Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Soil Dissipation Studies
2.3. Basic Physicochemical Properties of the Soil
2.4. Partition Coefficient
2.5. Identification and Quantification of Pinocembrin Dihydrochalcone
2.6. Antioxidant Capacity Assays
2.6.1. DPPH Assay
- AbsDPPH is the absorbance of water (control) with DPPH•
- Abssample is the absorbance of the sample with DPPH•
- Abscontrol is the absorbance of water without DPPH•
2.6.2. FRAP Test
3. Results
3.1. Dissipation Study Results
3.2. Partition Coefficient Results
3.3. Antioxidant Capacity Assays
3.3.1. DPPH Assay
3.3.2. FRAP Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in Sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules 2024, 29, 2247. [Google Scholar] [CrossRef]
- Szparaga, A. From biostimulant to possible plant bioprotectant agents. Sciendo 2023, 27, 87–98. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 2006, 661, 23–67. [Google Scholar]
- Garrido, R.M.; Dayan, F.E.; Ozanique, P.R.; Regasini, L.O.; Kolb, R.M. Hydroxychalcones as Herbicides. Agroomy 2025, 15, 572. [Google Scholar] [CrossRef]
- Garrido, R.M.; Dayan, F.E.; Ozanique, P.R.; Regasini, L.O.; Kolb, R.M. Methoxychalcones and Cinnamaldehyde as Herbicidal Compounds. ACS Agric. Sci. Technol. 2025, 5, 1086–1095. [Google Scholar] [CrossRef]
- Stompor, M.; Broda, D.; Bajek-Bil, A. Dihydrochalcones: Methods of acquisition and pharmacological properties—A first systematic review. Molecules 2019, 24, 4468. [Google Scholar] [CrossRef]
- Safety Data Sheet—Dihydrochalcone; Metabolic Insights Ltd.: Ness Ziona, Israel.
- Pobłocka-Olech, L. Zastosowanie Metod Chromatograficznych w Badaniach Składu Chemicznego Kory Niektórych Gatunków i Klonów Wierzby. Ph.D. Thesis, Medical University of Gdańsk, Gdańsk, Poland, 2006. [Google Scholar]
- Pedrinho, A.; Karas, P.A.; Kanellopoulos, A.; Feray, E.; Korman, I.; Wittenberg, G.; Ramot, O.; Karpouzas, D.G. The effect of natural products used as pesticides on the soil microbiota: OECD 216 nitrogen transformation test fails to identify effects that were detected via q-PCR microbial abundance measurement. Pest Manag. Sci. 2024, 80, 2563–2576. [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Natural products as fungicide and their role in crop protection. Nat. Bioact. Prod. Sustain. Agric. 2020, 12, 131–219. [Google Scholar] [CrossRef]
- Werner, E.; Montenegro, I.; Said, B.; Godoy, P.; Besoain, X.; Caro, N.; Madrid, A. Synthesis and anti-saprolegnia activity of new 2′,4′-dihydroxydihydrochalcone derivatives. Antibiotics 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, B.; Xie, H.; He, Y.; Zhong, D.; Chen, D. Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones. Molecules 2018, 23, 1162. [Google Scholar] [CrossRef]
- Rimmer, D.L. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci. 2006, 57, 91–94. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hsieh, C.; Rajashekaraiah, V. Ferric reducing ability of plasma: A potential oxidative stress marker in stored plasma. Acta Haematol. Pol. 2021, 52, 61–67. [Google Scholar] [CrossRef]
- OECD. Revised Introduction to the OECD Guidelines for Testing of Chemicals, Section 3; OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef]
- Berger, M.; Sonderegger, T.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; et al. Mineral resources in life cycle impact assessment: Part II—Recommendations on application-dependent use of existing methods and on future method development needs. Int. J. Life Cycle Assess. 2020, 25, 798–813. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Cai, Z.; Müller, C. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant Soil 2011, 342, 419–432. [Google Scholar] [CrossRef]
- Pompermaier, L.; Schwaiger, S.; Mawunu, M.; Lautenschlaeger, T.; Stuppner, H. Development and validation of a UHPLC-DAD method for the quantitative analysis of major dihydrochalcone glucosides from Thonningia sanguinea VAHL. Planta Med. 2019, 85, 911–916. [Google Scholar] [CrossRef]
- OECD. Test No. 307: Aerobic and Anaerobic Transformation in Soil, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 2002. [Google Scholar] [CrossRef]
- Drozd, J.; Licznar, M.; Licznar, S.E.; Weber, J. Gleboznawstwo z Elementami Mineralogii i Petrografii; wydanie II; Wydawnictwo Akademii Rolniczej we Wrocławiu: Wroclaw, Poland, 1998; p. 210. [Google Scholar]
- Kabała, C.; Karczewska, A. Metodyka Analiz Laboratoryjnych Gleb i Roślin, 4th ed.; Uniwersytet Przyrodniczy we Wrocławiu: Wroclaw, Poland, 2008; pp. 37–41. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=http://karnet.up.wroc.pl/~kabala/Analizy2017v8.pdf&ved=2ahUKEwjY-MHX6piOAxWZEhAIHbtpFwsQFnoECAkQAQ&usg=AOvVaw2IxekMzB4-lqvXie_lTeFW (accessed on 20 April 2025).
- AAT Bioquest, Inc. Quest Graph™ IC50 Calculator. AAT Bioquest. 2021. Available online: https://www.aatbio.com/tools/ic50-calculator (accessed on 15 April 2024).
- Oyaizu, M. Studies on products of browning reaction—Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Oleszek, M.; Kozachok, S. Antioxidant activity of plant extracts and their effect on methane fermentation in bioreactors. Int. Agrophysics 2018, 32, 395–401. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Aparadh, V.T.; Naik, V.V.; Karadge, B.A. Antioxidative properties (TPC, DPPH, FRAP, metal chelating ability, reducing power and TAC) within some Cleome species. Ann. Bot. 2012, 2, 49–56. [Google Scholar]
- Cornelissen, G.; Gustafsson, Ö.; Bucheli, T.D.; Jonker, M.T.O.; Koelmans, A.A.; van Noort, P.C.M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation. Environ. Sci. Techol. 2005, 39, 6881–6895. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J. Dynamic interactions of natural organic matter and organic compounds. J. Soil Sediments 2012, 12, 1241–1256. [Google Scholar] [CrossRef]
- Ehlers, G.; Loibner, A. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterization and (bio)availability prediction. Environ. Pollut. 2006, 141, 494–512. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, L.Z.; Zhao, L.; Shu, G.; Yuan, Z.X.; Fu, H.L.; Cheng, L.; Lin, J.C. Optimization of the ultrasound-assisted extraction of antioxidant phloridzin from Lithocarpus polystachyus Rehd. using response surface methodology. J. Sep. Sci. 2017, 40, 4329–4337. [Google Scholar] [CrossRef]
- Narsinghani, T.; Sharma, M.C.; Bhargav, S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013, 22, 4059–4068. [Google Scholar] [CrossRef]
- Kah, M.; Beulke, S.; Brown, C.D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem. 2007, 55, 4487–4492. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.F.; Oidovsambuu, S.; Jeon, J.S.; Nho, C.W.; Um, B.H. Chalcones from the flowers of Coreopsis lanceolata and their in vitro antioxidative activity. Planta Med. 2013, 79, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Farha, W.; Abd El-Aty, A.M.; Rahman, M.M.; Shin, H.C.; Shim, J.H. An overview on common aspects influencing the dissipation pattern of pesticides: A review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Hultgren, R.P.; Hudson, R.J.M.; Sims, G.K. Effects of soil pH and soil water content on prosulfuron dissipation. J. Agric. Food Chem. 2002, 50, 3236–3243. [Google Scholar] [CrossRef]
- Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S. Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile [Internet]. In Pesticides—Use and Misuse and Their Impact in the Environment; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wu, X.M.; Li, M.; Long, Y.H.; Liu, R.X.; Yu, Y.L.; Fang, H.; Li, S.N. Effects of adsorption on degradation and bioavailability of metolachlor in soil. J. Soil Sci. Plant. Nutr. 2011, 11, 83–97. [Google Scholar]
Soil Type | Laskowice | Biostrateg |
---|---|---|
pH | 6.1 | 7.04 |
Texture | Sand 78%; Silt 22%; Clay 0% | Sand 22%; Silt 34%; Clay 41% |
Phosphorus (P2O5) | 14 mg/100 g soil | 21.3 mg/100 g soil |
Potassium (K2O) | 19 mg/100 g soil | 18.9 mg/100 g soil |
Soil moisture | 15.98% | 15.99% |
Nitrogen (N) | 72–82 kg/ha | 71–90 kg/ha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziągwa-Becker, M.; Oleszek, M.; Ukalska-Jaruga, A.; Kucharski, M.; Kozłowska, W.; Białas, M.; Zielińska, S. Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone. Appl. Sci. 2025, 15, 7409. https://doi.org/10.3390/app15137409
Dziągwa-Becker M, Oleszek M, Ukalska-Jaruga A, Kucharski M, Kozłowska W, Białas M, Zielińska S. Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone. Applied Sciences. 2025; 15(13):7409. https://doi.org/10.3390/app15137409
Chicago/Turabian StyleDziągwa-Becker, Magdalena, Marta Oleszek, Aleksandra Ukalska-Jaruga, Mariusz Kucharski, Weronika Kozłowska, Marcel Białas, and Sylwia Zielińska. 2025. "Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone" Applied Sciences 15, no. 13: 7409. https://doi.org/10.3390/app15137409
APA StyleDziągwa-Becker, M., Oleszek, M., Ukalska-Jaruga, A., Kucharski, M., Kozłowska, W., Białas, M., & Zielińska, S. (2025). Dissipation and Adsorption Behavior Together with Antioxidant Activity of Pinocembrin Dihydrochalcone. Applied Sciences, 15(13), 7409. https://doi.org/10.3390/app15137409