Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = (bio)herbicide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1106 KiB  
Article
Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone
by Magdalena Dziągwa-Becker, Marta Oleszek, Aleksandra Ukalska-Jaruga, Mariusz Kucharski, Weronika Kozłowska, Marcel Białas and Sylwia Zielińska
Appl. Sci. 2025, 15(13), 7409; https://doi.org/10.3390/app15137409 - 1 Jul 2025
Viewed by 229
Abstract
The excessive use of synthetic pesticides has not only resulted in increased resistance among weeds and pests, leading to significant economic loss, but has also raised serious health and environmental concerns. Chalcones and their derivatives, known for their herbicidal, fungicidal, bactericidal, and antiviral [...] Read more.
The excessive use of synthetic pesticides has not only resulted in increased resistance among weeds and pests, leading to significant economic loss, but has also raised serious health and environmental concerns. Chalcones and their derivatives, known for their herbicidal, fungicidal, bactericidal, and antiviral properties, are emerging as promising bio-based candidates. These naturally occurring compounds have long been recognized for their beneficial health effects and wide-range applications. However, their limited concentration in plants, along with poor solubility and bioavailability, brings challenges for their development. The aim of this study was to examine the properties of a synthetic substance, pinocembrin dihydrochalcone (3-phenyl-1-(2,4,6-trihydroxyphenyl)-1-propanone), including its soil dissipation and adsorption. Additionally, we evaluated its antioxidant activity through the DPPH assay and FRAP experiments. This analysis aims to provide insights into its potential classification as a low risk pesticide. Full article
Show Figures

Figure 1

15 pages, 4602 KiB  
Article
Electrochemical Sensing of Metribuzin Utilizing the Synergistic Effects of Cationic and Anionic Bio-Polymers with Hetero-Doped Carbon
by Thirukumaran Periyasamy, Shakila Parveen Asrafali, Seong-Cheol Kim and Jaewoong Lee
Polymers 2025, 17(1), 39; https://doi.org/10.3390/polym17010039 - 27 Dec 2024
Cited by 1 | Viewed by 781
Abstract
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with [...] Read more.
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ). The PBC-ACH sensor presents multiple advantages, including ease of fabrication, excellent biocompatibility, and low-cost production, making it suitable for various applications. In optimized experimental conditions, the sensor was fabricated by modifying a glassy carbon electrode (GCE) with the PBC-ACH complex, resulting in the creation of a GCE/PBC-ACH electrode. This modified electrode demonstrated the ability to detect MTZ at nanomolar levels, with an LoD of 13.04 nM, showcasing a high sensitivity of 1.40 µA µM−1 cm−2. Moreover, the GCE/PBC-ACH sensor exhibited remarkable selectivity, stability, and reproducibility in terms of its electrochemical performance, which are essential features for reliable sensing applications. The potential mechanism behind the detection of MTZ using the GCE/PBC-ACH sensor was investigated thoroughly, providing insights into its sensing behavior. Additionally, tests on real samples validated the sensor’s practicality and efficiency in detecting specific analytes. These findings emphasize the potential of the GCE/PBC-ACH sensor as a highly effective electrochemical sensor, with promising applications in environmental monitoring and other fields requiring precise analyte detection. Full article
Show Figures

Figure 1

22 pages, 3697 KiB  
Article
Plant Growth-Promoting and Herbicidal Bacteria as Potential Bio-Based Solutions for Agriculture in Desertic Regions
by Patricio Muñoz-Torres, Wilson Huanca-Mamani, Steffany Cárdenas-Ninasivincha, Yola Aguilar, Antonio Quezada and Franco Bugueño
Plants 2025, 14(1), 9; https://doi.org/10.3390/plants14010009 - 24 Dec 2024
Viewed by 718
Abstract
The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor [...] Read more.
The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3. These bacteria possess in vitro plant growth-promoting traits, the ability to produce hydrolytic enzymes, and the capacity to inhibit phytopathogenic fungi. Moreover, they can tolerate different concentrations of NaCl and boron, making them suitable for developing new agricultural bioproducts for arid environments. The bacterial strains A3 and A20 have a positive effect on the growth of the aerial part of tomato plants (increased stem length, fresh and dry weight), with a significant increment in proline concentration and chlorophyll A and B content under saline conditions. Meanwhile, the strains J19 and TP22 exhibit herbicidal activity against Cenchrus echinatus by reducing root elongation and germination of the weed. These strains possess plant growth-promoting traits and improve plant resistance to salinity stress. They are promising candidates for developing innovative bio-based agricultural products suited to arid and semi-arid regions. Full article
(This article belongs to the Special Issue Plant–Microbe Interaction)
Show Figures

Figure 1

13 pages, 932 KiB  
Article
Effect of Bio-Herbicide Application on Durum Wheat Quality: From Grain to Bread Passing through Wholemeal Flour
by Umberto Anastasi, Alfio Spina, Paolo Guarnaccia, Michele Canale, Rosalia Sanfilippo, Silvia Zingale, Giorgio Spina, Andrea Comparato and Alessandra Carrubba
Plants 2024, 13(20), 2859; https://doi.org/10.3390/plants13202859 - 12 Oct 2024
Viewed by 1429
Abstract
Using plant extracts to replace traditional chemical herbicides plays an essential role in sustainable agriculture. The present work evaluated the quality of durum wheat cv Valbelice in two years (2014 and 2016) using plant aqueous extracts of sumac (Rhus coriaria L.) and [...] Read more.
Using plant extracts to replace traditional chemical herbicides plays an essential role in sustainable agriculture. The present work evaluated the quality of durum wheat cv Valbelice in two years (2014 and 2016) using plant aqueous extracts of sumac (Rhus coriaria L.) and mugwort (Artemisia arborescens L.) as bio-herbicides on the main quality characteristics of durum wheat. The untreated, water-treated, and chemically treated durum wheat products were also analyzed as controls. Following the official methodologies, grain commercial analyses and defects of the kernels were determined. The main chemical and technological features were determined on the wholemeal flour: proteins, dry matter, dry gluten, gluten index, colorimetric parameters, mixograph, falling number, and sedimentation test in SDS. An experimental bread-making test was performed, and the main parameters were detected on the breads: bread volume, weight, moisture, porosity, hardness, and colorimetric parameters on crumb and crust. Within the two years, grain commercial analyses of the total five treatments showed no statistically significant differences concerning test weight (range 75.47–84.33 kg/hL) and thousand kernel weight (range 26.58–35.36 kg/hL). Differently, significant differences were observed in terms of kernel defects, particularly starchy kernels, black pointed kernels, and shrunken kernels, mainly due to the year factor. Analyses on the whole-grain flours showed significant differences. This affected dry gluten content (7.35% to 16.40%) and gluten quality (gluten index from 6.44 to 45.81). Mixograph results for mixing time ranged from 1.90 min to 3.15 min, whilst a peak dough ranged from 6.83 mm to 9.85 mm, showing, in both cases, statistically significant differences between treatments. The falling number showed lower values during the first year (on average 305 s) and then increased in the second year (on average 407 s). The sedimentation test showed no statistically significant differences, ranging from 27.75 mm to 34.00 mm. Regarding the bread produced, statistically significant year-related differences were observed for the parameters loaf volume during the first year (on average 298.75 cm3) and then increased in the second year (on average 417.33 cm3). Weight range 136.85 g to 145.18 g and moisture range 32.50 g/100 g to 39.51 g/100 g. Hardness range 8.65 N to 12.75 N and porosity (range 5.00 to 8.00) were closely related to the type of treatment. Finally, the color of flour and bread appeared to be not statistically significantly affected by treatment type. From a perspective of environmental and economic sustainability, the use of plant extracts with a bio-herbicidal function could replace traditional chemical herbicides. Full article
(This article belongs to the Special Issue Advanced in Cereal Science and Cereal Quality, Volume 2)
Show Figures

Figure 1

13 pages, 928 KiB  
Article
Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides
by Rym Boukhalfa, Claudia Ruta, Saida Messgo-Moumene, Generosa J. Calabrese, Maria Pia Argentieri and Giuseppe De Mastro
Agronomy 2024, 14(9), 2077; https://doi.org/10.3390/agronomy14092077 - 11 Sep 2024
Cited by 3 | Viewed by 1032
Abstract
This study focused on the evaluation of the phytotoxic activity of four essential oils (EOs) from the Mediterranean species of Thymus sp. pl., namely Thymus algeriensis Boiss. et Reut., T. ciliatus Desf. subspecies coloratus (Boiss. et Reut.) Batt., T. vulgaris L. ecotype Fasano [...] Read more.
This study focused on the evaluation of the phytotoxic activity of four essential oils (EOs) from the Mediterranean species of Thymus sp. pl., namely Thymus algeriensis Boiss. et Reut., T. ciliatus Desf. subspecies coloratus (Boiss. et Reut.) Batt., T. vulgaris L. ecotype Fasano and T. vulgaris cultivar L. Varico 3, to identify new biomolecules with herbicide potential. The chemical characterization of EOs was performed by GC-MS. The evaluation of the phytotoxicity of the EOs was conducted under in vitro conditions, and the inhibition of germination and seedling growth of Lolium perenne L. and Amaranthus retroflexus L. were assessed. Five concentrations (100, 250, 500, 750 and 1000 µL/100 mL) were considered. Phytochemical analysis revealed a great diversity of compounds. T. algeriensis and T. ciliatus EOs were characterized by the absence of carvacrol and a low content of thymol in T. ciliatus. On the contrary, T. vulgaris ecotype Fasano and T. vulgaris cultivar Varico 3 were characterized by an important content of p-cymene, thymol and carvacrol. All the EOs expressed a potent phytotoxic activity against the tested species. The total inhibition of seed germination and seedling growth were recorded for the highest concentrations of all the EOs. T. vulgaris ecotype Fasano expressed the most effective activity. Full article
Show Figures

Figure 1

13 pages, 2986 KiB  
Article
Extracts of Senecio brasiliensis and Solanum viarum as Potential Antifungal and Bioherbicidal Agents
by Tassia C. Confortin, Izelmar Todero, Luciana Luft, Silvana Schmaltz, João H. C. Wancura, Maicon S. N. dos Santos, Thiarles Brun, Marcio A. Mazutti, Giovani L. Zabot, Crisleine P. Draszewski, Ederson R. Abaide and Marcus V. Tres
Processes 2024, 12(6), 1208; https://doi.org/10.3390/pr12061208 - 12 Jun 2024
Viewed by 1462
Abstract
Ultrasound-assisted extraction is an interesting tool for obtaining bioactive compounds from plant matrices applicable as agricultural bio-inputs, as it increases the extraction efficiency, reducing the process time and the use of solvents. This technique uses ultrasonic waves to break down plant cell walls, [...] Read more.
Ultrasound-assisted extraction is an interesting tool for obtaining bioactive compounds from plant matrices applicable as agricultural bio-inputs, as it increases the extraction efficiency, reducing the process time and the use of solvents. This technique uses ultrasonic waves to break down plant cell walls, releasing bioactive compounds quickly and effectively and promoting a sustainable path to obtaining bio-inputs. Accordingly, this research study reports pioneering results regarding the herbicidal and fungicidal potential of different extracts obtained from Senecio brasiliensis (samples from flowers, leaves, and stalks) and Solanum viarum (samples from fruits and roots), two weeds typically found in rural areas of South America. The fungicidal activity of the samples was tested on two fungi, i.e., Fusarium graminearum and Sclerotinia sclerotiorum, while the herbicidal action of the extracts was evaluated in pre-emergence tests in cucumber (Cucumis sativus) seeds. The successful results indicated a high antifungal and herbicidal potential of the extracts obtained for both weeds, with the inhibitory effect against both fungi achieving up to 82%, and the inhibition of C. sativus seed germination reaching 100% for all samples. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

14 pages, 2323 KiB  
Article
Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage
by Marwa Douibi, María José Carpio, María Sonia Rodríguez-Cruz, María J. Sánchez-Martín and Jesús M. Marín-Benito
Processes 2024, 12(4), 827; https://doi.org/10.3390/pr12040827 - 19 Apr 2024
Cited by 3 | Viewed by 2280
Abstract
This study evaluated the changes in microbial activity in the course of time following the joint application of the herbicides S-metolachlor, foramsulfuron, and thiencarbazone-methyl to two soils (S1 and S2) under conventional tillage (CT) and non-tillage (NT) management in field conditions. The biochemical [...] Read more.
This study evaluated the changes in microbial activity in the course of time following the joint application of the herbicides S-metolachlor, foramsulfuron, and thiencarbazone-methyl to two soils (S1 and S2) under conventional tillage (CT) and non-tillage (NT) management in field conditions. The biochemical parameters of soil respiration (RES), dehydrogenase activity (DHA), microbial biomass (BIO), and the phospholipid fatty acid (PLFA) profile were determined at 1, 34, and 153 days during herbicide dissipation. In the absence of herbicides, all microbial activity was higher under NT than CT conditions, with higher or similar mean values for S1 compared to S2. A continuous decrease was detected for RES, while DHA and BIO recovered over time. In the presence of herbicides, a greater decrease in all microbial activity was detected, although the changes followed a similar trend to the one recorded without herbicides. In general, a greater decrease was observed in S1 than in S2, possibly due to the higher adsorption and/or lower bioavailability of herbicides in this soil with a higher organic carbon content. The decrease was also greater under CT conditions than under NT conditions because the herbicides can be intercepted by the mulch, with less reaching the soil. These changes involved evolution of the structure of the microbial community. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

16 pages, 2554 KiB  
Article
Innovations in Agricultural Bio-Inputs: Commercial Products Developed in Argentina and Brazil
by Gabriel da Silva Medina, Rosana Rotondo and Gustavo Rubén Rodríguez
Sustainability 2024, 16(7), 2763; https://doi.org/10.3390/su16072763 - 27 Mar 2024
Cited by 8 | Viewed by 6489
Abstract
Innovations in agricultural bio-inputs can lead to sustainable alternatives to replace synthetic fertilizers and pesticides. However, there is no clear understanding of what technologies can become available to farmers as commercial products, particularly in developing countries. This study summarizes the innovations used in [...] Read more.
Innovations in agricultural bio-inputs can lead to sustainable alternatives to replace synthetic fertilizers and pesticides. However, there is no clear understanding of what technologies can become available to farmers as commercial products, particularly in developing countries. This study summarizes the innovations used in commercial products in Argentina and Brazil based on the countries’ official data and on in-depth surveys conducted with 14 bio-input private companies. The results reveal ongoing development efforts to improve traditional products, such as inoculants that help plants fix nitrogen. There is also progress in mastering the formulation of new bio-inputs, such as bio-fertilizers that promote plant growth and bio-pesticides for pest control. Lastly, the next generation of bio-inputs composed of phytovaccines promises to help prepare plants’ immune systems against the attack of pathogenic fungi and bacteria, while bio-herbicides can potentially reduce the use of synthetic herbicides to prepare fields for harvest. Domestic companies based in Argentina and Brazil play an important role in these innovations that can underpin bio-economy growth in developing countries. Full article
(This article belongs to the Special Issue Agricultural Economic Transformation and Sustainable Development)
Show Figures

Figure 1

14 pages, 3214 KiB  
Review
Verticillium Species as an Ecofriendly Alternative to Manage the Invasive Tree Ailanthus altissima (Mill.) Swingle
by Claudia Pisuttu
Forests 2024, 15(3), 462; https://doi.org/10.3390/f15030462 - 1 Mar 2024
Viewed by 1772
Abstract
Environmental pollution, unintended harm to beneficial organisms, and the development of herbicide resistance among weeds are the main consequences of the massive and consistent use of chemical herbicides in recent decades. The growing need for alternative solutions has been reinforced by restrictive policies, [...] Read more.
Environmental pollution, unintended harm to beneficial organisms, and the development of herbicide resistance among weeds are the main consequences of the massive and consistent use of chemical herbicides in recent decades. The growing need for alternative solutions has been reinforced by restrictive policies, leading to a search for natural herbicidal candidates. Mycoherbicides, formulations containing plant pathogenic fungi, are viewed as promising substitutes for chemical herbicides. In the case of Ailanthus altissima (Mill.) Swingle, one of the worst invasive alien tree species in the world, Verticillium-based mycoherbicides offer a viable method for control, inducing a lethal wilt disease and leading plants to death within a few years. The demonstrated significant effectiveness enables addressing challenges posed by other—conventional—approaches. The current analysis matches key internal (strengths and weaknesses) and external factors (opportunities and threats) of Verticillium Nees isolates as environmentally-friendly control agents against the invasive A. altissima, by listing each singularly and then crossing them among the categories, drawing from the collaborative efforts of American, Austrian, and Italian research teams. Full article
(This article belongs to the Topic Mediterranean Biodiversity)
Show Figures

Figure 1

22 pages, 7056 KiB  
Article
Activated Carbon Fabricated from Biomass for Adsorption/Bio-Adsorption of 2,4-D and MCPA: Kinetics, Isotherms, and Artificial Neural Network Modeling
by Raid Alrowais, Mahmoud M. Abdel daiem, Basheer M. Nasef and Noha Said
Sustainability 2024, 16(1), 299; https://doi.org/10.3390/su16010299 - 28 Dec 2023
Cited by 10 | Viewed by 2079
Abstract
Adsorption is an effective and economical alternative to remove herbicides from polluted water. The aim of this study is to investigate the adsorption of the most common herbicides (2,4-dichlorophenoxy-acetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA)) onto activated carbon (AC) fabricated from wheat straw [...] Read more.
Adsorption is an effective and economical alternative to remove herbicides from polluted water. The aim of this study is to investigate the adsorption of the most common herbicides (2,4-dichlorophenoxy-acetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA)) onto activated carbon (AC) fabricated from wheat straw under different conditions. The adsorption of MCPA and 2,4-D onto the selected AC (CLW) and the effects of the ionic strength, the solution pH, and the presence of microorganisms in the medium were investigated. The results showed that the selected AC had a high surface area (1437 m2/g). The adsorption rate increased with an increase in the AC mass. The selected AC had a higher adsorption capacity (1.32 mmol/g) for 2,4-D compared to MCPA (0.76 mmol/g). The adsorption of 2,4-D and MCPA was not affected by variation in the solution pH. However, the presence of electrolytes exerted a major effect on adsorption. The presence of microorganisms enhanced adsorption onto the AC by 17% and 32% for 2,4-D and MCPA, respectively. Moreover, a radial basis function neural network (RBFNN) was employed to accurately predict the adsorption capacity based on the pollutant type, carbon dose, initial concentration, pH, ionic strength, and presence of bacteria. The RBFNN showed excellent accuracy in predicting the adsorption capacity, with an R2 value of 0.96 and a root mean square error (RMSE) of 0.054. These findings showed that the AC fabricated from biomass residues of wheat straw is a promising option to recycle this type of biomass waste and reduce environmental threats, consequently contributing to achieving sustainability. Full article
Show Figures

Figure 1

17 pages, 5828 KiB  
Article
Valorisation of Cranberry Residues through Pyrolysis and Membrane Filtration for the Production of Value-Added Agricultural Products
by Ghita Bennani, Adama Ndao, Delon Konan, Patrick Brassard, Étienne Le Roux, Stéphane Godbout and Kokou Adjallé
Energies 2023, 16(23), 7774; https://doi.org/10.3390/en16237774 - 25 Nov 2023
Cited by 6 | Viewed by 1862
Abstract
Pyrolysis is a thermochemical conversion process producing biochar, gas, and bio-oil at high temperatures in an oxygen-free environment. Specific pyrolysis conditions enable a significant production of the aqueous phase of bio-oil, commonly known as wood vinegar. Wood vinegar contains organic compounds such as [...] Read more.
Pyrolysis is a thermochemical conversion process producing biochar, gas, and bio-oil at high temperatures in an oxygen-free environment. Specific pyrolysis conditions enable a significant production of the aqueous phase of bio-oil, commonly known as wood vinegar. Wood vinegar contains organic compounds such as acetic acid and phenols derived from bio-oil. These compounds have herbicidal properties against weeds and biostimulant properties for plant growth. This study reveals the potential for efficient management of cranberry residues consisting of stems and leaves by producing wood vinegar through pyrolysis at 475 °C with a humidity level of 20%. Membrane separation of wood vinegar, using nanofiltration (NF) and reverse osmosis (RO) membranes, yielded phenols in the retentate and acetic acid in the permeate with respective yields of 44.7% with NF membrane and 45% with RO membrane. Biostimulation tests using 2% of the retentate showed significant germination rates for basil, sage, and parsley plants. Additionally, using 40 mL of the wood vinegar permeate (30 mL injected at the base and 10 mL sprayed on the leaves) resulted in leaf damage, measured by conductivity (leakage of electrolytes released by the leaves), of 62.3% and 20.5% respectively for quack grass and white clover, two weeds found in cranberry production. Full article
(This article belongs to the Special Issue Environmental Applications of Bioenergy and Biomass)
Show Figures

Figure 1

18 pages, 24894 KiB  
Article
Reconstructing the Invasive History and Potential Distribution Prediction of Amaranthus palmeri in China
by Xinyu Jiao, Mei Long, Jiayi Li, Qingyu Yang and Zhixiong Liu
Agronomy 2023, 13(10), 2498; https://doi.org/10.3390/agronomy13102498 - 28 Sep 2023
Cited by 5 | Viewed by 1794
Abstract
Palmer Amaranth (Amaranthus palmeri, Amaranthaceae) is one of the most competitive, troublesome, and noxious weeds causing significant yield reductions in various crops. A. palmeri was also a herbicide-resistant weed causing a serious eco-environmental problem. Given that the process of invasion is [...] Read more.
Palmer Amaranth (Amaranthus palmeri, Amaranthaceae) is one of the most competitive, troublesome, and noxious weeds causing significant yield reductions in various crops. A. palmeri was also a herbicide-resistant weed causing a serious eco-environmental problem. Given that the process of invasion is dynamic, the A. plamer invasion may already be quite severe where invasive species management and surveys are chronically lacking. Predicting the potential habitat of A. palmeri can help to develop effective measures for early warning and long-term detection. However, the invasive history and distribution patterns of A. palmeri in China remain largely unknown. Here, the invasive history and distribution patterns of A. palmeri from 1985 to 2022 in China were reconstructed, and then the potential geographical distribution of A. palmeri was predicted under current and future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) using the optimal MaxEnt model (V 3.4.4) and ArcGIS 10.8.2. The mean AUC values of A. palmeri were 0.967. Under the current climate conditions, the suitable habitat areas for A. palmeri reached 1,067,000 km2 in China and were mainly distributed in north and central China. Under the future scenarios, the highly suitable habitats were mainly distributed in Beijing, Tianjin, and Hebei. Under SSP2–4.5, the future suitable areas will reach the maximum and expand to 1,411,100 km2 in the 2060s. The centroid distribution would northwestward extend under future climate scenarios. The human footprint index, mean temperature of the warmest quarter (Bio_10), April wind speed (Wind_4), temperature seasonality (standard deviation × 100) (bio_4), topsoil gravel content (T_gravel), and precipitation of warmest quarter (Bio_18) were key environmental variables affecting distribution and growth of A. palmeri. Climate change would increase the risk of A. palmeri expanding to high latitudes. Our results will help in developing effective strategies for the early warning, prevention, control, and management of A. palmeri in China. Full article
Show Figures

Figure 1

21 pages, 4160 KiB  
Article
Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications
by Mirian Yaeko Dias de Oliveira Nagai, Suham Nowrooz Mohammad, Andreia Adelaide G. Pinto, Ednar Nascimento Coimbra, Giovani Bravin Peres, Ivana Barbosa Suffredini, Maria Martha Bernardi, Alexander L. Tournier, Igor Jerman, Steven John Cartwright and Leoni Villano Bonamin
Int. J. Mol. Sci. 2023, 24(11), 9478; https://doi.org/10.3390/ijms24119478 - 30 May 2023
Cited by 11 | Viewed by 3980
Abstract
Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-based [...] Read more.
Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-based herbicide (GBH) exposed living systems. Artemia salina cysts were kept in artificial seawater with 0.02% glyphosate (corresponding to 10% lethal concentration or LC10) under constant oxygenation, luminosity, and controlled temperature, to promote hatching in 48 h. Cysts were treated with 1% (v/v) potentized glyphosate in different dilution levels (Gly 6 cH, 30 cH, 200 cH) prepared the day before according to homeopathic techniques, using GBH from the same batch. Controls were unchallenged cysts, and cysts treated with succussed water or potentized vehicle. After 48 h, the number of born nauplii per 100 µL, nauplii vitality, and morphology were evaluated. The remaining seawater was used for physicochemical analyses using solvatochromic dyes. In a second set of experiments, Gly 6 cH treated cysts were observed under different degrees of salinity (50 to 100% seawater) and GBH concentrations (zero to LC 50); hatching and nauplii activity were recorded and analyzed using the ImageJ 1.52, plug-in Trackmate. The treatments were performed blind, and the codes were revealed after statistical analysis. Gly 6 cH increased nauplii vitality (p = 0.01) and improved the healthy/defective nauplii ratio (p = 0.005) but delayed hatching (p = 0.02). Overall, these results suggest Gly 6cH treatment promotes the emergence of the more GBH-resistant phenotype in the nauplii population. Also, Gly 6cH delays hatching, another useful survival mechanism in the presence of stress. Hatching arrest was most marked in 80% seawater when exposed to glyphosate at LC10. Water samples treated with Gly 6 cH showed specific interactions with solvatochromic dyes, mainly Coumarin 7, such that it appears to be a potential physicochemical marker for Gly 6 cH. In short, Gly 6 cH treatment appears to protect the Artemia salina population exposed to GBH at low concentrations. Full article
Show Figures

Graphical abstract

15 pages, 1218 KiB  
Article
In Vitro Effect of Purple Amomum (Amomum longiligulare T.L. Wu) Extracts on Seed Germination and Seedling Growth of Different Crop Species
by Quyet V. Khuat, Elena A. Kalashnikova, Hai T. Nguyen, Vladimir I. Trukhachev and Rima N. Kirakosyan
Horticulturae 2023, 9(5), 554; https://doi.org/10.3390/horticulturae9050554 - 4 May 2023
Cited by 1 | Viewed by 2149
Abstract
The ginger family member purple amomum (Amomum longiligulare T.L. Wu) is an important medicinal plant in Vietnam. Although there have been studies on the chemical composition of essential oils and extracts of purple amomum, as well as their antibacterial, antifungal, activating macrophages, [...] Read more.
The ginger family member purple amomum (Amomum longiligulare T.L. Wu) is an important medicinal plant in Vietnam. Although there have been studies on the chemical composition of essential oils and extracts of purple amomum, as well as their antibacterial, antifungal, activating macrophages, and immune enhancement effects, there is still a lack of evaluation of the phytotoxicity of this plant. In this study, the total content of phenolic (TPC) and flavonoid (TFC) in extracts of leaf, seed, pseudo-stem, rhizome, and root from purple amomum and the phytotoxic effect of these extracts against five test plant species, including four dicotyledonous: camelina (Camelina sativa Crantz), quinoa (Chenopodium quinoa Willd.), cabbage (Brassica oleracea var. capitata L.), tomato (Solanum lycopersicum L. cv. Dubrava), and one monocotyledonous: onion (Allium cepa L. cv. Stuttgarter risen), were investigated. Results showed that the seed and leaf extracts had higher total phenolic and flavonoid contents than the other two extracts (highest TPC value: 4.30 ± 0.03 mg GAE/mg dry weight of seed powder; highest TFC value: 1.32 ± 0.07 mg QE/mg dry weight of leaf powder). Furthermore, it was observed that the extracts of purple amomum inhibited seed germination and the growth of seedlings of all test plant species with different inhibition values. The general trend in all treatments showed that, when increasing the concentration of extracts from 0.10–0.20 mg/mL, the ability to inhibit seed germination, hypocotyl length, radicle length, fresh weight, and dry weight increased. Seed extract at a concentration of 0.20 mg/mL in most treatments showed the highest percentage inhibition of seed germination and growth of seedlings of the tested species. Onion was the most sensitive to purple amomum extracts among the five species tested. Based on these results, we conclude that extracts of different parts of the purple amomum exhibited phytotoxicity for the tested species. Further evaluation of the phytotoxic potential of the extracts on weed species and under field conditions is also recommended for the purpose of developing bio-herbicides for future weed management that are less toxic to the environment and human health. Full article
Show Figures

Figure 1

21 pages, 5816 KiB  
Article
Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery
by Eliyeh Ganji, Görres Grenzdörffer and Sabine Andert
Agronomy 2023, 13(2), 354; https://doi.org/10.3390/agronomy13020354 - 26 Jan 2023
Cited by 3 | Viewed by 2171
Abstract
Cultivation of cover crops is a valuable practice in sustainable agriculture. In cover crop management, the method of desiccation is an important consideration, and one widely used method for this is the application of glyphosate. With use of glyphosate likely to be banned [...] Read more.
Cultivation of cover crops is a valuable practice in sustainable agriculture. In cover crop management, the method of desiccation is an important consideration, and one widely used method for this is the application of glyphosate. With use of glyphosate likely to be banned soon in Europe, the purpose of this study was to evaluate the herbicidal effect of pelargonic acid (PA) as a bio-based substitute for glyphosate. This study presents the results of a two-year field experiment (2019 and 2021) conducted in northeast Germany. The experimental setup included an untreated control, three different dosages (16, 8, and 5 L/ha) of PA, and the active ingredients glyphosate and pyraflufen. A completely randomised block design was established. The effect of the herbicide treatments was assessed by a visual estimate of the percentage of crop vitality and a comparison assessment provided by an Ebee+ drone. Four vegetation indices (VIs) calculated from the drone images were used to verify the credibility of colour (RGB)-based and near-infrared (NIR)-based vegetation indices. The results of both types of assessment indicated that pelargonic acid was reasonably effective in controlling cover crops within a week of application. In both experimental years, the PA (16 L/ha) and PA_2T (double application of 8 L/ha) treatments demonstrated their highest herbicidal effect for up to seven days after application. PA (16 L/ha) vitality loss decreased over time, while PA_2T (double application of 8 L/ha) continued to exhibit an almost constant effect for longer due to the second application one week later. The PA dosage of 5 L/ha, pyraflufen, and a mixture of the two exhibited a smaller vitality loss than the other treatments. However, except for glyphosate, the herbicidal effect of all the other treatments decreased over time. At the end of the experiment, the glyphosate treatment (3 L/ha) demonstrated the lowest estimated vitality. The results of the drone assessments indicated that vegetation indices (VIs) can provide detailed information regarding crop vitality following herbicide application and that RGB-based indices, such as EXG, have the potential to be applied efficiently and cost-effectively utilising drone imagery. The results of this study demonstrate that pelargonic acid has considerable potential for use as an additional tool in integrated crop management. Full article
Show Figures

Figure 1

Back to TopTop