Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = (PEA)2PbI4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1863 KiB  
Article
Photoluminescence and Stability of 2D Ruddlesden–Popper Halide Perovskites
by Zhilin Ren, Zhengtian Yuan, Aleksandr A. Sergeev, Ivor Lončarić, Muhammad Umair Ali, Atta Ur Rehman, Kam Sing Wong, Yanling He, Juraj Ovčar, Jasminka Popović and Aleksandra B. Djurišić
Molecules 2025, 30(13), 2716; https://doi.org/10.3390/molecules30132716 - 24 Jun 2025
Viewed by 476
Abstract
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their [...] Read more.
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their optical properties and stability are observed, and perovskites with benzylammonium (BZA) and phenethylammonium (PEA) were selected for more detailed investigation of the observed stability differences due to their similar structure. We find that PEA2PbI4 exhibits more narrow emission and increased stability compared to BZA2PbI4. In addition, PEA2PbI4 exhibits self-healing of defects evident from PL enhancement, which is absent for BZA2PbI4. The observed differences between perovskites with BZA and PEA spacer cations can be attributed to differences in the formation of spacer cation vacancies. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 4362 KiB  
Article
High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction
by Ang Bian, Songchao Shen, Chen Yang and Jun Dai
Nanomaterials 2024, 14(22), 1819; https://doi.org/10.3390/nano14221819 - 13 Nov 2024
Viewed by 1528
Abstract
Wide-bandgap semiconductors like GaN, known for their superior photoresponse and detection capabilities in the ultraviolet range, represent a foundational component in the design of advanced photodetectors, where the integration of materials with distinct spectral sensitivities into heterojunctions is pivotal for next-generation device innovation. [...] Read more.
Wide-bandgap semiconductors like GaN, known for their superior photoresponse and detection capabilities in the ultraviolet range, represent a foundational component in the design of advanced photodetectors, where the integration of materials with distinct spectral sensitivities into heterojunctions is pivotal for next-generation device innovation. A high-performance self-powered dual-mode ultraviolet photodetector based on a (PEA)2PbI4/GaN heterojunction was fabricated via spin coating. The device exhibits outstanding UV sensitivity under both positive and negative bias, achieving a responsivity of 1.39 A/W and a detectivity of 8.71 × 1010 Jones under 365 nm UV illumination. The built-in electric field at the heterojunction interface enables self-powered operation, achieving a rapid rise time of 46.9 ms and a decay time of 55.9 ms. These findings offer valuable insights into the development and application of perovskite and wide-bandgap semiconductor heterojunctions in optoelectronic devices. Full article
Show Figures

Graphical abstract

8 pages, 513 KiB  
Article
Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)2PbI4 Two-Dimensional Perovskites
by Katarzyna Posmyk, Mateusz Dyksik, Alessandro Surrente, Katarzyna Zalewska, Maciej Śmiertka, Ewelina Cybula, Watcharaphol Paritmongkol, William A. Tisdale, Paulina Plochocka and Michał Baranowski
Nanomaterials 2023, 13(6), 1119; https://doi.org/10.3390/nano13061119 - 21 Mar 2023
Cited by 8 | Viewed by 4449
Abstract
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden–Popper perovskites, where quantum and dielectric confinement together with soft, polar, and [...] Read more.
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden–Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton–phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice. Full article
Show Figures

Figure 1

16 pages, 3374 KiB  
Article
High Performance 0D ZnO Quantum Dot/2D (PEA)2PbI4 Nanosheet Hybrid Photodetectors Fabricated via a Facile Antisolvent Method
by Shijie Liu, Hao Li, Haifei Lu, Yanran Wang, Xiaoyan Wen, Shuo Deng, Ming-Yu Li, Sisi Liu, Cong Wang and Xiao Li
Nanomaterials 2022, 12(23), 4217; https://doi.org/10.3390/nano12234217 - 27 Nov 2022
Cited by 5 | Viewed by 2604
Abstract
Two-dimensional (2D) organic−inorganic perovskites have great potential for the fabrication of next-generation photodetectors owing to their outstanding optoelectronic features, but their utilization has encountered a bottleneck in anisotropic carrier transportation induced by the unfavorable continuity of the thin films. We propose a facile [...] Read more.
Two-dimensional (2D) organic−inorganic perovskites have great potential for the fabrication of next-generation photodetectors owing to their outstanding optoelectronic features, but their utilization has encountered a bottleneck in anisotropic carrier transportation induced by the unfavorable continuity of the thin films. We propose a facile approach for the fabrication of 0D ZnO quantum dot (QD)/2D (PEA)2PbI4 nanosheet hybrid photodetectors under the atmospheric conditions associated with the ZnO QD chloroform antisolvent. Profiting from the antisolvent, the uniform morphology of the perovskite thin films is obtained owing to the significantly accelerated nucleation site formation and grain growth rates, and ZnO QDs homogeneously decorate the surface of (PEA)2PbI4 nanosheets, which spontaneously passivate the defects on perovskites and enhance the carrier separation by the well-matched band structure. By varying the ZnO QD concentration, the Ion/Ioff ratio of the photodetectors radically elevates from 78.3 to 1040, and a 12-fold increase in the normalized detectivity is simultaneously observed. In addition, the agglomeration of perovskite grains is governed by the annealing temperature, and the photodetector fabricated at a relatively low temperature of 120 °C exhibits excellent stability after a 50-cycle test in the air condition without any encapsulation. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Graphical abstract

12 pages, 9314 KiB  
Review
Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy
by Mateusz Dyksik
Int. J. Mol. Sci. 2022, 23(20), 12531; https://doi.org/10.3390/ijms232012531 - 19 Oct 2022
Cited by 2 | Viewed by 2301
Abstract
In this work, the current state of research concerning the determination of the effective mass in 2D layered perovskites is presented. The available experimental reports in which the reduced effective mass μ has been directly measured using magneto-absorption spectroscopy of interband Landau levels [...] Read more.
In this work, the current state of research concerning the determination of the effective mass in 2D layered perovskites is presented. The available experimental reports in which the reduced effective mass μ has been directly measured using magneto-absorption spectroscopy of interband Landau levels are reviewed. By comparing these results with DFT computational studies and various other methods, it is concluded that depending on the approach used, the μ found spans a broad range of values from as low as 0.05 up to 0.3 me. To facilitate quick and reliable estimation of μ, a model is proposed based solely on the available experimental data that bypass the complexity of interband Landau level spectroscopy. The model takes advantage of the μ value measured for (PEA)2PbI4 and approximates the reduced effective mass of the given 2D layered perovskites based on only two experimental parameters—the diamagnetic coefficient and the effective dielectric constant. The proposed model is tested on a broad range of 2D layered perovskites and captures well the main experimental and theoretical trends. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Poland)
Show Figures

Figure 1

8 pages, 1928 KiB  
Article
Two-Dimensional Perovskite (PEA)2PbI4 Two-Color Blue-Green Photodetector
by Wei Dou, Ziwei Yin, Yi Zhang, Huiyong Deng and Ning Dai
Nanomaterials 2022, 12(15), 2556; https://doi.org/10.3390/nano12152556 - 25 Jul 2022
Cited by 8 | Viewed by 4404
Abstract
Perovskite materials have been widely used to fabricate solar cells, laser diodes and other photodevices, owing to the advantage of high absorption coefficient, long carrier life and shallow defect energy levels. However, due to easy hydrolysis, it is difficult to fabricate perovskite micro-nano [...] Read more.
Perovskite materials have been widely used to fabricate solar cells, laser diodes and other photodevices, owing to the advantage of high absorption coefficient, long carrier life and shallow defect energy levels. However, due to easy hydrolysis, it is difficult to fabricate perovskite micro-nano devices. Herein, we developed a water-free device fabrication technology and fabricated a two-dimensional (C6H5C2H4NH3)2PbI4 ((PEA)2PbI4) two-color blue-green light detector, which exhibits high detection performance under the illumination of two-color lasers (λ = 460 nm, 532 nm). Compared with bulk devices, the dark current of the fabricated devices (10−11 A) was reduced by 2 orders of magnitude. The peak responsivity and detectivity are about 1 A/W and 1011 Jones, respectively. The photodetection performance of the device is basically the same under the two-color lasers. Our results provide a new process to fabricate perovskite microelectronic devices, and the fabricated photodetector shows great application prospects in underwater detection, owing to the blue-green window existing in water. Full article
(This article belongs to the Special Issue 2D Nanomaterials for Optoelectronic Devices)
Show Figures

Figure 1

11 pages, 2866 KiB  
Article
The Effect of Extended Ball-Milling upon Three-Dimensional and Two-Dimensional Perovskite Crystals Properties
by Sara Bonomi, Vincenza Armenise, Gianluca Accorsi, Silvia Colella, Aurora Rizzo, Francesco Fracassi, Lorenzo Malavasi and Andrea Listorti
Appl. Sci. 2020, 10(14), 4775; https://doi.org/10.3390/app10144775 - 11 Jul 2020
Cited by 15 | Viewed by 4486
Abstract
The ball-milling of materials is a mechanical grinding method that has different effects on treated materials, and can be used for the direct synthesis of organometal halide perovskite (OHP) crystals. Herein, the effect of such a process, extended over a large temporal window, [...] Read more.
The ball-milling of materials is a mechanical grinding method that has different effects on treated materials, and can be used for the direct synthesis of organometal halide perovskite (OHP) crystals. Herein, the effect of such a process, extended over a large temporal window, is related to the properties of referential three-dimensional (3D) MAPbI3 (MA = methylammonium) and two-dimensional (2D) PEA2PbI4 (PEA = phenylethylammonium) perovskite crystals. For both 2D and 3D systems, the ball-milling induces a reduction of the crystallite dimension, accompanied by a worsening of the overall crystallinity, but without any sign of amorphization. For MAPbI3, an intriguing room temperature structural transition, from tetragonal to cubic, is observed. The processing in both cases impacts on the morphology, with a reduction of the crystal shape quality connected to the particles’ agglomeration tendency. All these effects translate to a “blue shift” of the absorption and emission features, suggesting the use of this technique to modulate the 3D and 2D OHPs’ properties. Full article
Show Figures

Figure 1

10 pages, 7409 KiB  
Article
Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride
by Michael Seitz, Patricia Gant, Andres Castellanos-Gomez and Ferry Prins
Nanomaterials 2019, 9(8), 1120; https://doi.org/10.3390/nano9081120 - 3 Aug 2019
Cited by 40 | Viewed by 6957
Abstract
Metal halide perovskites are known to suffer from rapid degradation, limiting their direct applicability. Here, the degradation of phenethylammonium lead iodide (PEA2PbI4) two-dimensional perovskites under ambient conditions was studied using fluorescence, absorbance, and fluorescence lifetime measurements. It was demonstrated [...] Read more.
Metal halide perovskites are known to suffer from rapid degradation, limiting their direct applicability. Here, the degradation of phenethylammonium lead iodide (PEA2PbI4) two-dimensional perovskites under ambient conditions was studied using fluorescence, absorbance, and fluorescence lifetime measurements. It was demonstrated that the long-term stability of two-dimensional perovskites could be achieved through the encapsulation with hexagonal boron nitride. While un-encapsulated perovskite flakes degraded within hours, the encapsulated perovskites were stable for at least three months. In addition, encapsulation considerably improved the stability under laser irradiation. The environmental stability, combined with the improved durability under illumination, is a critical ingredient for thorough spectroscopic studies of the intrinsic optoelectronic properties of this material platform. Full article
(This article belongs to the Special Issue Optics and Transport on 2D Materials)
Show Figures

Graphical abstract

Back to TopTop