Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = (meth)acrylate-based polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 7000 KB  
Review
Recent Advances in Combining Waterborne Acrylic Dispersions with Biopolymers
by Jordi Solera-Sendra, Nicholas Ballard, Luis J. del Valle and Lourdes Franco
Polymers 2025, 17(8), 1027; https://doi.org/10.3390/polym17081027 - 10 Apr 2025
Cited by 6 | Viewed by 4746
Abstract
Water-based (meth)acrylic (co)polymer dispersions are produced on a large scale for various applications including coatings, adhesives, paints, and construction materials. A major benefit of waterborne polymer dispersions as compared to more traditional solvent-based alternatives is the low volatile organic compound (VOC) content, which [...] Read more.
Water-based (meth)acrylic (co)polymer dispersions are produced on a large scale for various applications including coatings, adhesives, paints, and construction materials. A major benefit of waterborne polymer dispersions as compared to more traditional solvent-based alternatives is the low volatile organic compound (VOC) content, which results in an improved environmental profile. Following the trend of sustainability that has driven the growth of acrylic dispersions, recent research has focused on further enhancing the properties of these products by incorporating biobased materials such as polysaccharides (e.g., cellulose, starch, chitin, and chitosan), and proteins (e.g., casein, soy protein, and collagen). Amongst a large number of benefits, the incorporation of biomaterials can serve to decrease the amount of petroleum-based polymers in the formulation and can also contribute to enhance the physical properties of the resulting bio-composites. In this review, the beneficial role of these biopolymers when combined with waterborne acrylic systems is summarized. Recent advances in the use of these biobased and biodegradable materials are covered, aiming to provide guidance for the development of more sustainable, high-performance latex-based bio-composites with minimal environmental impact. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

15 pages, 5909 KB  
Article
Controlling the Dissolution Behavior of (Meth)acrylate-Based Photoresist Polymers in Tetramethylammonium Hydroxide by Introducing Adamantyl Groups
by Jinyoung Kim, Choong-Jae Lee, Dong-Gun Lee, Geon-Ho Lee, Jayoung Hyeon, Yura Choi and Namchul Cho
Materials 2025, 18(2), 381; https://doi.org/10.3390/ma18020381 - 15 Jan 2025
Viewed by 2713
Abstract
(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer. In this [...] Read more.
(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer. In this study, we synthesized two types of polymers to evaluate the impact of the developer on (meth)acrylate polymers for photoresist applications. Adamantyl methacrylate (AdMA) was selected as the hydrophobic group, while 2-ethoxyethyl acrylate (2-EEA) served as the hydrophilic group, enabling the synthesis of both hydrophilic and hydrophobic polymers. Our goal was to assess how the presence of adamantyl monomers influenced the solubility of the polymer. This study demonstrated that solubility was primarily influenced by functional groups, particularly hydrophobic groups, rather than other factors. Polymers with more than 50% hydrophobic groups can be effectively controlled for their solubility in TMAH. These findings show that the solubility of photoresist polymers in TMAH can be tuned by incorporating a high proportion of hydrophobic groups. The study further confirms the role of adamantyl monomers as effective hydrophobic (aliphatic) groups in modulating the solubility of (meth)acrylate polymers in developer solutions. Full article
Show Figures

Figure 1

17 pages, 949 KB  
Review
Polymer Concretes Based on Various Resins: Modern Research and Modeling of Mechanical Properties
by Aleksandr Palamarchuk, Pavel Yudaev and Evgeniy Chistyakov
J. Compos. Sci. 2024, 8(12), 503; https://doi.org/10.3390/jcs8120503 - 2 Dec 2024
Cited by 17 | Viewed by 4124
Abstract
This review is devoted to experimental studies and modeling in the field of mechanical and physical properties of polymer concretes and polymer-modified concretes. The review analyzes studies carried out over the past two years. The paper examines the properties of polymer concretes based [...] Read more.
This review is devoted to experimental studies and modeling in the field of mechanical and physical properties of polymer concretes and polymer-modified concretes. The review analyzes studies carried out over the past two years. The paper examines the properties of polymer concretes based on various polymer resins and presents the advantages and disadvantages of various models developed to predict the mechanical properties of materials. Based on data in the literature, the most promising polymers for use in the field of road surface repair are polymer concretes with poly(meth)acrylic resins. It was found that the most adequate and productive models are the deep machine learning model—using several hidden layers that perform calculations based on input parameters—and the extreme gradient boosting model. In particular, the extreme gradient boosting model showed high R2 values in forecasting (in the range of 0.916–0.981) when predicting damping coefficient and ultimate compressive strength. In turn, among the additives to Portland cement concrete, the most promising are natural polymers, such as mammalian gelatin and cold fish gelatin, and superabsorbent polymers. These additives allow for an improvement in compressive strength of 200% or more. The review may be of interest to engineers specializing in building construction, materials scientists involved in the development and implementation of new materials into production, as well as researchers in the interdisciplinary fields of chemistry and technology. Full article
(This article belongs to the Special Issue Research on Sustainable Cement-Based Composites)
Show Figures

Figure 1

14 pages, 1237 KB  
Article
Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber
by Dmitriy A. Sapozhnikov, Olga A. Melnik, Alexander V. Chuchalov, Roman S. Kovylin, Sergey A. Chesnokov, Dmitriy A. Khanin, Galina G. Nikiforova, Alexey F. Kosolapov, Sergey L. Semjonov and Yakov S. Vygodskii
Int. J. Mol. Sci. 2024, 25(10), 5494; https://doi.org/10.3390/ijms25105494 - 17 May 2024
Cited by 2 | Viewed by 1932
Abstract
The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. [...] Read more.
The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions. It was established that a fluorinated cardo copolyimide (FCPI) based on 2,2-bis-(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 9,9-bis-(4-aminophenyl)fluorene and 2,2-bis-(4-aminophenyl)hexafluoropropane (1.00:0.75:0.25 mol) has excellent solubility in di(met)acrylates. This made it possible to prepare solutions of FCPI in such monomers, to study the effect of FCPI on the kinetics of their photopolymerization in situ and the properties of the resulting polymers. According to the obtained data, the solutions of FCPI (23 wt.%) in 1,4-butanediol diacrylate (BDDA) and FCPI (15 wt.%) in tetraethylene glycol diacrylate were tested for the formation of the primary protective coatings of the silica optical fibers. It was found that the new coating of poly(BDDA–FCPI23%) can withstand prolonged annealing at 200 °C (72 h), which is comparable or superior to the known most thermally stable photo-curable coatings. The proposed approach can be applied to obtain other functional materials. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Polymers)
Show Figures

Figure 1

26 pages, 6879 KB  
Review
Bile Acid Sequestrants Based on Natural and Synthetic Gels
by Magdalena-Cristina Stanciu, Marieta Nichifor and Carmen-Alice Teacă
Gels 2023, 9(6), 500; https://doi.org/10.3390/gels9060500 - 19 Jun 2023
Cited by 13 | Viewed by 7016
Abstract
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small [...] Read more.
Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer–bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced. Full article
(This article belongs to the Special Issue Biofunctional Gels)
Show Figures

Figure 1

15 pages, 2747 KB  
Article
Self-Crosslinkable Pressure-Sensitive Adhesives from Silicone-(Meth)acrylate Telomer Syrups
by Mateusz Weisbrodt and Agnieszka Kowalczyk
Materials 2022, 15(24), 8924; https://doi.org/10.3390/ma15248924 - 14 Dec 2022
Cited by 4 | Viewed by 2773
Abstract
In this study, a novel and environmentally friendly method for the preparation of photoreactive pressure-sensitive adhesives (PSAs) was demonstrated. Adhesive binders based on n-butyl acrylate, methyl methacrylate, acrylic acid, and 4-acryloyloxy benzophenone were prepared with a UV-induced telomerization process in the presence of [...] Read more.
In this study, a novel and environmentally friendly method for the preparation of photoreactive pressure-sensitive adhesives (PSAs) was demonstrated. Adhesive binders based on n-butyl acrylate, methyl methacrylate, acrylic acid, and 4-acryloyloxy benzophenone were prepared with a UV-induced telomerization process in the presence of triethylsilane (TES) as a telogen and acylphosphine oxide (APO) as a radical photoinitiator. The influence of TES (0–10 wt. parts) and APO (0.05–0.1 wt. parts/100 wt. parts of monomer mixtures) concentrations on the UV telomerization process kinetics was investigated using a photodifferential scanning calorimetry method and selected physicochemical features of the obtained silicone-(met)acrylate telomeric syrups (K-value, solid content, glass-transition temperature, and dynamic viscosity), as well as properties of the obtained PSAs (Tg, adhesion, tack, and cohesion), were studied. An increase in TES content caused a significant decrease in the Tg values (approx. 10 °C) and K-value (up to approximately 25 a.u.) of the dry telomers, as well as the dynamic viscosity of the telomeric syrups. PSAs were obtained through UV irradiation of thin polymer films consisting only of silicone-(meth)acrylate telomer solutions (without the use of additional chemical modifiers or of a protective gas atmosphere and protective layers). PSAs were characterized by very good adhesion (12.4 N/25 mm), cohesion at 20 °C (>72 h) and 70 °C (>72 h), and low glass-transition temperature (−25 °C). Full article
(This article belongs to the Special Issue Mechanical Properties and Application of Adhesive Materials)
Show Figures

Figure 1

24 pages, 2484 KB  
Review
Tuning of Dielectric Properties of Polymers by Composite Formation: The Effect of Inorganic Fillers Addition
by Farah Deeba, Kriti Shrivastava, Minal Bafna and Ankur Jain
J. Compos. Sci. 2022, 6(12), 355; https://doi.org/10.3390/jcs6120355 - 22 Nov 2022
Cited by 22 | Viewed by 4570
Abstract
Polymer blend or composite, which is a combination of two or more polymers and fillers such as semiconductors, metals, metal oxides, salts and ceramics, are a synthesized product facilitating improved, augmented or customized properties, and have widespread applications for the achievement of functional [...] Read more.
Polymer blend or composite, which is a combination of two or more polymers and fillers such as semiconductors, metals, metal oxides, salts and ceramics, are a synthesized product facilitating improved, augmented or customized properties, and have widespread applications for the achievement of functional materials. Polymer materials with embedded inorganic fillers are significantly appealing for challenging and outstanding electric, dielectric, optical and mechanical applications involving magnetic features. In particular, a polymer matrix exhibiting large values of dielectric constant (ε′) with suitable thermal stability and low dielectric constant values of polymer blend, having lesser thermal stability, together offer significant advantages in electronic packaging and other such applications in different fields. In this review paper, we focused on the key factors affecting the dielectric properties and its strength in thin film of inorganic materials loaded poly methyl meth acrylate (PMMA) based polymer blend (single phase) or composites (multiple phase), and its consequences at low and high frequencies are explored. A wide range of different types of PMMA based polymer blends or composites, which are doped with different fillers, have been synthesized with specific tailoring of their dielectric behavior and properties. A few of them are discussed in this manuscript, with their different preparation techniques, and exploring new ideas for modified materials. Full article
(This article belongs to the Special Issue Polymeric Composites Reinforced with Natural Fibers and Nanofillers)
Show Figures

Figure 1

13 pages, 1354 KB  
Article
Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties
by Kathleen Hennig and Wolfdietrich Meyer
Molecules 2022, 27(13), 4027; https://doi.org/10.3390/molecules27134027 - 23 Jun 2022
Cited by 10 | Viewed by 4645
Abstract
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization [...] Read more.
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 2956 KB  
Article
Biobased Composites by Photoinduced Polymerization of Cardanol Methacrylate with Microfibrillated Cellulose
by Alessandra Vitale, Samantha Molina-Gutiérrez, W. S. Jennifer Li, Sylvain Caillol, Vincent Ladmiral, Patrick Lacroix-Desmazes and Sara Dalle Vacche
Materials 2022, 15(1), 339; https://doi.org/10.3390/ma15010339 - 4 Jan 2022
Cited by 13 | Viewed by 3691
Abstract
Biobased monomers and green processes are key to producing sustainable materials. Cardanol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized, e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced polymerization is recognized as a sustainable process, less [...] Read more.
Biobased monomers and green processes are key to producing sustainable materials. Cardanol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized, e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced polymerization is recognized as a sustainable process, less energy intensive than thermal curing; however, cardanol-based UV-cured polymers have relatively low thermomechanical properties, making them mostly suitable as reactive diluents or in non-structural applications such as coatings. It is therefore convenient to combine them with biobased reinforcements, such as microfibrillated cellulose (MFC), to obtain composites with good mechanical properties. In this work a cardanol-based methacrylate monomer was photopolymerized in the presence of MFC to yield self-standing, flexible, and relatively transparent films with high thermal stability. The polymerization process was completed within few minutes even in the presence of filler, and the cellulosic filler was not affected by the photopolymerization process. Full article
(This article belongs to the Special Issue Photofabrication of Biobased Polymers and Composites)
Show Figures

Graphical abstract

19 pages, 17024 KB  
Article
Ionic Inter-Particle Complexation Effect on the Performance of Waterborne Coatings
by Maialen Argaiz, Fernando Ruipérez, Miren Aguirre and Radmila Tomovska
Polymers 2021, 13(18), 3098; https://doi.org/10.3390/polym13183098 - 14 Sep 2021
Cited by 31 | Viewed by 3335
Abstract
The performance of waterborne (meth)acrylic coatings is critically affected by the film formation process, in which the individual polymer particles must join to form a continuous film. Consequently, the waterborne polymers present lower performance than their solvent-borne counter-polymers. To decrease this effect, in [...] Read more.
The performance of waterborne (meth)acrylic coatings is critically affected by the film formation process, in which the individual polymer particles must join to form a continuous film. Consequently, the waterborne polymers present lower performance than their solvent-borne counter-polymers. To decrease this effect, in this work, ionic complexation between oppositely charged polymer particles was introduced and its effect on the performance of waterborne polymer films was studied. The (meth)acrylic particles were charged by the addition of a small amount of ionic monomers, such as sodium styrene sulfonate and 2-(dimethylamino)ethyl methacrylate. Density functional theory calculations showed that the interaction between the selected main charges of the respective functional monomers (sulfonate–amine) is favored against the interactions with their counter ions (sulfonate–Na and amine–H). To induce ionic complexation, the oppositely charged latexes were blended, either based on the same number of charges or the same number of particles. The performance of the ionic complexed coatings was determined by means of tensile tests and water uptake measurements. The ionic complexed films were compared with reference films obtained at pH at which the cationic charges were in neutral form. The mechanical resistance was raised slightly by ionic bonding between particles, producing much more flexible films, whereas the water penetration within the polymeric films was considerably hindered. By exploring the process of polymer chains interdiffusion using Fluorescence Resonance Energy Transfer (FRET) analysis, it was found that the ionic complexation was established between the particles, which reduced significantly the interdiffusion process of polymer chains. The presented ionic complexes of sulfonate–amine functionalized particles open a promising approach for reinforcing waterborne coatings. Full article
Show Figures

Graphical abstract

21 pages, 5422 KB  
Article
Novel Multifunctional Epoxy (Meth)Acrylate Resins and Coatings Preparation via Cationic and Free-Radical Photopolymerization
by Paulina Bednarczyk, Izabela Irska, Konrad Gziut and Paula Ossowicz-Rupniewska
Polymers 2021, 13(11), 1718; https://doi.org/10.3390/polym13111718 - 24 May 2021
Cited by 31 | Viewed by 5663
Abstract
In this work, a series of novel multifunctional epoxy (meth)acrylate resins based on a low-viscosity aliphatic triepoxide triglycidyl ether of trimethylolethane (TMETGE) and acrylic acid (AA) or methacrylic acid (MMA) have been synthesized. Thanks to the performed modification, the obtained prepolymers have both [...] Read more.
In this work, a series of novel multifunctional epoxy (meth)acrylate resins based on a low-viscosity aliphatic triepoxide triglycidyl ether of trimethylolethane (TMETGE) and acrylic acid (AA) or methacrylic acid (MMA) have been synthesized. Thanks to the performed modification, the obtained prepolymers have both epoxides as well as carbon–carbon double bonds and differ in their amount. The obtained results indicate that the carboxyl-epoxide addition esterification occurs in the presence of a catalyst (triphenylphosphine) at a temperature of 90 °C, whilst the required degree of conversion can be achieved simply by varying both the reagents ratio and reaction time. The structure of synthesized copolymers was confirmed by spectroscopic analyses (FT-IR, 1H NMR, 13C NMR) and studied regarding its nonvolatile matter content (NV), acid value (PAVs), as well as its epoxy equivalent value (EE). Due to the presence of both epoxy and double carbon–carbon pendant groups, one can apply two distinct mechanisms: (i) cationic ring-opening polymerization or (ii) free-radical polymerization to crosslink polymer chains. Synthesized epoxy (meth)acrylate prepolymers were further employed to formulate photocurable coating compositions. Hence, when cationic photoinitiators were applied, polyether-type polymer chains with pending acrylate or methacrylate groups were formed. In the case of free-radical polymerization, epoxy (meth)acrylates certainly formed a poly(meth)acrylate backbone with pending epoxy groups. Further, photopolymerization behavior and properties of cured coatings were investigated regarding some structural factors and parameters. Moreover, reaction rate coefficients of photo-cross-linking by both cationic ring-opening and free-radical photopolymerization of the received epoxy (meth)acrylate resins were determined via real-time infrared spectroscopy (RT-IR). Lastly, basic physicomechanical properties, such as tack-free time, hardness, adhesion, gloss, and yellowness index of cured coatings, were evaluated. Full article
(This article belongs to the Special Issue State-of-the-Art Photopolymerization Technology)
Show Figures

Graphical abstract

27 pages, 8910 KB  
Review
Implantation of Recyclability and Healability into Cross-Linked Commercial Polymers by Applying the Vitrimer Concept
by Mikihiro Hayashi
Polymers 2020, 12(6), 1322; https://doi.org/10.3390/polym12061322 - 10 Jun 2020
Cited by 105 | Viewed by 16883
Abstract
Vitrimers are a new class of cross-linked materials that are capable of network topology alternation through the associative dynamic bond-exchange mechanism, which has recently been invented to solve the problem of conventional cross-linked materials, such as poor recyclability and healability. Thus far, the [...] Read more.
Vitrimers are a new class of cross-linked materials that are capable of network topology alternation through the associative dynamic bond-exchange mechanism, which has recently been invented to solve the problem of conventional cross-linked materials, such as poor recyclability and healability. Thus far, the concept of vitrimers has been applied to various commercial polymers, e.g., polyesters, polylactides, polycarbonates, polydimethylsiloxanes, polydienes, polyurethanes, polyolefins, poly(meth)acrylates, and polystyrenes, by utilizing different compatible bond-exchange reactions. In this review article, the concept of vitrimers is described by clarifying the difference from thermoplastics and supramolecular systems; in addition, the term “associative bond-exchange” in vitrimers is explained by comparison with the “dissociative” term. Several useful functions attained by the vitrimer concept (including recyclability and healability) are demonstrated, and recent molecular designs of vitrimers are classified into groups depending on the types of molecular frameworks. This review specifically focuses on the vitrimer molecular designs with commercial polymer-based frameworks, which provide useful hints for the practical application of the vitrimer concept. Full article
(This article belongs to the Special Issue In-Situ Forming and Self-Healing Hydrogels)
Show Figures

Graphical abstract

14 pages, 1481 KB  
Article
Surface Segregation of Amphiphilic PDMS-Based Films Containing Terpolymers with Siloxane, Fluorinated and Ethoxylated Side Chains
by Elisa Martinelli, Elisa Guazzelli, Antonella Glisenti and Giancarlo Galli
Coatings 2019, 9(3), 153; https://doi.org/10.3390/coatings9030153 - 26 Feb 2019
Cited by 14 | Viewed by 4860
Abstract
(Meth)acrylic terpolymers carrying siloxane (Si), fluoroalkyl (F) and ethoxylated (EG) side chains were synthesized with comparable molar compositions and different lengths of the Si and EG side chains, while the length of the fluorinated side chain was kept constant. Such terpolymers were used [...] Read more.
(Meth)acrylic terpolymers carrying siloxane (Si), fluoroalkyl (F) and ethoxylated (EG) side chains were synthesized with comparable molar compositions and different lengths of the Si and EG side chains, while the length of the fluorinated side chain was kept constant. Such terpolymers were used as surface-active modifiers of polydimethylsiloxane (PDMS)-based films with a loading of 4 wt%. The surface chemical compositions of both the films and the pristine terpolymers were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS) at different photoemission angles. The terpolymer was effectively segregated to the polymer−air interface of the films independent of the length of the constituent side chains. However, the specific details of the film surface modification depended upon the chemical structure of the terpolymer itself. The exceptionally high enrichment in F chains at the surface caused the accumulation of EG chains at the surface as well. The response of the films to the water environment was also proven to strictly depend on the type of terpolymer contained. While terpolymers with shorter EG chains appeared not to be affected by immersion in water for seven days, those containing longer EG chains underwent a massive surface reconstruction. Full article
(This article belongs to the Special Issue Surface Chemical Modification)
Show Figures

Graphical abstract

11 pages, 3268 KB  
Article
3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering
by Nehar Celikkin, Joan Simó Padial, Marco Costantini, Hans Hendrikse, Rebecca Cohn, Christopher J. Wilson, Alan Edward Rowan and Wojciech Święszkowski
Polymers 2018, 10(5), 555; https://doi.org/10.3390/polym10050555 - 21 May 2018
Cited by 45 | Viewed by 8778
Abstract
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D [...] Read more.
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D deposit, a new class of fully-synthetic, biocompatible PolyIsoCyanide (PIC) hydrogels that exhibit a reverse gelation temperature close to physiological conditions (37 °C). Being fully-synthetic, PIC hydrogels are particularly attractive for tissue engineering, as their properties—such as hydrogel stiffness, polymer solubility, and gelation kinetics—can be precisely tailored according to process requirements. Here, for the first time, we demonstrate the feasibility of both 3D printing PIC hydrogels and of creating dual PIC-Gelatin MethAcrylate (GelMA) hydrogel systems. Furthermore, we propose the use of PIC as fugitive hydrogel to template structures within GelMA hydrogels. The presented approach represents a robust and valid alternative to other commercial thermosensitive systems—such as those based on Pluronic F127—for the fabrication of 3D hydrogels through additive manufacturing technologies to be used as advanced platforms in tissue engineering. Full article
(This article belongs to the Special Issue Microgels and Hydrogels at Interfaces)
Show Figures

Figure 1

16 pages, 952 KB  
Article
3D Printable Biophotopolymers for in Vivo Bone Regeneration
by Guenter Russmueller, Robert Liska, Juergen Stampfl, Christian Heller, Andreas Mautner, Karin Macfelda, Barbara Kapeller, Roman Lieber, Agnes Haider, Kathrin Mika, Christian Schopper, Christos Perisanidis, Rudolf Seemann and Doris Moser
Materials 2015, 8(6), 3685-3700; https://doi.org/10.3390/ma8063685 - 19 Jun 2015
Cited by 23 | Viewed by 7756
Abstract
The present study investigated two novel biophotopolymer classes that are chemically based on non-toxic poly (vinyl alcohol). These vinylesters and vinylcarbonates were compared to standard acrylates in vitro on MC3T3-E1 cells and in vivo in a small animal model. In vitro, both [...] Read more.
The present study investigated two novel biophotopolymer classes that are chemically based on non-toxic poly (vinyl alcohol). These vinylesters and vinylcarbonates were compared to standard acrylates in vitro on MC3T3-E1 cells and in vivo in a small animal model. In vitro, both vinylester and vinylcarbonate monomers showed about tenfold less cytotoxicity when compared to acrylates (IC50: 2.922 mM and 2.392 mM vs. 0.201 mM) and at least threefold higher alkaline phosphatase activity (17.038 and 18.836 vs. 5.795, measured at [10 mM]). In vivo, polymerized 3D cellular structures were implanted into the distal femoral condyle of 16 New Zealand White Rabbits and were observed for periods from 4 to 12 weeks. New bone formation and bone to implant contact was evaluated by histomorphometry at end of observation. Vinylesters showed similar rates of new bone formation but significantly less (p = 0.002) bone to implant contact, when compared to acrylates. In contrast, the implantation of vinylcarbonate based biophotopolymers led to significantly higher rates of newly formed bone (p < 0.001) and bone to implant contact (p < 0.001). Additionally, distinct signs of polymer degradation could be observed in vinylesters and vinylcarbonates by histology. We conclude, that vinylesters and vinylcarbonates are promising new biophotopolymers, that outmatch available poly(lactic acid) and (meth)acrylate based materials. Full article
(This article belongs to the Special Issue Novel Bone Substitute Materials)
Show Figures

Figure 1

Back to TopTop