Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = Δ-9-tetrahydrocannabinol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1078 KiB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Viewed by 404
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

32 pages, 3113 KiB  
Review
Exploring the Impact of Chirality of Synthetic Cannabinoids and Cathinones: A Systematic Review on Enantioresolution Methods and Enantioselectivity Studies
by Ana Sofia Almeida, Rita M. G. Santos, Paula Guedes de Pinho, Fernando Remião and Carla Fernandes
Int. J. Mol. Sci. 2025, 26(13), 6471; https://doi.org/10.3390/ijms26136471 - 4 Jul 2025
Viewed by 397
Abstract
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as [...] Read more.
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as stimulants, frequently serving as cheaper alternatives to amphetamines, 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. While some synthetic cannabinoids exhibit chirality depending on their synthesis precursors, synthetic cathinones are intrinsically chiral. Biotargets can recognize and differentiate between enantiomers, leading to distinct biological responses (enantioselectivity). Understanding these differences is crucial; therefore, the development of enantioresolution methods to assess the biological and toxicological effects of enantiomer is necessary. This work systematically compiles enantioselectivity studies and enantioresolution methods of synthetic cannabinoids and synthetic cathinones, following PRISMA guidelines. The main aim of this review is to explore the impact of chirality on these NPSs, improving our understanding of their toxicological behavior and evaluating advances in analytical techniques for their enantioseparation. Key examples from both groups are presented. This review highlights the importance of continuing research in this field, as demonstrated by the differing properties of synthetic cannabinoid and synthetic cathinone enantiomers, which are closely linked to variations in biological and toxicological outcomes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 1064 KiB  
Article
Assessment of Abuse Potential of Three Indazole-Carboxamide Synthetic Cannabinoids 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA
by Yanling Qiao, Xuesong Shi, Kaixi Li, Lixin Kuai, Xiangyu Li, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(13), 6409; https://doi.org/10.3390/ijms26136409 - 3 Jul 2025
Viewed by 499
Abstract
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the [...] Read more.
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA in mice, comparing their in vivo effects with those caused by Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis. We evaluated the cannabinoid-specific pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA using the tetrad assay (locomotion inhibition, hypothermia, analgesia and catalepsy). Then we conducted conditioned place preference (CPP) and precipitated withdrawal assay to assess the rewarding effect and physical dependence, with Δ9-THC as a positive control. The results showed that all of the three SCs exhibited potential tetrad effects in a dose-dependent manner, with median effective dose (ED50) values ranging from 0.03 to 0.77 mg/kg. In the CPP tests, they all exhibited a significant biphasic effect of conditioned place preference (CPP) and conditioned place aversion (CPA). A significant increase in paw tremors and head twitches was observed in the rimonabant-precipitated withdrawal assay, indicating that the repeated administration of these SCs can lead to potential physical dependence. All effective doses were lower than Δ9-THC. These findings strongly suggested that the three SCs exhibited similar but stronger cannabinoid-specific tetrad effects, rewarding effect and physical dependence compared with Δ9-THC, indicating their high abuse potential and possible threats to human health. The rank order of abuse potential for these drugs was 5F-ADB > MDMB-4en-PINACA > ADB-4en-PINACA > Δ9-THC. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 2105 KiB  
Article
Process Development for GMP-Grade Full Extract Cannabis Oil: Towards Standardized Medicinal Use
by Maria do Céu Costa, Ana Patrícia Gomes, Iva Vinhas, Joana Rosa, Filipe Pereira, Sara Moniz, Elsa M. Gonçalves, Miguel Pestana, Mafalda Silva, Luís Monteiro Rodrigues, Anthony DeMeo, Logan Marynissen, António Marques da Costa, Patrícia Rijo and Michael Sassano
Pharmaceutics 2025, 17(7), 848; https://doi.org/10.3390/pharmaceutics17070848 - 28 Jun 2025
Viewed by 1841
Abstract
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were [...] Read more.
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were studied to characterize the extraction and purification processes, ensuring the maximum retention of cannabinoids and minimization of other secondary metabolites. The industrial process used deep-cooled ethanol for selective extraction. Results: Taking into consideration that decarboxylation occurs in the process, the cannabinoid profile composition was preserved from the herbal substance to the herbal preparations, with wiped-film distillation under deep vacuum conditions below 0.2 mbar, as a final purification step. The profiles of the terpenes and cannabinoids in crude and purified Full-spectrum Extract Cannabis Oil (FECO) were analyzed at different stages to evaluate compositional changes that occurred throughout processing. Subjective intensity and acceptance ratings were received for taste, color, overall appearance, smell, and mouthfeel of FECO preparations. Conclusions: According to sensory analysis, purified FECO was more accepted than crude FECO, which had a stronger and more polarizing taste, and received higher ratings for color and overall acceptance. In contrast, a full cannabis extract in the market resulted in lower acceptance due to taste imbalance. The purification process effectively removed non-cannabinoids, improving sensory quality while maintaining therapeutic potency. Terpene markers of the flower were remarkably preserved in SOMAÍ’s preparations’ fingerprint, highlighting a major qualitative profile reproducibility and the opportunity for their previous separation and/or controlled reintroduction. The study underscores the importance of monitoring the extraction and purification processes to optimize the cannabinoid content and sensory characteristics in cannabis preparations. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Portugal)
Show Figures

Graphical abstract

22 pages, 3518 KiB  
Article
Cannabinol’s Modulation of Genes Involved in Oxidative Stress Response and Neuronal Plasticity: A Transcriptomic Analysis
by Serena Silvestro, Marco Calabrò, Alessandra Trainito, Stefano Salamone, Federica Pollastro, Emanuela Mazzon and Aurelio Minuti
Antioxidants 2025, 14(6), 744; https://doi.org/10.3390/antiox14060744 - 17 Jun 2025
Viewed by 774
Abstract
Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases. Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9 [...] Read more.
Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases. Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9-tetrahydrocannabinol, exhibits antioxidant, anti-inflammatory, analgesic, and anti-bacterial effects. The objective of this study was to assess the protective potential of 24 h CBN pre-treatment, applied at different concentrations (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), in differentiated neuroblastoma × spinal cord (NSC-34) cells. Transcriptomic analysis was performed using next-generation sequencing techniques. Our results reveal that CBN had no negative impact on cell viability at the tested concentrations. Instead, it showed a significant effect on stress response and neuroplasticity-related processes. Specifically, based on the Reactome database, the biological pathways mainly perturbed by CBN pre-treatment were investigated. This analysis highlighted a significant enrichment in the Reactome pathway’s cellular response to stress, cellular response to stimuli, and axon guidance. Overall, our results suggest that CBN holds promise as an adjuvant agent for neurodegenerative diseases by modulating genes involved in neuronal cell survival and axon guidance. Full article
(This article belongs to the Special Issue Oxidative Stress and Its Mitigation in Neurodegenerative Disorders)
Show Figures

Figure 1

14 pages, 890 KiB  
Article
Species-Specific Chemotactic Responses of Entomopathogenic and Slug-Parasitic Nematodes to Cannabinoids from Cannabis sativa L.
by Marko Flajšman, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(6), 1469; https://doi.org/10.3390/agronomy15061469 - 16 Jun 2025
Viewed by 399
Abstract
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius [...] Read more.
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius myriophilus—to three major cannabinoids from Cannabis sativa: Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), and cannabidiol (CBD). Using a standardized chemotaxis assay, we quantified infective juvenile movement and calculated Chemotaxis Index (CI) values across varying cannabinoid concentrations. Our results revealed strong species-specific and dose-dependent responses. THC and CBG elicited significant attractant effects in P. papillosa, S. feltiae, and H. bacteriophora, with CI values ≥ 0.2, indicating their potential as behavioral modulators. In contrast, CBD had weaker or repellent effects, particularly at higher concentrations. O. myriophilus exhibited no consistent response, underscoring species-specific variation in chemosensory sensitivity. These findings demonstrate the potential utility of cannabinoids, especially THC and CBG, as biocompatible cues to enhance the efficacy of nematode-based biological control agents in integrated pest management (IPM). Further field-based studies are recommended to validate these results under realistic agricultural conditions. Full article
(This article belongs to the Special Issue Nematode Diseases and Their Management in Crop Plants)
Show Figures

Figure 1

26 pages, 771 KiB  
Review
Are Cannabis-Based Medicines a Useful Treatment for Neuropathic Pain? A Systematic Review
by Nawaf Almuntashiri, Basma M. El Sharazly and Wayne G. Carter
Biomolecules 2025, 15(6), 816; https://doi.org/10.3390/biom15060816 - 4 Jun 2025
Viewed by 1343
Abstract
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic [...] Read more.
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic pain. A review of the relevant studies was conducted to evaluate the effectiveness of CBMs in treating neuropathic pain. Scientific literature was systematically searched from January 2003 to December 2024 using the Web of Science Core Collection, PubMed, and MEDLINE. A total of 22 randomized controlled trials (RCTs) were identified that considered the use of 1′,1′-dimethylheptyl-Δ8-tetrahydrocannabinol-11-oic acid (CT-3), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), combinations of Δ9-THC with CBD, and cannabidivarin for treatment of neuropathic pain. Significant reductions in pain were reported in 15 studies focused on the treatment of multiple sclerosis, spinal cord injuries, diabetic neuropathy, postherpetic neuralgia, HIV-associated sensory neuropathy, peripheral neuropathic pain, complex regional pain syndrome, chronic radicular neuropathic pain, and peripheral neuropathy of the lower extremities. These positive outcomes often adopted personalized and adjusted dosing strategies. By contrast, seven RCTs observed no significant pain relief compared to placebo, although some had minor improvements in secondary outcomes, such as mood and sleep. Collectively, CBM treatments may improve pain scores, but study limitations such as small sample sizes and study durations, high placebo response rates, and trial unblinding because of the psychoactive effects of cannabinoids all hinder data interpretation and the extrapolation to chronic pain conditions. Hence, future RCTs will need to have larger numbers and be more extended studies that explore optimal dosing and delivery methods and identify patient subgroups that are most likely to benefit. While CBMs show potential, their current use balances modest benefits against possible adverse effects and variable outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 2910 KiB  
Article
Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties
by Tiziana Vonlanthen, Zora Fuchs, Christelle Cronje, Leron Katsir, Maximilian Vogt, Gavin George, Michael E. Ruckle and Jürg Hiltbrunner
Agronomy 2025, 15(6), 1338; https://doi.org/10.3390/agronomy15061338 - 29 May 2025
Viewed by 739
Abstract
Variety testing systems in Europe do not account for cannabis varieties selected specifically for flower and cannabinoid production. These “flower varieties” are morphologically distinct from industrial varieties, with significant implications for agronomic characterization in the Value for Cultivation and Use (VCU) testing system. [...] Read more.
Variety testing systems in Europe do not account for cannabis varieties selected specifically for flower and cannabinoid production. These “flower varieties” are morphologically distinct from industrial varieties, with significant implications for agronomic characterization in the Value for Cultivation and Use (VCU) testing system. However, they are not considered as drug-type varieties due to their low Δ9-tetrahydrocannabinol (Δ9-THC) content. Identifying specific traits that can objectively describe these varieties is integral to establishing stable and high-quality production standards. We evaluated specific traits tailored to the VCU testing of flower varieties in two field trials. The assessed phenological traits showed significant differences between varieties (p < 0.0001) for all traits except ease of harvest (EH) and lodging, with significant differences also found in all yield-related traits. The number of branches per plant (NBP), flower and leaf yield (FLY), harvest index (HI) and raceme compactness index (RCI) could therefore be considered for VCU testing. The varieties differed significantly in their cannabinoid content, with all falling below the THC limit under Swiss regulation (1%) but not all meeting the 0.3% limit set by European countries. Variations in THC content were dependent on the testing year, the timing of sampling and the number of plants sampled, underscoring the need to clarify VCU testing methodologies. Incorporating cannabinoid content along with morphological and phenological traits is crucial in introducing a new “flower” category within the VCU system for cannabis. Full article
Show Figures

Figure 1

20 pages, 3280 KiB  
Article
Cellular and Transcriptional Responses of Human Bronchial Epithelial Cells to Delta-9-Tetrahydrocannabinol In Vitro
by Megan S. Doldron, Sourav Chakraborty, Santosh Anand, Mehwish Faheem, Beh Reh, Xuegeng Wang, Saurav Mallik, Zhenquan Jia and Ramji Kumar Bhandari
Int. J. Mol. Sci. 2025, 26(11), 5212; https://doi.org/10.3390/ijms26115212 - 29 May 2025
Viewed by 634
Abstract
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s [...] Read more.
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s cannabis having three times the concentration of THC compared to 25 years ago. Inhalation is a major route of exposure, allowing substances to enter the body via the respiratory tract. THC exposure causes cell death in the airway epithelium; however, the molecular underpinning of THC exposure-induced bronchial epithelial cell death is not clearly understood. To address the mechanisms involved in this process, the present study examined the cell viability, oxidative stress, lipid peroxidation, and transcriptional alterations caused by various concentrations of Δ-9-THC (0, 800, 1000, 1200, and 1500 ng/mL) in a human bronchial epithelial cell line (BEAS-2B) in vitro. Δ-9-THC exposure caused a significant dose-dependent decrease in cell viability after 24 h exposure. Transcriptome analysis showed a distinct dose-dependent response. HIF-1 signaling, ferroptosis, AMPK signaling, and immunogenic pathways were activated by Δ-9-THC-upregulated genes. Glutathione and fatty acid metabolic pathways were significantly altered by Δ-9-THC-dependent downregulated genes. Ingenuity Pathway Analysis (IPA) revealed several top canonical pathways altered by Δ-9-THC exposure, including ferroptosis, NRF-2-mediated oxidative stress response, caveolar-mediated endocytosis (loss of cell adhesion to the substrate), tumor microenvironment, HIF1alpha signaling, and the unfolded protein response pathway. Δ-9-THC-induced cell death was ameliorated by inhibiting the ferroptosis pathway, whereas treatments with ferroptosis agonist exacerbated the cell death process, suggesting that Δ-9-THC-induced bronchial epithelial cell death potentially involves the ferroptosis pathway. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

31 pages, 6448 KiB  
Article
Nanoemulsions of Cannabidiol, Δ9-Tetrahydrocannabinol, and Their Combination Similarly Exerted Anticonvulsant and Antioxidant Effects in Mice Treated with Pentylenetetrazole
by Pedro Everson Alexandre de Aquino, Francisco Josimar Girão Júnior, Tyciane de Souza Nascimento, Ítalo Rosal Lustosa, Geanne Matos de Andrade, Nágila Maria Pontes Silva Ricardo, Débora Hellen Almeida de Brito, Gabriel Érik Patrício de Almeida, Kamilla Barreto Silveira, Davila Zampieri, Marta Maria de França Fonteles, Edilberto Rocha Silveira, Giuseppe Biagini and Glauce Socorro de Barros Viana
Pharmaceuticals 2025, 18(6), 782; https://doi.org/10.3390/ph18060782 - 23 May 2025
Viewed by 734
Abstract
Background/Objectives: The main biologically active molecules of Cannabis sativa L. are cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Both exert anticonvulsant effects when evaluated as single drugs, but their possible interaction as components of C. sativa extracts has been scarcely studied. For this reason, we [...] Read more.
Background/Objectives: The main biologically active molecules of Cannabis sativa L. are cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Both exert anticonvulsant effects when evaluated as single drugs, but their possible interaction as components of C. sativa extracts has been scarcely studied. For this reason, we evaluated CBD and THC, combined or not, in two seizure models in mice, using an improved vehicle formula. Methods: Firstly, acute seizures were induced by intraperitoneal (i.p.) pentylenetetrazole (PTZ, 80 mg/kg), and mice received CBD or THC at 1, 3, 6, and 10 mg/kg, or a CBD/THC 1:1 combination at 1.5, 3, and 6 mg/kg, per os (p.o.), one hour before PTZ administration. Secondly, mice received p.o. CBD (10 mg/kg), CBD/THC (1.5, 3, and 6 mg/kg), valproic acid (50 mg/kg), or vehicle (nanoemulsions without CBD or THC), one hour before PTZ (30 mg/kg, i.p.) every other day for 21 days. Behavioral, biochemical, and immunohistochemical analyses were performed to assess the response to PTZ, oxidative stress, and astroglial activation. Results: In the acute model, CBD and THC at 3–10 mg/kg, and their combinations, significantly increased latency to generalized seizures and death, and improved survival rates. In the chronic model, similarly to valproic acid, CBD 10 mg/kg and CBD/THC at 1.5 and 3 mg/kg delayed kindling acquisition, while CBD/THC 6 mg/kg had no effect. CBD and CBD/THC treatments reduced oxidative and nitrosative stress and attenuated astrogliosis, as indicated by decreased glial fibrillary acidic protein and GABA transporter 1 expression and increased inwardly rectifying potassium channel 4.1 expression in hippocampal regions. However, no cannabinoid treatment prevented the impairment in novel object recognition and Y maze tests. Conclusions: These findings support the potential role of cannabinoids in counteracting seizures, possibly by reducing oxidative stress and astrogliosis. The study also highlights the importance of nanoemulsions as a delivery vehicle to enhance cannabinoid effectiveness while considering the risks associated with direct cannabinoid receptor activation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

11 pages, 1678 KiB  
Article
Utilization of Industrial Hemp Biomass Waste (I): Stability of Cannabidiol in Pre and Post- Encapsulation States
by Jerel Crew, Ying Wu, Richard Mu and Ankit Patras
Molecules 2025, 30(10), 2116; https://doi.org/10.3390/molecules30102116 - 10 May 2025
Viewed by 857
Abstract
After cannabidiol was extracted from the hemp biomass using supercritical CO2 extraction, the residual could be utilized as a source of other valuable ingredients. The stability of the extracted CBD in pre- and post- encapsulation states were evaluated. Dynamic macerations with ethanol [...] Read more.
After cannabidiol was extracted from the hemp biomass using supercritical CO2 extraction, the residual could be utilized as a source of other valuable ingredients. The stability of the extracted CBD in pre- and post- encapsulation states were evaluated. Dynamic macerations with ethanol and hexane were compared for CBD extraction. The ethanol extract yielded 0.11% ± 0.10 CBD and 1.83% ± 0.00 cannabidiolic acid (CBDA), while the hexane extraction yielded 0.08% ± 0.04 CBD, 1.06% ± 0.04 CBDA, and 0.30% ± 0.04 delta-9-tetrahydrocannabinol (Δ9-THC). Ethanol extraction was selected due to the low THC detection in the extract. The CBD extract was encapsulated using water soluble yellow mustard mucilage (WSM), maltodextrin (MD), gum Arabic (GA), and protein extracted from the hemp biomass waste (HBP) via freeze drying. The WSM-MD-GA 1:5 particle formulation exhibited superior thermal stability over 72 h, whereas the WSM-HBP-GA 1:5 formulation offered the most protection against UVa-induced degradation within the same duration. Incorporating hemp biomass protein as an encapsulation material enhanced protection against light exposure through UV absorption, although it did not grant thermal protection. These findings indicated that encapsulation significantly protects against CBD degradation when subjected to thermal and light conditions compared to non-encapsulated CBD. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

13 pages, 1731 KiB  
Article
Beyond Cannabidiol: The Contribution of Cannabis sativa Phytocomplex to Skin Anti-Inflammatory Activity in Human Skin Keratinocytes
by Marco Fumagalli, Giulia Martinelli, Giuseppe Paladino, Nora Rossini, Umberto Ciriello, Vincenzo Nicolaci, Nicole Maranta, Carola Pozzoli, Safwa Moheb El Haddad, Elisa Sonzogni, Mario Dell’Agli, Stefano Piazza and Enrico Sangiovanni
Pharmaceuticals 2025, 18(5), 647; https://doi.org/10.3390/ph18050647 - 28 Apr 2025
Viewed by 1723
Abstract
Background: Cannabis sativa L. (C. sativa) has a long history of medicinal use. Its inflorescences contain bioactive compounds like non-psychotropic cannabidiol (CBD), which is well known for its anti-inflammatory potential in skin conditions such as psoriasis, and psychotropic Δ-9-tetrahydrocannabinol (THC). [...] Read more.
Background: Cannabis sativa L. (C. sativa) has a long history of medicinal use. Its inflorescences contain bioactive compounds like non-psychotropic cannabidiol (CBD), which is well known for its anti-inflammatory potential in skin conditions such as psoriasis, and psychotropic Δ-9-tetrahydrocannabinol (THC). Keratinocytes, the main cells in the epidermis, are crucial for regulating skin inflammation by producing mediators like IL-8 when stimulated by agents like TNFα. Methods: This study explores the anti-inflammatory effects of a standardized C. sativa extract (CSE) with 5% CBD and less than 0.2% THC in human keratinocytes challenged by TNFα. The aim of this study is to analyze the specific contributions of the main constituents of CSE to inflammatory responses in human keratinocytes by fractionating the extract and examining the effects of its individual components. Results: MTT assays showed that CSE was non-toxic to HaCaT cells up to 50 μg/mL. CSE inhibited NF-κB activity and reduced IL-8 secretion in a concentration-dependent manner, with mean IC50 values of 28.94 ± 10.40 μg/mL and 20.06 ± 2.78 μg/mL (mean ± SEM), respectively. Fractionation of CSE into four subfractions revealed that the more lipophilic fractions (A and B) were the most effective in inhibiting NF-κB, indicating that cannabinoids and cannflavins are key contributors. Pure CBD is one of the most active cannabinoids in reducing NF-κB-driven transcription (together with THC and cannabigerol), and due to its abundance in CSE, it is primarily responsible for the anti-inflammatory activity. Conclusions: This study highlights CBD’s significant role in reducing inflammation in human keratinocytes and underscores the need to consider the synergistic interactions of several molecules within C. sativa extracts for maximum efficacy. Standardized extracts are essential for reproducible results due to the variability in responses. Full article
Show Figures

Figure 1

26 pages, 3096 KiB  
Article
Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase
by Suwimon Sumontri, Wanna Eiamart, Sarin Tadtong and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(7), 3189; https://doi.org/10.3390/ijms26073189 - 29 Mar 2025
Viewed by 1310
Abstract
Alzheimer’s disease is characterized by the degeneration of cholinergic neurons, which is primarily driven by the acetylcholinesterase (AChE) enzyme and oxidative stress. This study investigated the therapeutic potential of the cannabis-containing herbal remedy Suk-Saiyasna in alleviating amyloid β42 (Aβ42)-induced cytotoxicity in SH-SY5Y cells. [...] Read more.
Alzheimer’s disease is characterized by the degeneration of cholinergic neurons, which is primarily driven by the acetylcholinesterase (AChE) enzyme and oxidative stress. This study investigated the therapeutic potential of the cannabis-containing herbal remedy Suk-Saiyasna in alleviating amyloid β42 (Aβ42)-induced cytotoxicity in SH-SY5Y cells. The DPPH radical-scavenging activity and inhibitory effects on AChE were evaluated in vitro. The AChE inhibitory potential of 167 ligands, including cannabinoids, flavonoids, terpenoids, and alkaloids derived from Suk-Saiyasna, was assessed using ADMET analysis and molecular docking techniques. The results demonstrated that the Suk-Saiyasna extract exhibited a DPPH radical scavenging effect with an IC50 value of 27.40 ± 1.15 µg/mL and notable AChE inhibitory activity with an IC50 of 1.25 ± 0.35 mg/mL. Importantly, at a concentration of 1 µg/mL, the extract significantly protected cells from Aβ42-induced stress compared to controls. Docking studies revealed that delta-9-tetrahydrocannabinol (Δ9-THC), mesuaferrone B, piperine, β-sitosterol, and chlorogenic acid exhibited substantial binding affinities to AChE, surpassing reference drugs like galantamine and rivastigmine. Furthermore, in silico ADMET predictions indicated that Δ9-THC and piperine possessed favorable pharmacokinetic profiles, including solubility, absorption, and blood–brain barrier permeability, with no neurotoxicity or carcinogenicity associated with Δ9-THC. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

13 pages, 1899 KiB  
Article
Cannabinoid Regulation of Murine Vaginal Secretion
by Natalia Murataeva, Sam Mattox, Kyle Yust and Alex Straiker
Biomolecules 2025, 15(4), 472; https://doi.org/10.3390/biom15040472 - 24 Mar 2025
Viewed by 581
Abstract
Tearing and salivation are wholly dependent on the activity of exocrine (lacrimal and salivary) glands, whereas vaginal moisture and secretion rely on a combination of exudation and exocrine secretion. Exocrine gland disorders impact millions, and women with Sjögren’s Syndrome often experience dry eye [...] Read more.
Tearing and salivation are wholly dependent on the activity of exocrine (lacrimal and salivary) glands, whereas vaginal moisture and secretion rely on a combination of exudation and exocrine secretion. Exocrine gland disorders impact millions, and women with Sjögren’s Syndrome often experience dry eye and mouth as well as vaginal dryness. Cannabis users’ complaints of dry eye and ‘cottonmouth’ are well-known, but some female cannabis users also report vaginal dryness. The regulation of vaginal secretion by the cannabinoid signaling system is essentially unstudied. We recently reported that despite their small size and nocturnal nature, laboratory mice have measurable basal vaginal moisture and pheromone-stimulated secretory responses that are regulated by circadian and estrous factors. We tested the regulation of vaginal moisture by cannabinoid CB1 receptors in this model. We now report that the cannabinoid receptor agonist CP55940 does not alter baseline vaginal moisture but prevents a stimulated secretory response due to a local peri-vaginal effect. Chronic intermittent CP55940 reduces basal vaginal moisture but also unmasks or induces a potentiating effect for CP55940, suggesting multiple sites of action. The acute and chronic effects likely occur via CB1 receptors. Δ9-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, a partial agonist at CB1, has no acute or chronic effects. In summary, strong acute activation of CB1 receptors in a murine model does not reduce vaginal moisture but does prevent a pheromone-stimulated vaginal secretory response. In contrast, chronic intermittent CB1 activation reduces baseline vaginal moisture. The extent to which these findings translate to humans remains to be determined. Full article
(This article belongs to the Special Issue Cannabinoids in Neurobehavioral Modulation)
Show Figures

Figure 1

Back to TopTop