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Abstract: Cultivation of cover crops is a valuable practice in sustainable agriculture. In cover crop
management, the method of desiccation is an important consideration, and one widely used method
for this is the application of glyphosate. With use of glyphosate likely to be banned soon in Europe,
the purpose of this study was to evaluate the herbicidal effect of pelargonic acid (PA) as a bio-based
substitute for glyphosate. This study presents the results of a two-year field experiment (2019 and
2021) conducted in northeast Germany. The experimental setup included an untreated control, three
different dosages (16, 8, and 5 L/ha) of PA, and the active ingredients glyphosate and pyraflufen.
A completely randomised block design was established. The effect of the herbicide treatments was
assessed by a visual estimate of the percentage of crop vitality and a comparison assessment provided
by an Ebee+ drone. Four vegetation indices (VIs) calculated from the drone images were used to verify
the credibility of colour (RGB)-based and near-infrared (NIR)-based vegetation indices. The results of
both types of assessment indicated that pelargonic acid was reasonably effective in controlling cover
crops within a week of application. In both experimental years, the PA (16 L/ha) and PA_2T (double
application of 8 L/ha) treatments demonstrated their highest herbicidal effect for up to seven days
after application. PA (16 L/ha) vitality loss decreased over time, while PA_2T (double application of
8 L/ha) continued to exhibit an almost constant effect for longer due to the second application one
week later. The PA dosage of 5 L/ha, pyraflufen, and a mixture of the two exhibited a smaller vitality
loss than the other treatments. However, except for glyphosate, the herbicidal effect of all the other
treatments decreased over time. At the end of the experiment, the glyphosate treatment (3 L/ha)
demonstrated the lowest estimated vitality. The results of the drone assessments indicated that
vegetation indices (VIs) can provide detailed information regarding crop vitality following herbicide
application and that RGB-based indices, such as EXG, have the potential to be applied efficiently and
cost-effectively utilising drone imagery. The results of this study demonstrate that pelargonic acid
has considerable potential for use as an additional tool in integrated crop management.

Keywords: bioherbicide; desiccation; RGB indices; NIR indices; vegetation indices

1. Introduction

Cultivation of cover crops is a valuable and sustainable agricultural practice that offers
agroecosystems numerous benefits. However, several factors need to be considered in the
management of cover crops, including the method used to desiccate them [1,2]. While being
desirable in agroecosystems, many cover crops have the potential to become troublesome
weeds and, thus, may reduce the yields of subsequent crops if consideration is not given
to their proper desiccation [1,2]. Moreover, in climate-smart conservation tillage systems,
cover crop desiccation is a tool used to prepare a weed-free seedbed [3,4].

Cover crops are either damaged or killed by frost in winter (frost-sensitive cover
crops) or actively desiccated by mowing, tillage, or application of chemical herbicides. The
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application of a non-selective herbicide (e.g., the active ingredient glyphosate) is a common
method for desiccating cover crops because, compared with other desiccation methods, it
can offer suitable levels of control at almost any time or plant growth stage [4–6]. However,
a delay in desiccating the cover crop carries risks associated with the next crop emergence,
such as water moisture depletion [3,7,8] and nitrogen immobilisation [8]. Therefore, in the
event of delayed desiccation (e.g., closer to the sowing time of the next crop), herbicide
application is the method most commonly used due to its rapid effects [5,9]. The results of
previous studies reveal that using the non-selective active ingredient glyphosate for cover
crop desiccation provides the best control of grass cover crop species [10–12], but studies
have also shown that glyphosate does not provide an adequate level of effectiveness for
the desiccation of broadleaf cover crop species [10–12].

Furthermore, in recent years, the use of synthetic herbicides, especially glyphosate, has
raised several environmental and health concerns [13,14] such that European governments,
especially the German government, have announced that use of this active ingredient
should be very limited or even prohibited by the end of 2023 [15]. A severe glyphosate
restriction or ban means that alternatives need to be identified [16]. One of the substitutes
for glyphosate is the application of bioherbicides [16] since they offer advantages, such as
rapid degradation [17].

Pelargonic acid (PA) is a bio-based non-selective contact herbicide that is rapidly
degraded in the soil (DT50 < 2 days) [18,19] and exhibits damage on the green tissue
after 15–60 min at temperatures greater than 15 ◦C on a sunny day [19,20]. Its mode of
action is to move through the cuticle and cell membrane, reduce intra-cellular pH, and
ultimately cause rapid membrane dysfunction, leading to the loss of membrane integrity
and cell death [19,21]. Owing to this mode of action, PA is recognised as an extremely rapid
burndown herbicide, with plants starting to collapse between one and three hours after
application [19]. Most bioherbicides are unable to provide adequate control because of a
lack of aggressiveness; therefore, efficacy can be improved by mixing a bioherbicide and a
chemical herbicide [22]. There is potential for enhancing PA efficacy with the addition of
another active ingredient [23]. Therefore, this study investigated a mixture of pyraflufen
and reduced PA dosage. Pyraflufen is a post-emergence contact herbicide used to control
broadleaf weed species [24].

One approach for evaluating the effect of bio-based and chemical herbicides for cover
crop desiccation is to undertake a visual evaluation [25]. Another assessment method is to
use an unmanned aerial vehicle (UAV), which is a relatively new technology and a useful
tool for evaluating the effectiveness of various types of crop management [26,27] (e.g.,
herbicide effectiveness [25,28]). The advantages of this method are its accuracy, flexibility,
and cost-effectiveness [25–27]. Aerial images obtained by UAV can detect differences in
levels of plant health that may not be possible by visual observation [25,26]. Spectral data
collected by UAVs are normally evaluated in the form of vegetation indices (VIs) [26]. Eval-
uation of vegetation can be conducted precisely using various VIs, but this greatly depends
on the experimental questions [29] because each index has its own unique characteristics
and usage purposes [26]. Near infrared (NIR)- and red-edge-based indices are used to
measure plant health and biotic and abiotic stresses because they are better at showing
plant reaction to stress within these bands [30]. RGB-based indices, which are calculated
using visible reflectance bands [31], are the simplest and most commonly used UAV method
for monitoring vegetation because they do not require a special, expensive multispectral
camera. Commonly derived parameters are plant cover and stress [31,32]. The important
aspect regarding an assessment of plant stress or herbicide effectiveness is that the drones
are equipped with multispectral sensors, which are capable of measuring different charac-
teristics, including detailed plant vigour [29]. The introduction of a stress factor, such as
herbicide application, influences sensor measurements because sensor systems analyse the
plant canopy’s green colour rather than herbicide injuries on the plants [28]. Therefore, VIs
calculated from these data can provide reliable information on monitored plant vitality [29].
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In the present study, cover crop vitality was estimated visually by the greenness of the
plants, as in the drone assessments.

There are different variables in the environment that need to be considered when
using different VIs, such as limiting factors [33]. The NIR- and red-edge-based indices can
be affected by low vegetation coverage due to the presence of soil in the background [34].
It should be noted that in addition to the effects of soil, some indices are sensitive to
atmospheric effects [33].

Given the unique properties of various VIs, the normalised difference vegetation index
(NDVI) and leaf chlorophyll index (LCI) were chosen as NIR/red-edge-based indices, and
the visible atmospherically resistant index (VARI) and excess green index (EXG) were
selected as RGB-based indices to evaluate herbicide treatments in this study.

Thus far, little is known about cover crop desiccation by bioherbicides. By focusing on
cover crop management in the European context, this study aimed to close this knowledge
gap by evaluating the herbicidal potential of pelargonic acid for cover crop desiccation
compared with other chemical herbicides, using Rostock (northeast Germany) as a case
study site. Owing to its rapid degradation effect, it is anticipated that PA will be used as
a bio-based alternative for cover crop desiccation purposes. This study site was chosen
because of its moderate maritime climate in which cover crops are not usually damaged by
frost in winter.

A further objective of this research was to verify the credibility of RGB- and NIR-based
vegetation indices derived from drone images to measure the effect of herbicides in cover
crop desiccation at different assessment times after application. It was hypothesised that
VIs derived from drone imagery can provide detailed information regarding crop vitality at
different assessment times after application of herbicides and can be used as an alternative
to the visual rating method.

2. Materials and Methods
2.1. Study Site

The experiment was conducted under field conditions in the summer of 2019 and
repeated in the summer of 2021 in northeast Germany (location Rostock: 54◦3′39.76′′ N,
12◦4′58.14′′ E) (Figure 1). In both years, the soil type in the fields was loamy sand. Local
weather conditions in Rostock are favourable for arable crop production due to its moderate
maritime climate. Winter cover crops are commonly used in crop rotations that include
summer crops (e.g., maize, legumes, summer cereals, or root and tubers). The average air
temperature for the growing season was 13.3 ◦C (minimum 2.4 ◦C and maximum 24.3 ◦C)
in 2019 and 12.3 ◦C (minimum 0 ◦C and maximum 26.5 ◦C) in 2021. The total amount of
precipitation in the growing season until application of the treatments was 186 mm in 2019
and 241 mm in 2021. After the experiment started, the field received an additional 24 mm
and 33.8 mm more rain, respectively, in 2019 and 2021 (Figure 2).

For the experiment in 2019, clover grass (DSV COUNTRY field grass 2055) was sown
in April at a rate of 20 kg/ha in 10 rows per plot with a 15 cm row space using a System
Hege 34. “DSV COUNTRY field grass 2055” contains 20% perennial ryegrass (Lolium
perenne), 30% red clover (Trifolium pratense), 20% timothy grass (Phleum pratense), and 30%
meadow fescue (Festuca pratensis). For the experiment in 2021, the same clover grass was
sown using the same method in autumn 2020 and was cut once in June 2021 (before the
start of experiment) to maintain similar plant sizes and conditions as in 2019.
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Figure 1. Study area of Rostock, northeast Germany.

2.2. Experimental Setup

The experimental design for both experimental years consisted of a randomised
complete block design with four replications. The size of the experimental area was
approximately 460 m2 and included 28 plots of 6 m2 in four columns (blocks) and seven
rows. The plant growth stage at the time of herbicide application in both years ranged from
BBCH 45 to 49. The herbicide treatments applied in this experiment are provided in Table 1.
The treatments included three different dosages (16, 8, and 5 L/ha) of pelargonic acid, with
the 8 L/ha dosage applied twice (the second time within a week of the first application).
The commercial product Beloukha® was used for treatments containing pelargonic acid.
For the treatments including the active ingredient pyraflufen, Quickdown® was used.
Roundup Ultra® and Roundup Powerflex® were used as glyphosate in 2019 and 2021,
respectively. Treatments were applied by means of a plot-spraying device with a pressure
of 2.1 bar and speed of 4 kilometres per hour. The application volume for the treatments
including Quickdown® was 300 L/ha, and for the rest, it was 200 L/ha. Flat jet nozzles of
sizes 02 and 03 were used for 200 L/ha and 300 L/ha application volumes, respectively.

Table 1. Herbicide treatments used in the experiments in 2019 and 2021.

Treatment Amount Used (L /ha) Active Ingredient Content (g/L)

UC - Untreated control
PA 16 L/ha 680 g/L pelargonic acid

PA_R 5 L/ha 680 g/L pelargonic acid
PA_2T 8 L/ha 1 680 g/L pelargonic acid
PYR 0.8 L/ha 24.2 g/L pyraflufen

PYR + PA_R 0.8 L/ha PYR and 5 L/ha PA 24.2 g/L pyraflufen and 680 g/L
pelargonic acid

GLY 3 L/ha 480 /L glyphosate
1 Second application within a week of the first application.
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of Hydrology and Applied Meteorology of the University of Rostock.

2.3. Assessments

The effect of the herbicide treatments was assessed by estimating the percentage of
crop vitality. This assessment was conducted before application and at 1, 7, 14, and 21 days
after application (DAT) of the herbicide treatments by visual observation. The “Göttinger
Schätzrahmen [35]” was placed three times randomly on each plot as a non-destructive
sampling method and the percentage of the vitality of all plant species inside the frame was
evaluated. A value of 0% vitality represented completely dead vegetation, and a value of
100% was equivalent to completely vital vegetation. In addition to the visual observation,
an assessment of the herbicide treatments was conducted using drone surveys on all the
above-mentioned DATs except 21st_DAT in 2021.

An Ebee+ drone from the company Sensefly was used for the recordings. The drone
has an RTK system, which, in principle, allows highly accurate ground control-free geo-
referencing. The fixed-wing aircraft weighs approximately 1.1 kg and can carry only one
payload at a time, i.e., either a colour digital camera (S.O.D.A.) with 20 MPix or a Sequoia
multispectral camera manufactured by the company Parrot. Thus, two flights were carried
out on each flight date: The first with the multispectral camera, followed immediately by
a second with the RGB camera. Planned with a longitudinal and transversal overlap of
80% each, one flight flew over the whole of the University of Rostock’s test field, which is
approximately 8 ha. The speed of the fixed wing drone Ebee+ is set to 14 m/s by default,
relative to the surrounding air. Depending on the wind speed and wind direction, the
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ground speed may vary from 11-18 m/s. Thus, the forward lap differs by between 60 and
80%. Due to the 80% side lap, there will always be enough overlap to ensure high-quality
3D data and near-nadir viewing perspectives throughout the image blocks. The flight
altitude for both flights was approximately 70 m, resulting in a ground resolution of 2 cm
for the RGB images and 7 cm for the multispectral images. During postprocessing, the
image data were photogrammetrically processed. The RGB data were processed using
Metashape 1.5.2 software from Agisoft, while the multispectral data were processed using
Pix4DMapper 4.5.2 software in order to obtain absolute reflectance values. Several perma-
nent control points were included in the bundle block adjustment to ensure the accuracy of
the georeferencing. The positional and vertical accuracy at the control points was between 1
and 2 cm. Sunlight and cloud conditions during the drone flights, collected by the authors,
are provided in Table 2. The image surveys were acquired within two hours around solar
noon (11:00–14:30 CEST). The sun elevation above the horizon was approximately 50–60◦.

Table 2. Sunlight and cloud conditions during the drone flights, collected by the authors.

Date 2019 2021

Before application Completely cloudy Completely cloudy
1st_DAT Partly cloudy Partly cloudy
7th _DAT Completely cloudy Partly cloudy

14th _DAT Completely cloudy Partly cloudy
21st_DAT Sunny -

2.4. Vegetation Indices

The vegetation indices used to evaluate crop vitality after application of the treatments
in these experiments were as follows:

NDVI (normalised difference vegetation index) [33], calculated as:

NDVI =
NIR− R
NIR + R

(1)

where NIR is the near-infrared band reflectance, and R is the red band reflectance;
VARI (visible atmospherically resistant index) [36], calculated as:

VARI =
G− R

G + R− B
(2)

where R, G, and B are the normalised red, green, and blue bands of the image, respectively;
EXG (excess green index) [37], obtained from the following formula:

ExG = 2·G∗ − R∗ − B∗ (3)

In this formula, to make the index more reliable and normalise the differences in
image acquisition or in illumination and exposure conditions, G∗, R∗, and B∗ were used as
the transformed values of the R (red), G (green), and B (blue) bands. These values were
calculated as follows:

G∗ =
G

GMax
, R∗ =

R
RMax

, B∗ =
B

BMax
(4)

where R, G, and B are the average light intensity of red, green and blue, and RMax, GMax,
and BMax represent the maximum values of R, G, and B, respectively [38,39].

LCI (leaf chlorophyll index) [40], calculated using the following formula:

LCI =
NIR− RedEdge

NIR + R
(5)
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where RedEdge is the red-edge reflectance, and NIR and R represent the near-infrared band
reflectance and red band reflectance, respectively.

The values obtained from the above formulae were considered absolute values for
VIs. The relative values of each VI were then calculated using two different approaches:
the relative VI values for each plot on each assessment day were calculated relative to the
absolute VI values calculated before the drone flights, and then the relative VI values were
calculated relative to the absolute VI values obtained from the untreated control plots on
the same assessment day.

2.5. Statistical Analysis

The statistical analyses were performed using the statistics program R version 4.2.2 [41].
The distribution of visually estimated vitality data analysed by the Shapiro–Wilk normality
test [42] showed that the data deviated significantly from a normal distribution (p < 0.01).
Therefore, the Kruskal–Wallis test (R package ‘agricolae’ [43]) was used to compare the
herbicide treatments on each assessment day. The data distribution for all calculated VIs
proved to be the same (p < 0.01). Therefore, to check differences among treatments using
VIs, a Kruskal–Wallis analysis was conducted on absolute VI values. These results can be
found at Appendix A.

Linear and polynomial regressions were fitted to the data to investigate the relation-
ships among all the VIs as well as between the VIs and estimated vitality on each DAT.
The vitality loss of the treatments was considered to be 0% for all plots on the day before
application. Due to singularities in the dataset, the coefficient of determination (R2) could
not be determined to explain the relationship between VIs and estimated vitality before the
application of the treatments in either year.

3. Results
3.1. Visually Estimated Reduction in Cover Crop Vitality

At 1st_DAT in 2019, all the herbicide treatments except GLY caused vitality losses. The
lowest visually estimated vitality was 68%, which was from PA (full dosage). The effect of
this herbicide treatment increased over time and reached an estimated vitality of 38% at
7th_DAT, before starting to decrease until the end of the experiment (Figure 3).

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 21 
 

 

proved to be 40%, which was significantly higher than that obtained by GLY (Figure 3). 

PA_R showed the lowest vitality loss among the herbicide treatments of 2% to 5%. 

The repetition of the experiment in 2021 revealed similar results. A greater vitality 

loss was obtained by treatments containing pelargonic acid at 1st_DAT. Except for PA_R, 

this herbicidal effect was visible until 14th_DAT. GLY was the only treatment that did not 

exhibit a significant vitality loss compared with the untreated control at 1st_DAT. The 

herbicidal effect of PA decreased from a loss of vitality of 83% (1st_DAT) to 58% 

(7th_DAT) and then to 25% at the end of experiment. The lowest vitality for PYR was 

7th_DAT at 60%, which was significant. The effect of this treatment slowly decreased after 

that time. PA_2T displayed more than 50% vitality loss during the first week following 

application and later declined gradually over time. PYR+PA_R showed a similar decline 

during the experiment. One week after application, GLY started to exhibit a significant 

loss in crop vitality. The minimum vitality obtained by GLY was 2% at the end of the 

experiment (Figure 3). 

 

Figure 3. Visually estimated crop vitality after application of herbicides on the cover crop in both 

years. Small letters show significant differences among treatments within each day in 2019 and cap-

ital letters show significant differences among treatments within each day in 2021 at p < 0.05 using 

the Kruskal–Wallis test. Error bars indicate the standard deviation for each treatment within each 

assessment day. 

3.2. Vegetative Indices Calculated from Drone Images 

To be able to compare visual observations with VIs, relative VI values compared with 

the untreated control plot were used. These are shown in Figures 4 and 5. To render the 

visualisation comprehensible, the estimated vitality values were converted into decimal 

numbers and then used in the figures for illustration purposes. Furthermore, as these fig-

ures show, the estimated vitality obtained from visual observations and the drone-based 

approach (Vis) was very similar. The estimated vitality graph (Figures 4a and 5a) shows 

that the effect of the treatments containing PA wore off over time, depending on the ap-

plication rate and time of observation. In comparison, the onset of vitality loss caused by 

GLY came after a delay. Both experimental years showed similar results for PA and GLY. 

However, in 2021, PA showed a more satisfactory herbicidal effect, and the herbicidal ef-

fect of PA_2T was more constant during the experiment (Figure 4a). EXG exhibited a trend 

closer to the estimated vitality in both years (Figures 4 and 5), while the trends for NDVI 

and VARI were closer to the estimated vitality in 2021 (Figure 5). 

Figure 3. Visually estimated crop vitality after application of herbicides on the cover crop in both
years. Small letters show significant differences among treatments within each day in 2019 and
capital letters show significant differences among treatments within each day in 2021 at p < 0.05 using
the Kruskal–Wallis test. Error bars indicate the standard deviation for each treatment within each
assessment day.

The estimated vitality of the PYR+PA_R treatment showed a decremental trend from
90% to 70% until 14th_DAT. After that time, however, the trend became incremental. PA_2T
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exhibited the same trend as PYR+PA_R, although the vitality loss caused by PA_2T was
10%, which was significantly higher than PYR+PA_R on 14th_DAT. The estimated vitality
was extremely high for the GLY and PYR treatments at 1st_DAT in 2019. The herbicidal
effect of the PYR treatment increased slightly, up to 14th_DAT, but vitality loss was ≈10%
at 21st_DAT (Figure 3).

At the end of the experiment, GLY showed the lowest estimated vitality (≈30%), while
among other herbicide treatments, the lowest vitality (≈84%) was obtained by PA_2T.
Nevertheless, during the first week following application, the vitality loss obtained by PA
proved to be 40%, which was significantly higher than that obtained by GLY (Figure 3).
PA_R showed the lowest vitality loss among the herbicide treatments of 2% to 5%.

The repetition of the experiment in 2021 revealed similar results. A greater vitality
loss was obtained by treatments containing pelargonic acid at 1st_DAT. Except for PA_R,
this herbicidal effect was visible until 14th_DAT. GLY was the only treatment that did
not exhibit a significant vitality loss compared with the untreated control at 1st_DAT. The
herbicidal effect of PA decreased from a loss of vitality of 83% (1st_DAT) to 58% (7th_DAT)
and then to 25% at the end of experiment. The lowest vitality for PYR was 7th_DAT at 60%,
which was significant. The effect of this treatment slowly decreased after that time. PA_2T
displayed more than 50% vitality loss during the first week following application and later
declined gradually over time. PYR+PA_R showed a similar decline during the experiment.
One week after application, GLY started to exhibit a significant loss in crop vitality. The
minimum vitality obtained by GLY was 2% at the end of the experiment (Figure 3).

3.2. Vegetative Indices Calculated from Drone Images

To be able to compare visual observations with VIs, relative VI values compared with
the untreated control plot were used. These are shown in Figures 4 and 5. To render the
visualisation comprehensible, the estimated vitality values were converted into decimal
numbers and then used in the figures for illustration purposes. Furthermore, as these
figures show, the estimated vitality obtained from visual observations and the drone-based
approach (Vis) was very similar. The estimated vitality graph (Figures 4a and 5a) shows that
the effect of the treatments containing PA wore off over time, depending on the application
rate and time of observation. In comparison, the onset of vitality loss caused by GLY came
after a delay. Both experimental years showed similar results for PA and GLY. However, in
2021, PA showed a more satisfactory herbicidal effect, and the herbicidal effect of PA_2T
was more constant during the experiment (Figure 4a). EXG exhibited a trend closer to the
estimated vitality in both years (Figures 4 and 5), while the trends for NDVI and VARI were
closer to the estimated vitality in 2021 (Figure 5).

Figure 6 illustrates changes in plant vitality within the experimental plots before and
after herbicide application in 2021, expressed by RGB imagery. Figure 7 shows the NDVI
map of the experimental plots before and after herbicide application in 2021. In both figures,
the effect of PA applied on four plots at 1st_DAT can be seen. These two figures also show
the start of vitality loss in the plot treated with GLY from 7th_DAT up to the end of the
experiment.
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3.3. Relationship between Vegetative Indices and Visually Estimated Plant Vitality

The results of the regression analysis showed that in both years, there were significant
positive relationships (p < 0.05) between NDVI and estimated visual plant vitality on all
assessment days. In 2019, R2 at 21st_DAT was significantly higher than all other DATs



Agronomy 2023, 13, 354 11 of 21

(R2 = 0.93, p < 0.05). Coefficients of determination (R2) were 0.64 and 0.54 for 7th_DAT and
14th_DAT, respectively. The smallest correlation between these two variables occurred on
1st_DAT (Figure 8a). In 2021, the highest R2 was 0.96, which was determined for 14th_DAT
(Figure 9a).
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The relationship between VARI and estimated vitality was also positive in both
years. The weakest relationship between these two variables occurred on 1st_DAT in 2019
(R2 = 0.35, p < 0.05). This correlation slightly improved to its strongest level at 7th_DAT
(R2 = 0.68, p < 0.05) (Figure 8b). The results for 2021 showed a different relationship between
VARI and estimated vitality. The strongest correlation occurred on 1st_DAT (R2 = 0.84,
p < 0.05) and declined over time (Figure 9b). For 1st, 7th, and 14th_DAT, coefficient determi-
nation values for the correlation between LCI and estimated vitality were very low, with an
incremental trend and change to a high correlation, with R2 of 0.61 at 21st_DAT (Figure 8c).
In 2021, their relationship was significantly positive (p < 0.05) at 1st_DAT, 7th_DAT, and
14th_DAT, with R2 of 0.89, 0.67, and 0.94, respectively (Figure 9c). Regression analysis
revealed a significant relationship (p < 0.05) between EXG and estimated vitality in 2019
for all assessment days (Figure 8d). In 2021, the EXG index exhibited a significantly high
correlation at 1st_DAT and 14th_DAT. The R2 value for 7th_DAT was 0.46 (Figure 9d).
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3.4. Relationships among Vegetative Indices

The results of the regression analysis showed that there were significant (p < 0.05) and
strongly positive relationships among NDVI, VARI, and EXG on almost all assessment days
in both years (Figures 10 and 11). In 2019, the correlation between NDVI and VARI was
higher than that between NDVI and EXG (Figure 10a,c). LCI displayed a strong correlation
with NDVI on all DATs in 2019 (Figure 10e). Its relationship with VARI was not as strong
as that with NDVI. At 1st and 7th_DAT, LCI exhibited a low correlation, which improved
at 14th_DAT and reached its highest level (R2 = 0.65) at 21st_DAT (Figure 10d).

In 2021, the results of the regression analysis showed that LCI had a significant positive
relationship (p < 0.05) with NDVI on all assessment days (Figure 11e). The relationship was
similar between LCI and VARI (Figure 11f). The relationship between EXG and LCI was
significantly positive, but R2 for 1st_DAT was 0.43 (Figure 11b). In general, LCI displayed a
higher correlation with NDVI and VARI than with EXG.
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4. Discussion

The aim of this study was to test the effectiveness of pelargonic acid as a desiccation
tool on the cover crop in comparison with other treatments. The results indicated that
pelargonic acid was reasonably effective at controlling cover crop growth within a week of
application. In both experimental years, PA (16 L/ha) and PA_2T (double application of
8 L/ha) showed their highest herbicidal effect, up to 7th_DAT. PA vitality loss decreased
over time, while PA_2T continued to exhibit an almost constant effect for longer because of
the second application one week later. Weber et al. (2014) report that repeated application of
pelargonic acid could result in a high level of herbicidal control [44]. Due to the previously
mentioned fact that glyphosate-based products will be severely restricted and likely banned



Agronomy 2023, 13, 354 15 of 21

in Europe in the near future [15], this study compared PA as a bio-based alternative with
glyphosate (GLY). In contrast to PA, both in visual observations and using the drone-
based approach (VIs), the herbicidal effect of GLY was not visible in the first few days of
application because GLY absorption by the plant and subsequent translocation inside the
plant take some days to exhibit significant effects, which is dependent on the type of plant
(annual, perennial, developmental stage) and environmental factors [45–47]. This means
that PA, as a non-selective contact herbicide, could potentially be a short-term but rapid
destruction alternative to glyphosate, especially in volatile weather conditions or when
there are work bottlenecks (lack of labour and/or machinery).

The results demonstrated an initial rise and subsequent fall in the efficacy of PYR and
its mixture with PA_R in both assessment methods. This decrease in PYR efficacy could
be explained by cover crop regrowth on 7th_DAT. However, pyraflufen efficacy has been
proven to be relatively dependent on plant growth stage at the time of spraying [24,48],
which might explain the lower efficacy of PYR in the present study. The results obtained
from the PYR+PA_R treatment in this experiment also demonstrated that mixing pyraflufen
with other post-emergence herbicides increases herbicidal efficacy [24]. However, the
efficacy enhancement caused by mixing pyraflufen with pelargonic acid was approximately
5% greater than the single PYR treatment and 17% higher than the single PA_R treatment.

Since visual assessments of herbicidal effects are subject to human error and require
a lot of time and effort [25], the applicability of VIs for assessing herbicide effectiveness
on cover crops was investigated. The VIs NDVI, VARI, LCI, and EXG were individually
compared with the visual vitality estimation and with each other.

This research showed that EXG’s correlation with estimated vitality proved to be better
than the correlation of other VIs with estimated vitality. The reason for this is that EXG
reacts more to leaf discoloration [49], i.e., plant vitality [28]. Yun et al. (2016) reported
that EXG values derived from UAV low-flight-altitude RGB images for experimental plots
without herbicide application were higher than those with herbicide application [49]. Their
study proves that EXG values can be used to ascertain the impact of herbicide use on
plant growth [49]. According to Streibig et al. (2014) and Rasmussen et al. (2016), this
index can be used to quantify crop injury from herbicide use [28,32]. It is an efficient VI
because it can be obtained using consumer-grade cameras mounted on UAVs [32]. On the
basis of research by Yang (2018), EXG can distinguish vegetation from the surrounding
environment precisely [38]. Torres-Sánchez et al. (2014) have also reported that the EXG
index obtained from RGB images can be used to visualise the vegetation fraction and
vegetation growth accurately [50]. At the start of the experiment in 2019, there were a large
number of flowering weeds in the experimental plots. Furthermore, before application in
the same year, the field received less precipitation and was exposed to higher temperatures,
which may explain cover crop coverage in the experimental field being less, revealing
more of the soil background after application of the herbicide treatments. These results
demonstrate that the presence of flowering weeds and soil background in this study did
not negatively affect the EXG index.

Other than EXG, according to Henry et al. (2004) and Lewis et al. (2014), one of the
common vegetative indices for detecting injury symptoms on plants caused by herbicides
is NDVI [51]. In this experiment, on 1st_DAT in 2019, the application of PA treatments
showed significantly more vitality loss in the visual observation (estimated vitality) than
in the NDVI index. In addition, the correlation between estimated vitality and both
NDVI and VARI was low on 1st_DAT in 2019. NDVI is calculated by mathematically
comparing the amount of red light (which vegetation absorbs) and reflected near-infrared
light (which vegetation reflects) [52]. This index is sensitive to plant chlorophyll content;
therefore, plant vitality and biomass are often detectable using this vegetative index [53].
The chlorophyll pigments in a healthy plant absorb most of the visible red light, while
the cell of the plant reflects most of the near-infrared light. This means that when a plant
is very photosynthetically active, less NIR will be reflected [51]. Two factors might have
affected NDVI in this experiment: the presence of weeds (mostly at flowering stage) and
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the fact that the plants were damaged because of herbicide application. However, in some
plots, the plant cells were not permanently destroyed, just damaged, which had a small
effect on reflected NIR, and, therefore, NDVI did not show as much damage as the visual
observation suggested. In contrast to NDVI, VARI has a low sensitivity to atmospheric
effects [36], but the reason for the low correlation with estimated vitality on 1st_DAT for
this index was due to the fact that a high weed population negatively impacts VARI and
produces lower values [54]. VARI can also be greatly affected by the background colour and
a change in leaf colour. Its value increases with the development of vegetation coverage in
the background during the vegetative stages unless inflorescence appears in the field [55].
Therefore, both NDVI and VARI showed a higher correlation with estimated vitality at
7th_DAT, when weed density was reduced following herbicide applications and the cover
crop started to regrow and produce a vegetative coverage. In previous studies, NDVI has
been found to be more effective than VARI in evaluations of crop health in fields [26].

With regard to the leaf chlorophyll index (LCI), previous studies have shown that
this index has a high correlation with plant chlorophyll content [56]. Changes in a plant’s
physical and biochemical structure caused by a stress factor could influence chlorophyll
as an important pigment in photosynthesis [30]; therefore, the LCI value will decrease
due to the reduction in this pigment content [56]. Nonetheless, in the present study, LCI
showed heterogeneity in both experimental years. This may be due to the scale at which
this index was tested for its correlation with estimated vitality and other vegetative indices.
The correlation between VIs and plant parameters might reflect variability on different
scales, meaning that those that are strongly correlated with a plant parameter on a certain
scale may exhibit a very weak correlation on another scale. In the case of LCI, when the
amount of foliage in the plant canopy is low, LCI has a low correlation with a plant’s
chlorophyll on a canopy scale, while it shows a high correlation with chlorophyll content
on a leaf scale [33,57]. In this study, the soil was not completely covered by the cover crop
in 2019 due to less precipitation and higher temperatures in the growing season and to
the existence of a high weed infestation. Therefore, during the period of 1st to 14th_DAT,
LCI was heavily influenced and exhibited weak correlations with estimated vitality. After
cover crop regrowth, LCI showed a higher correlation with estimated vitality on 21st_DAT.
Previous studies have demonstrated the negative effects of low vegetation coverage and
the presence of soil background on NIR- and red-edge-based indices [34].

The relationship analysis of VIs in the current study revealed that NDVI and VARI
were highly correlated on all assessment days in both years. NDVI and VARI also correlated
linearly with EXG on all assessment days in both years. The high correlation between EXG
and VARI indices is in line with the findings of Zhang et al. (2019) in an assessment of
turf grass performance [58] and another study estimating the aboveground biomass of
wheat [59].

5. Conclusions

The cover crop’s high susceptibility to the PA and PA_2T treatments in the early days
after application was proven by both the visual and drone-based assessments. The results
confirmed that pelargonic acid has the potential to be a more sustainable alternative to
synthetic herbicides. The possible ban of glyphosate in Europe requires further research to
be undertaken on bio-based herbicides. Pelargonic acid has been registered on the European
market for use as a plant desiccant in potatoes and to kill suckers in perennial crops, such
as hops and grapevine. However, it is currently not registered for other management
purposes in arable crops. The results of this study demonstrate that pelargonic acid has
considerable potential to be an additional tool in integrated crop management. Future
use registrations, e.g., for cover crop desiccation or the control of monocotyl and dicotyl
weeds in arable crops, would allow the use of pelargonic acid as a substitute for glyphosate.
Moreover, details on its technical application (water temperature, adjuvants, and the effect
of weather conditions during/after application) require further investigations to ensure its
suitability for on-farm use.
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With regard to the drone assessment, it was concluded that VIs obtained by drone
imagery can be used to monitor the effectiveness of herbicide desiccation methods in
cover crops. Furthermore, the EXG index demonstrated its ability to visualise the effect of
herbicides with a high degree of accuracy on all assessment days. As an RGB-based index
obtainable with customer-grade cameras, EXG presents a more cost-effective option than
NIR-based indices and offers an alternative to visual observation. LCI is the most sensitive
and least robust VI to bi-directional reflectance distribution function (BRDF), shade, and
other irregularities, such as flowering weeds in the crop cover. However, if the vegetation
cover is homogeneous, it is a very good VI for determining plant stress and changes in leaf
chlorophyl.

Author Contributions: Conceptualization, E.G. and S.A.; methodology, E.G., G.G. and S.A.; valida-
tion, E.G. and S.A.; formal analysis, E.G.; investigation, E.G.; resources, G.G.; data curation, E.G. and
G.G.; writing—original draft preparation, E.G.; writing—review and editing, E.G., G.G. and S.A.;
visualization, E.G. and G.G.; supervision, S.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was part of the project “AC/DC-weeds—Applying and Combining Distur-
bance and Competition for an agro-ecological management of creeping perennial weeds” funded by
ERA-Net Cofund SusCrop/EU Horizon 2020, Grant no. 771134. The German part is funded by DFG
(Deutsche Forschungsgemeinschaft), GE 558/3-1.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author. The data are not publicly available due to project funding policy.

Acknowledgments: We sincerely thank our colleagues in the Crop Health group at the University
of Rostock for their technical assistance. We also would like to acknowledge the support of the
Department of Hydrology and Applied Meteorology at the University of Rostock for providing
weather data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Results of a comparison of treatments using absolute values of vegetation indices at
different DATs in 2019.

VI Treatment Mean Mean Rank

Before 1st_DAT 7th_DAT 14th_DAT 21st_DAT 1st_DAT 7th_DAT 14th_DAT 21st_DAT

N
D

V
I

UC 0.847 0.790 0.757 0.776 0.771 18 a 24.75 a 25 a 24.25 a

PA 0.851 0.721 0.614 0.656 0.723 9.25 a 11 bc 11.75 b 13 b

PA_R 0.859 0.796 0.746 0.770 0.771 20 a 24 a 24 a 24.75 a

PA_2T 0.838 0.727 0.610 0.641 0.712 8.5 a 9.25 bc 10 b 11.25 b

PYR 0.833 0.758 0.649 0.676 0.714 14 a 12.5 bc 13.75 b 12.75 b

PYR+PA_R 0.848 0.760 0.649 0.679 0.729 14.5 a 14 b 14.5 b 13 b

GLY 0.844 0.779 0.575 0.542 0.472 17.25 a 6 c 2.5 c 2.5 c

VA
R

I

UC 0.384 0.317 0.230 0.224 0.332 19 ab 25.25 a 24.5 a 21.25 ab

PA 0.368 0.116 −0.027 0.014 0.247 7.75 b 8.5 cd 11.75 b 16.75 abc

PA_R 0.436 0.304 0.172 0.191 0.326 19.75 a 23.75 a 24.5 a 24.25 a

PA_2T 0.348 0.129 −0.031 0.001 0.201 8.5 ab 6.75 d 9.75 b 12.25 c

PYR 0.317 0.225 0.057 0.050 0.182 14 ab 17 b 14 b 10.25 c

PYR+PA_R 0.428 0.198 0.031 0.052 0.230 14 ab 14 bc 14.5 b 14.25 bc

GLY 0.342 0.312 −0.043 −0.091 −0.057 18.5 ab 6.25 d 2.5 c 2.5 d
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Table A1. Cont.

VI Treatment Mean Mean Rank

Before 1st_DAT 7th_DAT 14th_DAT 21st_DAT 1st_DAT 7th_DAT 14th_DAT 21st_DAT

EX
G

UC 0.309 0.325 0.260 0.281 0.270 21 a 26.25 a 26 a 25.75 a

PA 0307 0211 0.138 0.176 0220 3 c 5.25 d 8.75 c 11.5 bc

PA_R 0.315 0.312 0.230 0.261 0.253 19.25 a 22.25 a 22.75 a 23.25 a

PA_2T 0.308 0.241 0.135 0.177 0.216 8 bc 4.75 d 9.25 c 8.75 c

PYR 0.295 0.296 0.202 0.219 0.227 15.75 ab 17 b 17 b 15 b

PYR+PA_R 0.323 0.277 0.174 0.208 0.227 14.25 ab 11.75 c 14.75 b 14.75 b

GLY 0.307 0327 0.185 0.134 0108 20.25 a 14.25 bc 3 d 2.5 d

LC
I

UC 0.290 0.215 0.195 0.169 0.147 14.75 a 18.25 ab 21 ab 22 a

PA 0.292 0.217 0.192 0.164 0.123 16 a 17.75 ab 18 b 10 bc

PA_R 0.301 0.229 0.204 0.174 0.146 19 a 22 a 24.75 a 20.75 a

PA_2T 0.291 0.208 0.186 0.160 0.135 12.25 a 15.75 ab 15.5 bc 15.25 ab

PYR 0.288 0.206 0.171 0.149 0.133 12.25 a 11 bc 8.75 de 13.25 ab

PYR+PA_R 0.290 0.211 0.183 0.155 0.140 12.5 a 14.25 ab 11 cd 17.5 ab

GLY 0.289 0.214 0.125 0.115 0.085 14.75 a 2.5 c 2.5 e 2.75 c

Letters show significant differences among treatments within each day at p < 0.05 using the Kruskal–Wallis test.

Table A2. Results of a comparison of treatments using absolute values of vegetation indices at
different DATs in 2021.

VI Treatment Mean Mean Rank

Before 1st_DAT 7th_DAT 14th_DAT 1st_DAT 7th_DAT 14th_DAT

N
D

V
I

UC 0.626 0.732 0.769 0.770 21.75 a 23.5 a 22 a

PA 0.633 0.570 0.688 0.715 2.5 d 10.25 c 12 b

PA_R 0.660 0.701 0.763 0.764 16 ab 21 ab 19 ab

PA_2T 0.635 0.640 0.662 0.703 7.25 cd 7.25 cd 10.75 bc

PYR 0.631 0.717 0.730 0.735 18.75 ab 17 b 15.75 ab

PYR+PA_R 0.665 0.682 0.750 0.761 12.75 bc 20 ab 19.5 ab

GLY 0.642 0.744 0.419 0.405 22.5 a 2.5 d 2.5 c

VA
R

I

UC 0.056 0.067 0.146 0.054 23.5 a 23.75 a 21 a

PA 0.059 −0.067 0.061 0.024 2.5 d 12.75 bc 14.75 ab

PA_R 0.083 0.014 0.111 0.046 13.75 c 19.75 a 18.5 ab

PA_2T 0.058 −0.025 0.015 0.010 6.5 d 6.5 cd 10.5 bc

PYR 0.050 0.037 0.101 0.025 18.5 b 18.25 ab 15.25 ab

PYR+PA_R 0.085 0.009 0.092 0.049 12.25 c 18 ab 19 ab

GLY 0.070 0.068 −0.094 −0.098 24.5 a 2.5 d 2.5 c

EX
G

UC 0.071 0.064 0.124 0.049 21.75 b 26.5 a 26.5 a

PA 0.072 0.026 0.094 0.041 2.5 f 10.5 d 11 d

PA_R 0.078 0.052 0.110 0.045 14.25 c 20.75 b 17.25 c

PA_2T 0.072 0.039 0.085 0.037 6.5 e 6.5 e 7 d

PYR 0.071 0.061 0.108 0.046 19.5 b 20.25 b 21.5 b

PYR+PA_R 0.079 0.045 0.100 0.043 10.75 d 14.5 c 15.75 c

GLY 0.072 0.073 0.067 0.004 26.25 a 2.5 f 2.5 e
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Table A2. Cont.

VI Treatment Mean Mean Rank

Before 1st_DAT 7th_DAT 14th_DAT 1st_DAT 7th_DAT 14th_DAT

LC
I

UC 0.315 0.402 0.394 0.447 19.25 a 20 a 20 a

PA 0.318 0.344 0.366 0.417 2.5 c 12 ab 13 a

PA_R 0.330 0.398 0.403 0.452 17 ab 20.25 a 18.5 a

PA_2T 0.320 0.371 0.360 0.413 9.5 bc 11 bc 12 ab

PYR 0.319 0.397 0.376 0.425 18.5 ab 15.25 ab 15.25 a

PYR+PA_R 0.332 0.393 0.397 0.450 16.5 ab 20.5 a 20.25 a

GLY 0.326 0.399 0.233 0.270 18.25 ab 2.5 c 2.5 b

For each VI, letters show significant differences among treatments within each day at p < 0.05 using the Kruskal–
Wallis test.
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