecules 2024, 14(10), 1291; https://doi.org/10.3390/biom14101291 - 12 Oct 2024
Cited by 1 | Viewed by 1912
Abstract
Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain often accompanied by fatigue, sleep disturbances, memory issues, and mood disorders. The exact cause of FM remains unknown, and diagnosis is typically based on a history of persistent widespread pain, as there [...] Read more.
Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain often accompanied by fatigue, sleep disturbances, memory issues, and mood disorders. The exact cause of FM remains unknown, and diagnosis is typically based on a history of persistent widespread pain, as there are no objective biomarkers usable in diagnosis of this disorder available. The aim of this study was to identify measurable indicators specific to FM with potential as biomarkers. This study included 17 individuals diagnosed with FM and 24 apparently healthy persons. Using real-time polymerase chain reaction (qPCR), we detected the presence of human herpesvirus (HHV)-6A and B genomic sequences in DNA isolated from peripheral blood mononuclear cells (PBMCs) and buccal swabs. HHV-6-specific IgG and IgM class antibodies, along with proinflammatory cytokine levels, were measured using enzyme-linked immunosorbent assay (ELISA) and bead-based multiplex assays. Additionally, the gut microbiome was analyzed through next-generation sequencing. HHV-6B was more frequently detected in the PBMCs of FM patients. FM patients with a body mass index (BMI) of 30 or higher exhibited elevated cytokine levels compared to the control group with the same BMI range. Gut microbiome analysis revealed significant differences in both α-diversity and β-diversity between the FM and control groups, indicating a shift in species abundance in the FM group. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

26 pages, 859 KiB  
Review
Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System
by Stephanie Salazar, Khanh T. Y. Luong and Orkide O. Koyuncu
Viruses 2023, 15(12), 2284; https://doi.org/10.3390/v15122284 - 22 Nov 2023
Cited by 5 | Viewed by 3947
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, [...] Read more.
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency–reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus–host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS. Full article
(This article belongs to the Special Issue Neurotropic Viral Pathogens)
Show Figures

Figure 1

13 pages, 3098 KiB  
Article
The Safety and Protective Efficacy Evaluation of an Attenuated M. bovis–BoHV-1 Bivalent Vaccine in Rabbits
by Sen Zhang, Yisheng Zhang, Guoxing Liu, Chen Wang, Yan Ji, Jianguo Chen, Changmin Hu, Xi Chen, Aizhen Guo and Yingyu Chen
Vaccines 2023, 11(11), 1698; https://doi.org/10.3390/vaccines11111698 - 7 Nov 2023
Cited by 3 | Viewed by 1773
Abstract
Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the [...] Read more.
Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-β and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis–BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle. Full article
Show Figures

Figure 1

22 pages, 4254 KiB  
Article
The Association of HHV-6 and the TNF-α (-308G/A) Promotor with Major Depressive Disorder Patients and Healthy Controls in Thailand
by Sasiwimon Sumala, Tipaya Ekalaksananan, Chamsai Pientong, Surachat Buddhisa, Supaporn Passorn, Sureewan Duangjit, Somwang Janyakhantikul, Areeya Suktus and Sureewan Bumrungthai
Viruses 2023, 15(9), 1898; https://doi.org/10.3390/v15091898 - 8 Sep 2023
Cited by 4 | Viewed by 2669
Abstract
Major depressive disorder (MDD) is a silent global health problem that can lead to suicide. MDD development is suggested to result from numerous risk factors, including genetic factors. A precise tool for MDD diagnosis is currently not available. Recently, inflammatory processes have been [...] Read more.
Major depressive disorder (MDD) is a silent global health problem that can lead to suicide. MDD development is suggested to result from numerous risk factors, including genetic factors. A precise tool for MDD diagnosis is currently not available. Recently, inflammatory processes have been identified as being strongly involved in MDD development and the reactivation of human herpesvirus type 6 (HHV-6), upregulating cytokines such as TNF-α, which are associated with MDD. Therefore, this study aimed to determine the association of HHV-6 with genetic factors, especially TNF-α mutation, in MDD patients and their relatives compared to healthy controls. The Patient Health Questionnaire (PHQ-9) was used to evaluate MDD status, and 471 oral buccal samples were investigated for HHV-6 infection and viral copy number by qPCR. TNF-α (-308G/A) gene mutation and the cytokines TNF-α, IL-6, and IL-10 were analyzed by high-resolution melting (HRM) analysis and enzyme-linked immunosorbent assay (ELISA). Whole-exome sequencing of buccal samples was performed to analyze for genetic factors. The results showed significantly higher HHV-6 positivities and viral loads in MDD patients (15/59 (25.67%) and 14,473 ± 16,948 copies/µL DNA) and their relatives (blood relatives 17/36 (47.22%) and 8146 ± 5656 copies/µL DNA); non-blood relatives 7/16 (43.75%) and 20,721 ± 12,458 copies/µL DNA) compared to the healthy population (51/360 (14.17%) and 6303 ± 5791 copies/µL DNA). The TNF-α (-308G/A) mutation showed no significant difference. Surprisingly, 12/26 (46.15%) participants with the TNF-α (-308G/A) mutation showed HHV-6 positivities at higher rates than those with wild-type TNF-α (-308G) (70/267 (26.22%)). HHV-6-positive participants with TNF-α (-308G/A) showed higher levels of TNF-α, IL-6, and IL-10 than those of negative control. Exome analysis revealed that common mutations in immune genes were associated with depression. Therefore, this study unveiled the novel association of inflammatory gene TNF-α (-308G/A) mutations with HHV-6 reactivation, which could represent a combined risk factor for MDD. This result could induce further research on MDD development and clinical applications. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

18 pages, 4464 KiB  
Article
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease
by Mohammad Heidari, Huanmin Zhang, Lakshmi T Sunkara and Syed Mudasir Ahmad
Viruses 2023, 15(3), 648; https://doi.org/10.3390/v15030648 - 28 Feb 2023
Cited by 5 | Viewed by 2937
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and [...] Read more.
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development. Full article
(This article belongs to the Special Issue Marek’s Disease Virus)
Show Figures

Figure 1

30 pages, 5844 KiB  
Article
Contribution of the TCRβ Repertoire to Marek’s Disease Genetic Resistance in the Chicken
by Cari J. Hearn and Hans H. Cheng
Viruses 2023, 15(3), 607; https://doi.org/10.3390/v15030607 - 22 Feb 2023
Cited by 1 | Viewed by 2295
Abstract
Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by Marek’s disease virus (MDV), an oncogenic α-herpesvirus. MDV has increased in virulence, prompting continued efforts in both improved vaccines and enhanced genetic resistance. Model pairs of genetically MD-resistant and MD-susceptible chickens that [...] Read more.
Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by Marek’s disease virus (MDV), an oncogenic α-herpesvirus. MDV has increased in virulence, prompting continued efforts in both improved vaccines and enhanced genetic resistance. Model pairs of genetically MD-resistant and MD-susceptible chickens that were either MHC-matched or MHC-congenic allowed characterization of T cell receptor (TCR) repertoires associated with MDV infection. MD-resistant chickens showed higher usage of Vβ-1 TCRs than susceptible chickens in both the CD8 and CD4 subsets in the MHC-matched model, and in the CD8 subset only in the MHC-congenic model, with a shift towards Vβ-1+ CD8 cells during MDV infection. Long and short read sequencing identified divergent TCRβ loci between MHC-matched MD-resistant and MD-susceptible chickens, with MD-resistant chickens having more TCR Vβ1 genes. TCR Vβ1 CDR1 haplotype usage in MD-resistant x MD-susceptible F1 birds by RNAseq indicated that the most commonly used CDR1 variant was unique to the MD-susceptible line, suggesting that selection for MD resistance in the MHC-matched model optimized the TCR repertoire away from dominant recognition of one or more B2 haplotype MHC molecules. Finally, TCR downregulation during MDV infection in the MHC-matched model was strongest in the MD-susceptible line, and MDV reactivation downregulated TCR expression in a tumor cell line. Full article
(This article belongs to the Special Issue Marek’s Disease Virus)
Show Figures

Figure 1

20 pages, 10403 KiB  
Article
Chemical Characterization of Different Extracts of Justicia secunda Vahl and Determination of Their Anti-Oxidant, Anti-Enzymatic, Anti-Viral, and Cytotoxic Properties
by Łukasz Świątek, Elwira Sieniawska, Kouadio Ibrahime Sinan, Gokhan Zengin, Anastazja Boguszewska, Benita Hryć, Kouadio Bene, Małgorzata Polz-Dacewicz and Stefano Dall’Acqua
Antioxidants 2023, 12(2), 509; https://doi.org/10.3390/antiox12020509 - 17 Feb 2023
Cited by 9 | Viewed by 5904
Abstract
Justicia secunda Vahl. is a traditional medicinal plant in tropical regions, including West Africa. The present study examined the chemical profiles and biological properties of J. secunda extracts obtained with different solvents (dichloromethane, ethyl acetate, methanolic and aqueous: macerated and infused). Chemical components [...] Read more.
Justicia secunda Vahl. is a traditional medicinal plant in tropical regions, including West Africa. The present study examined the chemical profiles and biological properties of J. secunda extracts obtained with different solvents (dichloromethane, ethyl acetate, methanolic and aqueous: macerated and infused). Chemical components were characterized by liquid chromatography-mass spectrometry (LC-MS), and over 50 compounds were identified, including flavonoids, phenolic acids, and alkaloids. Antioxidant, enzyme inhibitory, cytotoxic, and antiviral properties were selected as biological properties. Total phenolic and flavonoid contents in methanol (58.07 mg gallic acid equivalent (GAE)/g and 13.07 mg rutin equivalent (RE)/g) and water (infused) (36.34 mg GAE/g and 8.52 mg RE/g) were higher than in other extracts. Consistent with the levels of total bioactive components, the methanol and water extracts exhibited stronger antioxidant abilities. However, the dichloromethane and ethyl acetate extracts were more active on α-amylase and α-glucosidase than other extracts. Aqueous extracts exerted selective anticancer properties toward human pharyngeal cancer cell lines, whereas the methanolic extract decreased the human herpesvirus type-1 (HHV-1) infectious titer by 2.16 log and the viral load by 1.21 log. Overall, J. secunda could be considered a multifunctional bioactive raw material in the preparation of potent applications to manage diseases related to oxidative stress, including cancer, diabetes, and Alzheimer’s. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts II)
Show Figures

Figure 1

22 pages, 28441 KiB  
Article
Pseudorabies Virus Mutants Lacking US9 Are Defective in Cytoplasmic Assembly and Sorting of Virus Particles into Axons and Not in Axonal Transport
by Steven Adamou, Adam Vanarsdall and David C. Johnson
Viruses 2023, 15(1), 153; https://doi.org/10.3390/v15010153 - 4 Jan 2023
Cited by 2 | Viewed by 2139
Abstract
Herpes simplex virus (HSV) and varicella zoster virus (VZV) rely on transport of virus particles in neuronal axons to spread from sites of viral latency in sensory ganglia to peripheral tissues then on to other hosts. This process of anterograde axonal transport involves [...] Read more.
Herpes simplex virus (HSV) and varicella zoster virus (VZV) rely on transport of virus particles in neuronal axons to spread from sites of viral latency in sensory ganglia to peripheral tissues then on to other hosts. This process of anterograde axonal transport involves kinesin motors that move virus particles rapidly along microtubules. α-herpesvirus anterograde transport has been extensively studied by characterizing the porcine pseudorabies virus (PRV) and HSV, with most studies focused on two membrane proteins: gE/gI and US9. It was reported that PRV and HSV US9 proteins bind to kinesin motors, promoting tethering of virus particles on the motors, and furthering anterograde transport within axons. Alternatively, other models have argued that HSV and PRV US9 and gE/gI function in the cytoplasm and not in neuronal axons. Specifically, HSV gE/gI and US9 mutants are defective in the assembly of virus particles in the cytoplasm of neurons and the subsequent sorting of virus particles to cell surfaces and into axons. However, PRV US9 and gE/gI mutants have not been characterized for these cytoplasmic defects. We examined neurons infected with PRV mutants, one lacking both gE/gI and US9 and the other lacking just US9, by electron microscopy. Both PRV mutants exhibited similar defects in virus assembly and cytoplasmic sorting of virus particles to cell surfaces. As well, the mutants exhibited reduced quantities of infectious virus in neurons and in cell culture supernatants. We concluded that PRV US9 primarily functions in neurons to promote cytoplasmic steps in anterograde transport. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop