Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = eccentricities
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 721 KB  
Article
Intra-Day and Inter-Day Reliability and Usefulness of Performance, Kinetic and Kinematic Variables during Drop Jumping in Hurling Players
by Luke Atkins, Colin Coyle, Jeremy Moody, Rodrigo Ramirez-Campillo and Paul J. Byrne
Biomechanics 2024, 4(1), 1-13; https://doi.org/10.3390/biomechanics4010001 - 10 Jan 2024
Viewed by 2296
Abstract
The aim of this study was to estimate the intra-day and inter-day reliability and usefulness of performance (Jump height (JH), ground contact time (GCT) and reactive strength index (RSI)), kinetic (force, power, eccentric rate of force development [E-RFD] and leg stiffness [LS]) and [...] Read more.
The aim of this study was to estimate the intra-day and inter-day reliability and usefulness of performance (Jump height (JH), ground contact time (GCT) and reactive strength index (RSI)), kinetic (force, power, eccentric rate of force development [E-RFD] and leg stiffness [LS]) and kinematic (velocity) variables during drop jumping (DJ) in hurling players. Seventeen (n = 17; mean ± SD; age = 23.35 ± 5.78 years, height = 178.35 ± 6.30 cm, body mass = 78.62 ± 8.06 kg) male club-level hurling players completed two maximal DJs from 0.20, 0.30, 0.40, 0.50 and 0.60 m drop heights on three testing days separated by 5–9 days of rest. Reliability was assessed using the coefficient of variation percentage (CV% ≤ 15%) and intraclass correlation coefficient (ICC > 0.70). For intra-day reliability, GCT (0.40 m, 0.50 m and 0.60 m), peak force (absolute and relative) (0.40 m and 0.50 m) and leg stiffness (0.40 m and 0.50 m) were found to be unreliable (ICC = 0.32–0.68 and CV% = 3.67–11.83%) from those specific drop heights. All other variables were found to be reliable (ICC = 0.72–0.98 and CV% = 1.07–14.02%) intra-day. All variables were found to be reliable (ICC = 0.72–0.96 and CV% = 2.57–14.68%) inter-day except for relative peak force and absolute and relative eccentric RFD (0.30 m and 0.40 m) (ICC = 0.68–0.90 and CV% = 7.76–16.47%). Practitioners have multiple reliable DJ performance, kinetic and kinematic variables for performance testing and training purposes. Full article
Show Figures

Figure 1

13 pages, 1039 KB  
Article
A Single Dose of Microencapsulated Cocoa Supplementation Does Not Speed up Muscle Force Recovery after Eccentric Exercise-Induced Muscle Damage: A Placebo-Controlled, Double-Blind, Crossover Study
by Olavo João Frederico Ramos Junior, Karen Souza dos Santos, Isabela Ribeiro Grangeira Tavares, Gustavo Vieira de Oliveira and Thiago Silveira Alvares
Appl. Biosci. 2024, 3(1), 1-13; https://doi.org/10.3390/applbiosci3010001 - 22 Dec 2023
Cited by 2 | Viewed by 3298
Abstract
Exercise-induced muscle damage is associated with symptoms such as inflammation, delayed-onset muscle soreness, and impaired muscle performance. The intake of cocoa polyphenols has been suggested to improve muscle recovery due to their antioxidant and anti-inflammatory capacity. However, their bioavailability presents a challenge. Therefore, [...] Read more.
Exercise-induced muscle damage is associated with symptoms such as inflammation, delayed-onset muscle soreness, and impaired muscle performance. The intake of cocoa polyphenols has been suggested to improve muscle recovery due to their antioxidant and anti-inflammatory capacity. However, their bioavailability presents a challenge. Therefore, food microencapsulation may be an alternative to protect polyphenols, ensuring their biological effects. This study aimed to investigate the effect of a single dose of microencapsulated cocoa on the changes in muscle damage markers after eccentric exercise. In this randomized, double-blind, crossover study, fourteen healthy volunteers with previous resistance training experience performed 6 × 10 maximal isokinetic eccentric contractions of their elbow flexors using an isokinetic dynamometer after ingesting 25 g of microencapsulated cocoa or placebo. Peak isometric torque was measured using maximal voluntary isometric contractions, and pain was measured using a visual analogic scale both before and 24 h, 48 h, and 72 h after the damage protocol. Plasma glutathione and malondialdehyde levels were measured using high-performance liquid chromatography, and concentrations of myoglobin and C-reactive protein were determined using a fluorescence immunoassay analyzer. Significant decreases were seen in the peak isometric torque and pain measures from pre- to 72 h post-eccentric exercise. A significant main effect for time was found only for plasma myoglobin at 2 h, 48 h, and 72 h, and for C-reactive protein at 2 h, compared to the pre-eccentric exercise values. No significant time-treatment effects were observed (all p > 0.05). This study demonstrated that microencapsulated cocoa cannot improve muscle recovery after eccentric exercise, at least when a single dose is consumed. Full article
Show Figures

Figure 1

3 pages, 99 KB  
Article
Introduction to Special Thematic Issue, Part 2 “Microsaccades: Empirical Research and Methodological Advances”
by Rudolf Groner
J. Eye Mov. Res. 2020, 13(5), 1-3; https://doi.org/10.16910/jemr.13.5.1 - 25 Mar 2023
Viewed by 366
Abstract
Microsaccades are at the interface between basic oculomotor phenomena and complex processes of cognitive functioning, and they also have been a challenge for subtle experimentation and adequate statistical analysis. In the second part of the special thematic issue (for the first part see [...] Read more.
Microsaccades are at the interface between basic oculomotor phenomena and complex processes of cognitive functioning, and they also have been a challenge for subtle experimentation and adequate statistical analysis. In the second part of the special thematic issue (for the first part see Martinez-Conde, Engbert, & Groner, 2020) the authors present a series of articles which demonstrate that microsaccades are still an interesting and rewarding area of scientific research the forefront of research in many areas of sensory, perceptual, and cognitive processes. In their article “Pupillary and microsaccadic responses to cognitive effort and emotional arousal during complex decision making” Krejtz, Żurawska, Duchowski, & Wichary (2020) investigate pupillary and microsaccadic responses to information processing during multi-attribute decision making under affective priming. The participants were randomly assigned into three affective priming conditions (neutral, aversive, and erotic) and instructed to make discriminative decisions. As hypothesized by the authors, the results showed microsaccadic rate inhibition and pupillary dilation, depending on cognitive effort prior to decision and moderated by affective priming. Aversive priming increased pupillary and microsaccadic responses to information processing effort. The results indicate that pupillary response is more influenced by affective priming than microsaccadic rate. The results are discussed in the light of neuropsychological mechanisms of pupillary and microsaccadic behavior. In the article “Microsaccadic rate signatures correlate under monocular and binocular stimulation conditions” Essig, Leube, Rifai, & Wahl (2020) investigate microsaccades with respect to their directional distribution and rate under monocular and binocular conditions. In both stimulation conditions participants fixated a Gabor patch presented randomly in orientation of 45° or 135° over a wide range of spatial frequencies. Microsaccades were mostly horizontally oriented regardless of the spatial frequency of the grating. This outcome was consistent between both stimulation conditions. This study found that the microsaccadic rate signature curve correlates between both stimulation conditions, therefore extending the use of microsaccades to clinical applications, since parameters as contrast sensitivity, have frequently been measured monocularly in the clinical studies. The study “Microsaccades during high speed continuous visual search” by Martin, Davis, Riesenhuber, & Thorpe (2020) provides an analysis of the microsaccades occurring during visual search, targeting to small faces pasted either into cluttered background photos or into a simple gray background. Participants were instructed to target singular 3-degree upright or inverted faces in changing scenes. As soon as the participant’s gaze reached the target face, a new face was displayed in a different random location. Regardless of the experimental context (e.g., background scene, no background scene), or target eccentricity (from 4 to 20 degrees of visual angle), The authors found that the microsaccade rate dropped to near zero levels within 12 ms. There were almost never any microsaccades after stimulus onset and before the first saccade to the face. In about 20% of the trials, there was a single microsaccade that occurred almost immediately after the preceding saccade’s offset. The authors argue that a single feedforward pass through the visual hierarchy of processing a stimulus is needed to effectuate prolonged continuous visual search and provide evidence that microsaccades can serve perceptual functions like correcting saccades or effectuating task-oriented goals during continuous visual search. While many studies have characterized the eye movements during visual fixation, including microsaccades, in most cases only horizontal and vertical components have been recorded and analyzed. Little is known about the torsional component of microsaccades. In the study “Torsional component of microsaccades during fixation and quick phases during optokinetic stimulation” Sadeghpour & Otero-Millan (2020) recorded eye movements around the three axes of rotation during fixation and torsional optokinetic stimulus. The authors found that the average amplitude of the torsional component of microsaccades during fixation was 0.34 ± 0.07 degrees with velocities following a main sequence with a slope comparable to the horizontal and vertical components. The size of the torsional displacement during microsaccades was correlated with the horizontal but not the vertical component. In the presence of an optokinetic stimulus a nystagmus was induced producing more frequent and larger torsional quick phases compared to microsaccades produced during fixation of a stationary stimulus. The torsional component and the vertical vergence component of quick phases increased with higher velocities. In previous research, microsaccades have been interpreted as psychophysiological indicators of task load. So far, it is still under debate how different types of task demands are influencing microsaccade rate. In their article “The interplay between task difficulty and microsaccade rate: Evidence for the critical role of visual load” Schneider et al. (1921) examined the relation between visual load, mental load and microsaccade rate. The participants carried out a continuous performance task (n-back) in which visual task load (letters vs. abstract figures) and mental task load (1-back to 4-back) were manipulated as within-subjects variables. Eye tracking data, performance data as well as subjective workload were recorded. Data analysis revealed an increased level of microsaccade rate for stimuli of high visual demand (i.e., abstract figures), while mental demand (n-back-level) did not modulate microsaccade rate. The authors concluded that microsaccade rate reflects visual load of a task rather than its mental load. This conclusion is in accordance with the proposition of Krueger et al. (2019) “Microsaccades distinguish looking from seeing”, linking sensory with cognitive phenomena. The present special thematic issue adds several new interesting facets to the research landscape around microsaccades. They still remain an attractive focus of interdisciplinary research and transdisciplinary applications. Thus, as already noted in the first part of this special thematic issue, research on microsaccades will not only endure, but keep evolving as the knowledge base expands. Full article
10 pages, 2044 KB  
Article
Maintaining Fixation by Children in a Virtual Reality Version of Pupil Perimetry
by Brendan L. Portengen, Marnix Naber, Demi Jansen, Carlijn van den Boomen, Saskia M. Imhof and Giorgio L. Porro
J. Eye Mov. Res. 2022, 15(3), 1-10; https://doi.org/10.16910/jemr.15.3.2 - 19 Sep 2022
Cited by 8 | Viewed by 486
Abstract
The assessment of the visual field in young children continues to be a challenge. Children often do not sit still, fail to fixate stimuli for longer durations, and have limited verbal capacity to report visibility. Therefore, we introduced a head-mounted VR display with [...] Read more.
The assessment of the visual field in young children continues to be a challenge. Children often do not sit still, fail to fixate stimuli for longer durations, and have limited verbal capacity to report visibility. Therefore, we introduced a head-mounted VR display with gazecontingent flicker pupil perimetry (VRgcFPP). We presented large flickering patches at different eccentricities and angles in the periphery to evoke pupillary oscillations, and three fixation stimulus conditions to determine best practices for optimal fixation and pupil response quality. A total of twenty children (3-11y) passively fixated a dot, counted the repeated appearance of an animated character (counting task), and watched an animated movie in separate trials of 80s each (20 patch locations, 4s per location). The results showed that gaze precision and accuracy did not differ significantly across the fixation conditions but pupil amplitudes were strongest for the dot and count task. The VR set-up appears to be an ideal apparatus for children to allow free range of movement, an engaging visual task, and reliable eye measurements. We recommend the use of the fixation counting task for pupil perimetry because children enjoyed it the most and it achieved strongest pupil responses. Full article
Show Figures

Figure 1

18 pages, 2737 KB  
Article
Eye Tracking in Virtual Reality: Vive Pro Eye Spatial Accuracy, Precision, and Calibration Reliability
by Immo Schuetz and Katja Fiehler
J. Eye Mov. Res. 2022, 15(3), 1-18; https://doi.org/10.16910/jemr.15.3.3 - 7 Sep 2022
Cited by 73 | Viewed by 2353
Abstract
A growing number of virtual reality devices now include eye tracking technology, which can facilitate oculomotor and cognitive research in VR and enable use cases like foveated rendering. These applications require different tracking performance, often measured as spatial accuracy and precision. While manufacturers [...] Read more.
A growing number of virtual reality devices now include eye tracking technology, which can facilitate oculomotor and cognitive research in VR and enable use cases like foveated rendering. These applications require different tracking performance, often measured as spatial accuracy and precision. While manufacturers report data quality estimates for their devices, these typically represent ideal performance and may not reflect real-world data quality. Additionally, it is unclear how accuracy and precision change across sessions within the same participant or between devices, and how performance is influenced by vision correction. Here, we measured spatial accuracy and precision of the Vive Pro Eye built-in eye tracker across a range of 30 visual degrees horizontally and vertically. Participants completed ten measurement sessions over multiple days, allowing to evaluate calibration reliability. Accuracy and precision were highest for central gaze and decreased with greater eccentricity in both axes. Calibration was successful in all participants, including those wearing contacts or glasses, but glasses yielded significantly lower performance. We further found differences in accuracy (but not precision) between two Vive Pro Eye headsets, and estimated participants’ inter-pupillary distance. Our metrics suggest high calibration reliability and can serve as a baseline for expected eye tracking performance in VR experiments. Full article
Show Figures

Figure 1

6 pages, 401 KB  
Article
Reliability of the Hip Extension Lower Exercise as a Measure of Eccentric Hamstring Strength
by Joey O’Brien, Declan Browne, Des Earls and Clare Lodge
Biomechanics 2022, 2(1), 1-6; https://doi.org/10.3390/biomechanics2010001 - 30 Dec 2021
Cited by 1 | Viewed by 3765
Abstract
Hamstring strain injury (HSI) is a very common lower-body injury in field sports, and eccentric (ECC) hamstring strength is a potential modifiable risk factor, therefore having reliable eccentric hamstring strength assessments is critical. The aim of this study was to access test–retest reliability [...] Read more.
Hamstring strain injury (HSI) is a very common lower-body injury in field sports, and eccentric (ECC) hamstring strength is a potential modifiable risk factor, therefore having reliable eccentric hamstring strength assessments is critical. The aim of this study was to access test–retest reliability of the hip extension lower (HEL) exercise as a measure of ECC hamstring strength and inter-limb asymmetries. Twelve male elite level soccer players (mean; age: 21.8 years; height: 180.4 cm; weight: 75.7 kg) volunteered to participate in this study. Participants were from the same soccer club, covered all playing positions, and had no current injury issues. Participants performed two familiarization sessions to acquaint themselves with the device and exercise protocol. During testing, each participant performed three repetitions with 60s intra-set recovery provided. Average and peak force (N) was recorded for both limbs. Testing sessions took place on the same day and time over a two-week pre-season period and followed a full recovery day. Intraclass Correlation Coefficient (ICC), Coefficient of Variation (CV%), Minimal Detectable Change (MDC) and Typical Error (TE) were used to assess reliability. The HEL showed excellent reliability for average force (N) in the left (ICC (95% CI) = 0.9 (0.7–0.97); TE = 14.1 N, CV% = 1.87; MDC = 39.06 N) and right (ICC (95% CI) = 0.91 (0.73–0.97); TE = 20.89 N, CV% = 3.26; MDC = 57.87 N) limb, and also excellent reliability for peak force in the left (ICC (95% CI) = 0.91 (0.71–0.97); TE = 13.55 N, CV% = 1.61; MDC = 57.87 N) and right (ICC (95% CI) = 0.9 (0.7–0.97); TE = 21.70 N, CV% = 3.31; MDC = 60.11 N) limb. This data suggests the HEL as a reliable measure of both ECC hamstring strength and inter-limb asymmetries. Practitioners should consider the HEL as a reliable choice for measuring and monitoring eccentric hamstring strength in their athletes. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

11 pages, 1126 KB  
Article
Effects of Zembrin® (Sceletium tortuosum) Supplementation on Mood, Soreness, and Performance Following Unaccustomed Resistance Exercise: A Pilot Study
by Angela R. Berry, Haley N. Langley, Rebecca R. Rogers, Courteney L. Benjamin, Tyler D. Williams and Christopher G. Ballmann
Nutraceuticals 2021, 1(1), 2-11; https://doi.org/10.3390/nutraceuticals1010002 - 16 Sep 2021
Cited by 3 | Viewed by 15219
Abstract
The purpose of this study was to investigate acute Zembrin® (Sceletium tortuosum) supplementation on muscle soreness, markers of muscle damage, mood, and exercise performance following unaccustomed resistance exercise. Untrained females (n = 16) were divided into two groups with [...] Read more.
The purpose of this study was to investigate acute Zembrin® (Sceletium tortuosum) supplementation on muscle soreness, markers of muscle damage, mood, and exercise performance following unaccustomed resistance exercise. Untrained females (n = 16) were divided into two groups with a different three-day treatment regimen: (1) placebo (PL) and (2) Zembrin® (ZEM). During the initial visit, baseline perceived soreness, range of motion (ROM), mood state (profile of mood states (POMS) questionnaire), and plasma lactate dehydrogenase concentrations (LDH) were measured followed by the performance of an eccentric bicep curl protocol with their non-dominant arm. The total repetitions and rate of perceived exertion (RPE) were recorded throughout the exercise. The participants then supplemented with the corresponding treatment immediately following, the subsequent day, and 30 min prior to completing a 48 h follow-up visit. For the 48 h visit, all procedures were repeated and comparisons were drawn for perceived soreness, ROM, LDH, mood scores, total repetitions, and RPE. The findings indicate that short-term ZEM supplementation resulted in lower perceived soreness (p = 0.020) and a greater preservation of ROM (p = 0.028) at 48 h versus the PL group. Mood worsened from the baseline to 48 h regardless of the treatment (p = 0.043) but the decrements were exacerbated in the PL group compared with the ZEM group (p < 0.001). LDH levels (p = 0.019) and RPE (p = 0.008) were higher and total repetitions were lower (p < 0.001) at 48 h irrespective of the treatment. Although short-term dietary enrichment with ZEM did not alter the exercise performance or biomarkers of muscle damage, the current results suggest ZEM supplementation may be effective in reducing the markers of soreness and preserve mood following unaccustomed eccentric exercise. Full article
(This article belongs to the Special Issue Current State of the Art—Nutraceutical Components of Foods)
Show Figures

Figure 1

14 pages, 15324 KB  
Article
Microsaccades During High Speed Continuous Visual Search
by Jacob G. Martin, Charles E. Davis, Maximilian Riesenhuber and Simon J. Thorpe
J. Eye Mov. Res. 2020, 13(5), 1-14; https://doi.org/10.16910/jemr.13.5.4 - 28 Jun 2020
Cited by 2 | Viewed by 381
Abstract
Here, we provide an analysis of the microsaccades that occurred during continuous visual search and targeting of small faces that we pasted either into cluttered background photos or into a simple gray background. Subjects continuously used their eyes to target singular 3-degree upright [...] Read more.
Here, we provide an analysis of the microsaccades that occurred during continuous visual search and targeting of small faces that we pasted either into cluttered background photos or into a simple gray background. Subjects continuously used their eyes to target singular 3-degree upright or inverted faces in changing scenes. As soon as the participant’s gaze reached the target face, a new face was displayed in a different and random location. Regardless of the experimental context (e.g., background scene, no background scene), or target eccentricity (from 4 to 20 degrees of visual angle), we found that the microsaccade rate dropped to near zero levels within only 12 ms after stimulus onset. There were almost never any microsaccades after stimulus onset and before the first saccade to the face. One subject completed 118 consecutive trials without a single microsaccade. However, in about 20% of the trials, there was a single microsaccade that occurred almost immediately after the preceding saccade’s offset. These microsaccades were task oriented because their facial landmark targeting distributions matched those of saccades within both the upright and inverted face conditions. Our findings show that a single feedforward pass through the visual hierarchy for each stimulus is likely all that is needed to effectuate prolonged continuous visual search. In addition, we provide evidence that microsaccades can serve perceptual functions like correcting saccades or effectuating task-oriented goals during continuous visual search. Full article
Show Figures

Figure 1

9 pages, 678 KB  
Article
Target Eccentricity and Form Influences Disparity Vergence Eye Movements Responses: A Temporal and Dynamic Analysis
by Chang Yaramothu, Rajbir S. Jaswal and Tara L. Alvarez
J. Eye Mov. Res. 2019, 12(4), 1-9; https://doi.org/10.16910/jemr.12.4.7 - 3 Dec 2019
Cited by 4 | Viewed by 273
Abstract
This study sought to investigate whether stimulation to the fovea or the parafovea with different color combinations influenced the temporal and dynamic features of 4° disparity vergence step responses. Twelve unique types of stimuli were displayed within a haploscope presented along the participant’s [...] Read more.
This study sought to investigate whether stimulation to the fovea or the parafovea with different color combinations influenced the temporal and dynamic features of 4° disparity vergence step responses. Twelve unique types of stimuli were displayed within a haploscope presented along the participant’s midsagittal plane. Vergence eye movement responses from fifteen naïve participants were recorded using video-based infrared eye tracking instrumentation. Latency and peak velocity from left and right eye movement responses were quantified. Results show that the type of stimulus projection (foveal versus parafoveal) significantly (p < 0.001) influences the vergence response latency but did not impact peak velocity. Vergence responses to eccentric circles with 6° eccentricity targeting the parafovea resulted in a significantly faster response latency compared to vergence responses to a cross with 2° eccentricity stimuli targeting the fovea. Results have implications for the stimulus design of a variety of applications from virtual reality to vision therapy interventions. Full article
Show Figures

Figure 1

12 pages, 8077 KB  
Article
A Quality-Centered Analysis of Eye Tracking Data in Foveated Rendering
by Thorsten Roth, Martin Weier, André Hinkenjann, Yongmin Li and Philipp Slusallek
J. Eye Mov. Res. 2017, 10(5), 1-12; https://doi.org/10.16910/jemr.10.5.2 - 28 Sep 2017
Cited by 14 | Viewed by 572
Abstract
This work presents the analysis of data recorded by an eye tracking device in the course of evaluating a foveated rendering approach for head-mounted displays (HMDs). Foveated rendering methods adapt the image synthesis process to the user’s gaze and exploiting the human visual [...] Read more.
This work presents the analysis of data recorded by an eye tracking device in the course of evaluating a foveated rendering approach for head-mounted displays (HMDs). Foveated rendering methods adapt the image synthesis process to the user’s gaze and exploiting the human visual system’s limitations to increase rendering performance. Especially, foveated rendering has great potential when certain requirements have to be fulfilled, like low-latency rendering to cope with high display refresh rates. This is crucial for virtual reality (VR), as a high level of immersion, which can only be achieved with high rendering performance and also helps to reduce nausea, is an important factor in this field. We put things in context by first providing basic information about our rendering system, followed by a description of the user study and the collected data. This data stems from fixation tasks that subjects had to perform while being shown fly-through sequences of virtual scenes on an HMD. These fixation tasks consisted of a combination of various scenes and fixation modes. Besides static fixation targets, moving targets on randomized paths as well as a free focus mode were tested. Using this data, we estimate the precision of the utilized eye tracker and analyze the participants’ accuracy in focusing the displayed fixation targets. Here, we also take a look at eccentricity-dependent quality ratings. Comparing this information with the users’ quality ratings given for the displayed sequences then reveals an interesting connection between fixation modes, fixation accuracy and quality ratings. Full article
Show Figures

Figure 1

11 pages, 3081 KB  
Article
Influence of Number, Location and Size of Faces on Gaze in Video
by Anis Rahman, Denis Pellerin and Dominique Houzet
J. Eye Mov. Res. 2014, 7(2), 1-11; https://doi.org/10.16910/jemr.7.2.5 (registering DOI) - 5 Apr 2014
Cited by 10 | Viewed by 197
Abstract
Many studies have reported the preference for faces and influence of faces on gaze, most of them in static images and a few in videos. In this paper, we study the influence of faces in complex free-viewing videos, with respect to the effects [...] Read more.
Many studies have reported the preference for faces and influence of faces on gaze, most of them in static images and a few in videos. In this paper, we study the influence of faces in complex free-viewing videos, with respect to the effects of number, location and size of the faces. This knowledge could be used to enrich a face pathway in a visual saliency model. We used eye fixation data from an eye movement experiment, hand-labeled all the faces in the videos watched, and compared the labeled face regions against the eye fixations. We observed that fixations made are in proximity to, or inside the face regions. We found that 50% of the fixations landed directly on face regions that occupy less than 10% of the entire visual scene. Moreover, the fixation duration on videos with face is longer than without face, and longer than fixation duration on static images with faces. Finally, we analyzed the three influencing factors (Eccentricity, Area, Closeness) with linear regression models. For one face, the E + A combined model is slightly better than the E model and better than the A model. For two faces, the three variables (E,A,C) are tightly coupled and the E + A+ C model had the highest score. Full article
Show Figures

Figure 1

14 pages, 1064 KB  
Article
Visual Search Without Central Vision—No Single Pseudofovea Location Is Best
by Angelika Lingnau, Thorsten Albrecht, Jens Schwarzbach and Dirk Vorberg
J. Eye Mov. Res. 2014, 7(2), 1-14; https://doi.org/10.16910/jemr.7.2.4 (registering DOI) - 4 Apr 2014
Cited by 1 | Viewed by 183
Abstract
We typically fixate targets such that they are projected onto the fovea for best spatial resolution. Macular degeneration patients often develop fixation strategies such that targets are projected to an intact eccentric part of the retina, called pseudofovea. A longstanding debate concerns [...] Read more.
We typically fixate targets such that they are projected onto the fovea for best spatial resolution. Macular degeneration patients often develop fixation strategies such that targets are projected to an intact eccentric part of the retina, called pseudofovea. A longstanding debate concerns which pseudofovea location is optimal for non-foveal vision. We examined how pseudofovea position and eccentricity affect performance in visual search when vision is restricted to an offfoveal retinal region by a gaze-contingent display that dynamically blurs the stimulus except within a small viewing window (forced field location). Trained normally sighted participants were more accurate when forced field location was congruent with the required scan path direction; this contradicts the view that a single pseudofovea location is generally best. Rather, performance depends on the congruence between pseudofovea location and scan path direction Full article
Show Figures

Figure 1

14 pages, 837 KB  
Article
Visual vs. Spatial Contributions to Microsaccades and Visual-Spatial Working Memory
by Joshua T. Gaunt and Bruce Bridgeman
J. Eye Mov. Res. 2014, 7(2), 1-14; https://doi.org/10.16910/jemr.7.2.2 (registering DOI) - 21 Mar 2014
Cited by 2 | Viewed by 270
Abstract
Microsaccade rates and directions were monitored while observers performed a visual working memory task at varying retinal eccentricities. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. [...] Read more.
Microsaccade rates and directions were monitored while observers performed a visual working memory task at varying retinal eccentricities. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. Intervening tasks during the memory interval affected microsaccade patterns; microsaccade frequency was consistently higher during concurrent spatial tapping (no visual component) than during exposure to dynamic visual noise (no task). Average microsaccade rate peaked after appearance of a fixation cross at the start of a trial, and dipped at cue onset and offset, consistent with previous results. Direction of stimuli in choice tasks did not influence microsaccade direction, however. Full article
Show Figures

Figure 1

16 pages, 3391 KB  
Article
Microsaccades and Visual-Spatial Working Memory
by Joshua T. Gaunt and Bruce Bridgeman
J. Eye Mov. Res. 2012, 5(5), 1-16; https://doi.org/10.16910/jemr.5.5.3 - 25 Sep 2012
Cited by 3 | Viewed by 238
Abstract
Observers performed working memory tasks at varying retinal eccentricities, fixating centrally while microsaccade rates and directions were monitored. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. [...] Read more.
Observers performed working memory tasks at varying retinal eccentricities, fixating centrally while microsaccade rates and directions were monitored. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. Intervening tasks during the memory interval affected memory as well as microsaccade patterns. Average microsaccade rate peaks after appearance of a fixation cross at the start of a trial, and dips at cue onset and offset. Direction of stimuli in choice tasks did not influence microsaccade direction, however. Poorer memory accuracy for locations at greater retinal eccentricity calls for revising ideas of short-term spatial representations to include retinotopic or allocentric codes. Full article
Show Figures

Figure 1

10 pages, 582 KB  
Article
Orienting During Gaze Guidance in a Letter-Identification Task
by Christoph Rasche and Karl Gegenfurtner
J. Eye Mov. Res. 2009, 3(4), 1-10; https://doi.org/10.16910/jemr.3.4.3 - 15 Oct 2010
Viewed by 171
Abstract
The idea of gaze guidance is to lead a viewer’s gaze through a visual display in order to facilitate the viewer’s search for specific information in a least-obtrusive manner. This study investigates saccadic orienting when a viewer is guided in a fast-paced, low-contrast [...] Read more.
The idea of gaze guidance is to lead a viewer’s gaze through a visual display in order to facilitate the viewer’s search for specific information in a least-obtrusive manner. This study investigates saccadic orienting when a viewer is guided in a fast-paced, low-contrast letter identification task. Despite the task’s difficulty and although guiding cues were ad-justed to gaze eccentricity, observers preferred attentional over saccadic shifts to obtain a letter identification judgment; and if a saccade was carried out its saccadic constant error was 50%. From those results we derive a number of design recommendations for the process of gaze guidance. Full article
Show Figures

Figure 1

Back to TopTop