#
Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)_{2}PbI_{4} Two-Dimensional Perovskites

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

_{2}PbI${}_{4}$ crystals.

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater.
**2018**, 30, 1703487. [Google Scholar] [CrossRef] - Straus, D.B.; Kagan, C.R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. J. Phys. Chem. Lett.
**2018**, 9, 1434–1447. [Google Scholar] [CrossRef] - Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev.
**2016**, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed] - Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol.
**2015**, 10, 391–402. [Google Scholar] [CrossRef] [PubMed] - Liu, X.K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater.
**2021**, 20, 10–21. [Google Scholar] [CrossRef] [PubMed] - Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.
**2017**, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed] - Novoselov, K.S.; Mishchenko, A.; Carvalho, o.A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science
**2016**, 353, aac9439. [Google Scholar] [CrossRef] [Green Version] - Egger, D.A.; Bera, A.; Cahen, D.; Hodes, G.; Kirchartz, T.; Kronik, L.; Lovrincic, R.; Rappe, A.M.; Reichman, D.R.; Yaffe, O. What remains unexplained about the properties of halide perovskites? Adv. Mater.
**2018**, 30, 1800691. [Google Scholar] [CrossRef] [Green Version] - Tao, W.; Zhang, C.; Zhou, Q.; Zhao, Y.; Zhu, H. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun.
**2021**, 12, 1400. [Google Scholar] [CrossRef] - Blancon, J.C.; Stier, A.V.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Traore, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G.; et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun.
**2018**, 9, 2254. [Google Scholar] [CrossRef] [Green Version] - Dyksik, M.; Wang, S.; Paritmongkol, W.; Maude, D.K.; Tisdale, W.A.; Baranowski, M.; Plochocka, P. Tuning the Excitonic Properties of the 2D (PEA)
_{2}(MA)_{n-1}Pb_{n}I3_{n+1}Perovskite Family via Quantum Confinement. J. Phys. Chem. Lett.**2021**, 12, 1638–1643. [Google Scholar] [CrossRef] [PubMed] - Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys.
**2018**, 90, 021001. [Google Scholar] [CrossRef] [Green Version] - Yu, Z. Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep.
**2016**, 6, 28576. [Google Scholar] [CrossRef] [Green Version] - Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A.L.; Lounis, B. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett.
**2017**, 17, 2895–2901. [Google Scholar] [CrossRef] [PubMed] - Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C
_{4}H_{9}NH_{3})_{2}PbBr_{4}. Jpn. J. Appl. Phys.**2005**, 44, 5923. [Google Scholar] [CrossRef] - Do, T.T.H.; Granados del Aguila, A.; Zhang, D.; Xing, J.; Liu, S.; Prosnikov, M.; Gao, W.; Chang, K.; Christianen, P.C.; Xiong, Q. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett.
**2020**, 20, 5141–5148. [Google Scholar] [CrossRef] - Posmyk, K.; Zawadzka, N.; Dyksik, M.; Surrente, A.; Maude, D.K.; Kazimierczuk, T.; Babinski, A.; Molas, M.R.; Paritmongkol, W.; Maczka, M.; et al. Quantification of Exciton Fine Structure Splitting in a Two-Dimensional Perovskite Compound. J. Phys. Chem. Lett.
**2022**, 13, 4463–4469. [Google Scholar] [CrossRef] - Dyksik, M.; Duim, H.; Maude, D.K.; Baranowski, M.; Loi, M.A.; Plochocka, P. Brightening of dark excitons in 2D perovskites. Sci. Adv.
**2021**, 7, eabk0904. [Google Scholar] [CrossRef] - Canet-Albiach, R.; Krecmarova, M.; Bailach, J.B.; Gualdrón-Reyes, A.F.; Rodríguez-Romero, J.; Gorji, S.; Pashaei-Adl, H.; Mora-Seró, I.; Martinez Pastor, J.P.; Sánchez-Royo, J.F.; et al. Revealing giant exciton fine-structure splitting in two-dimensional perovskites using van der Waals passivation. Nano Lett.
**2022**, 22, 7621–7627. [Google Scholar] [CrossRef] - Wang, S.; Dyksik, M.; Lampe, C.; Gramlich, M.; Maude, D.K.; Baranowski, M.; Urban, A.S.; Plochocka, P.; Surrente, A. Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr3-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy. Nano Lett.
**2022**, 22, 7011–7019. [Google Scholar] [CrossRef] - Ema, K.; Umeda, K.; Toda, M.; Yajima, C.; Arai, Y.; Kunugita, H.; Wolverson, D.; Davies, J. Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material. Phys. Rev. B
**2006**, 73, 241310. [Google Scholar] [CrossRef] - Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Magneto-optical study on the excitonic spectrum of (C
_{6}H_{13}NH_{3})_{2}PbI_{4}. Phys. B Condens. Matter**1993**, 184, 132–136. [Google Scholar] [CrossRef] - Fang, H.h.; Yang, J.; Adjokatse, S.; Tekelenburg, E.; Kamminga, M.E.; Duim, H.; Ye, J.; Blake, G.R.; Even, J.; Loi, M.A. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater.
**2020**, 30, 1907979. [Google Scholar] [CrossRef] [Green Version] - Folpini, G.; Cortecchia, D.; Petrozza, A.; Kandada, A.R.S. The role of a dark exciton reservoir in the luminescence efficiency of two-dimensional tin iodide perovskites. J. Mater. Chem. C
**2020**, 8, 10889–10896. [Google Scholar] [CrossRef] - Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T.; et al. Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B
**2002**, 65, 195315. [Google Scholar] [CrossRef] - Blackwood, E.; Snelling, M.; Harley, R.; Andrews, S.; Foxon, C. Exchange interaction of excitons in GaAs heterostructures. Phys. Rev. B
**1994**, 50, 14246. [Google Scholar] [CrossRef] - Straus, D.B.; Hurtado Parra, S.; Iotov, N.; Gebhardt, J.; Rappe, A.M.; Subotnik, J.E.; Kikkawa, J.M.; Kagan, C.R. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J. Am. Chem. Soc.
**2016**, 138, 13798–13801. [Google Scholar] [CrossRef] - Urban, J.M.; Chehade, G.; Dyksik, M.; Menahem, M.; Surrente, A.; Trippé-Allard, G.; Maude, D.K.; Garrot, D.; Yaffe, O.; Deleporte, E.; et al. Revealing Excitonic Phonon Coupling in (PEA)
_{2}(MA)_{n-1}Pb_{n}I3_{n+1}2D Layered Perovskites. J. Phys. Chem. Lett.**2020**, 11, 5830–5835. [Google Scholar] [CrossRef] - Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A.R.S. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater.
**2018**, 2, 064605. [Google Scholar] [CrossRef] [Green Version] - Baranowski, M.; Zelewski, S.J.; Kepenekian, M.; Traoré, B.; Urban, J.M.; Surrente, A.; Galkowski, K.; Maude, D.K.; Kuc, A.; Booker, E.P.; et al. Phase-transition-induced carrier mass enhancement in 2D Ruddlesden–Popper perovskites. ACS Energy Lett.
**2019**, 4, 2386–2392. [Google Scholar] [CrossRef] - Thouin, F.; Valverde-Chávez, D.A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A.R. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater.
**2019**, 18, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Srimath Kandada, A.R.; Silva, C. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett.
**2020**, 11, 3173–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Paritmongkol, W.; Dahod, N.S.; Stollmann, A.; Mao, N.; Settens, C.; Zheng, S.L.; Tisdale, W.A. Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater.
**2019**, 31, 5592–5607. [Google Scholar] [CrossRef] [Green Version] - Paritmongkol, W.; Powers, E.R.; Dahod, N.S.; Tisdale, W.A. Two origins of broadband emission in multilayered 2D lead iodide perovskites. J. Phys. Chem. Lett.
**2020**, 11, 8565–8572. [Google Scholar] [CrossRef] [PubMed] - Yang, Z.; Surrente, A.; Galkowski, K.; Bruyant, N.; Maude, D.K.; Haghighirad, A.A.; Snaith, H.J.; Plochocka, P.; Nicholas, R.J. Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite. J. Phys. Chem. Lett.
**2017**, 8, 1851–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pelant, I.; Valenta, J. Luminescence Spectroscopy of Semiconductors; OUP Oxford: Oxford, PA, USA, 2012. [Google Scholar]
- de Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F.T. Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter. Phys. Chem. Chem. Phys.
**2015**, 17, 16959–16969. [Google Scholar] [CrossRef] [Green Version] - Fang, H.H.; Yang, J.; Tao, S.; Adjokatse, S.; Kamminga, M.E.; Ye, J.; Blake, G.R.; Even, J.; Loi, M.A. Unravelling Light-Induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability. Adv. Funct. Mater.
**2018**, 28, 1800305. [Google Scholar] [CrossRef] [Green Version] - Dhanabalan, B.; Leng, Y.C.; Biffi, G.; Lin, M.L.; Tan, P.H.; Infante, I.; Manna, L.; Arciniegas, M.P.; Krahne, R. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano
**2020**, 14, 4689–4697. [Google Scholar] [CrossRef] [Green Version] - Menahem, M.; Dai, Z.; Aharon, S.; Sharma, R.; Asher, M.; Diskin-Posner, Y.; Korobko, R.; Rappe, A.M.; Yaffe, O. Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano
**2021**, 15, 10153–10162. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic view of a 2D perovskite of thickness $n=1$ together with the conduction and valance band alignment and spatial dependence of dielectric screening. (

**b**) Schematic of the band edge exciton fine structure of (PEA)${}_{2}$PbI${}_{4}$ (PEA—phenylethylammonium). G is the ground state of the system (no excitons), D is the dark state, and X, Y, and Z are the three bright states with orthogonally oriented dipole moments. (

**c**) Photoluminescence (grey shading) and reflectance (black line) spectra of (PEA)${}_{2}$PbI${}_{4}$ single crystal. The two in-plane bright exciton states are indicated by X and Y.

**Figure 2.**(

**a**) Broad spectral range reflectance spectrum of (PEA)${}_{2}$PbI${}_{4}$ (black line) and its derivative (red line). The minima in derivative correspond to transition energies. (

**b**) Schematic showing the Franck–Condon model (configurational coordinate diagram). The lower and upper parabolas represent the harmonic potential for the lattice in the ground and excited state. The shaded area corresponds to the spatial probability distribution of the harmonic oscillator. The arrows show examples of the transition from the ground (excited) vibrational level 0 to the vibration level 2 of the excited (ground) state. Such a transition results in the emission of two phonons. (

**c**) Schematic of absorption (green) and emission (grey) spectra of exciton coupled to lattice vibration. The envelope lines represent the merged responses of phonon replicas involving different numbers of phonons also known as phonon wings.

**Figure 3.**(

**a**) Polarization resolved spectra of reflectance for ${\pi}_{X}$ and ${\pi}_{Y}$ polarization. (

**b**–

**d**) Dependence of the reflectance spectrum as a function of the polarization angle. The intensity in each panel is adjusted to emphasize the splitting in a given spectral range. ${\mathsf{\Delta}}_{XY}{sin}^{2}\left(\alpha \right)$ is plotted in dashed black lines, which shows the oscillatory behaviour of the transition energy as a function of detection angle.

**Figure 4.**Polarization resolved PL and reflectance spectra. Blue and red arrows show equal distances of low energy PL peak and SB2 from the zero-phonon line of X and Y exciton.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Posmyk, K.; Dyksik, M.; Surrente, A.; Zalewska, K.; Śmiertka, M.; Cybula, E.; Paritmongkol, W.; Tisdale, W.A.; Plochocka, P.; Baranowski, M.
Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)_{2}PbI_{4} Two-Dimensional Perovskites. *Nanomaterials* **2023**, *13*, 1119.
https://doi.org/10.3390/nano13061119

**AMA Style**

Posmyk K, Dyksik M, Surrente A, Zalewska K, Śmiertka M, Cybula E, Paritmongkol W, Tisdale WA, Plochocka P, Baranowski M.
Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)_{2}PbI_{4} Two-Dimensional Perovskites. *Nanomaterials*. 2023; 13(6):1119.
https://doi.org/10.3390/nano13061119

**Chicago/Turabian Style**

Posmyk, Katarzyna, Mateusz Dyksik, Alessandro Surrente, Katarzyna Zalewska, Maciej Śmiertka, Ewelina Cybula, Watcharaphol Paritmongkol, William A. Tisdale, Paulina Plochocka, and Michał Baranowski.
2023. "Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)_{2}PbI_{4} Two-Dimensional Perovskites" *Nanomaterials* 13, no. 6: 1119.
https://doi.org/10.3390/nano13061119