Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,131)

Search Parameters:
Journal = Toxics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 919 KiB  
Article
Cognitive Functions Among Pupils in Schools Near and Around an Electronic Waste Recycling Site at Agbogbloshie in Accra, Ghana
by Serwaa A. Bawua, Kwame M. Agbeko, Ibrahim Issah, Afua A. Amoabeng-Nti, Saskia Waldschmidt, Katja Löhndorf, Thomas Küpper, Jonathan Hogarh and Julius N. Fobil
Toxics 2025, 13(8), 615; https://doi.org/10.3390/toxics13080615 - 23 Jul 2025
Abstract
Background: Electronic waste (e-waste) recycling in informal settings like Agbogbloshie in Accra, Ghana, releases toxic metals into the environment, posing serious health risks to nearby residents, particularly children. This study assessed the body burdens of lead (Pb), manganese (Mn), cadmium (Cd), chromium (Cr), [...] Read more.
Background: Electronic waste (e-waste) recycling in informal settings like Agbogbloshie in Accra, Ghana, releases toxic metals into the environment, posing serious health risks to nearby residents, particularly children. This study assessed the body burdens of lead (Pb), manganese (Mn), cadmium (Cd), chromium (Cr), nickel (Ni), and arsenic (As) and their association with cognitive function in schoolchildren living within 1 km of the Agbogbloshie site. Method: A cross-sectional study involving 56 pupils collected demographic data and blood and urine samples and administered the Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV). Blood was tested for Pb and Mn and urine for Cd, Cr, Ni, and As. Associations between metal levels and cognitive outcomes were examined using regression analyses, adjusting for confounders. Result: Children showed elevated metal levels, with mean blood Pb of 60.43 µg/L and urinary s of 21.50 µg/L. Symptoms of cognitive dysfunction were common: 75% reported confusion, 67.9% poor memory, and 66% poor concentration. Urinary Cr levels were significantly associated with lower Full-Scale IQ (β = −18.42, p < 0.05) and increased difficulty in decision-making (OR = 0.1, p < 0.05). Conclusion: These findings underscore the neurodevelopmental risks of heavy metal exposure from e-waste in low- and middle-income countries and call for urgent public health interventions and policy actions. Full article
Show Figures

Figure 1

15 pages, 659 KiB  
Article
Impact of Seasonal PM2.5 Exposure on Metabolic and Hormonal Profiles in Healthy Individuals and Individuals with Metabolic Syndrome in Chiang Mai, Thailand
by Sharjeel Shakeel, Shamsa Sabir, Wason Parklak, Sawaeng Kawichai, Praporn Kijkuokool, Wiritphon Khiaolaongam, Pakaphorn Ngamsang, Putita Jiraya, Hataichanok Chuljerm, Puriwat Fakfum and Kanokwan Kulprachakarn
Toxics 2025, 13(8), 614; https://doi.org/10.3390/toxics13080614 - 23 Jul 2025
Abstract
Exposure to fine particulate matter (PM2.5) is linked to metabolic dysfunction, yet evidence on its impact on hormonal regulation remains limited. This study examined seasonal changes in insulin, adiponectin, leptin, and HOMA-IR levels among healthy individuals and those with metabolic syndrome [...] Read more.
Exposure to fine particulate matter (PM2.5) is linked to metabolic dysfunction, yet evidence on its impact on hormonal regulation remains limited. This study examined seasonal changes in insulin, adiponectin, leptin, and HOMA-IR levels among healthy individuals and those with metabolic syndrome (MS) in Chiang Mai, Thailand. Fifty participants (25 healthy, 25 with MS) were assessed during high (February–April)- and low (May–July)-PM2.5 seasons. Insulin levels increased in healthy individuals (mean: 9.3 to 14.9 µIU/mL; p = 0.051) and decreased in participants with MS (22.0 to 13.7 µIU/mL; p = 0.214), with a significant interaction effect (p = 0.020). Leptin increased significantly in both groups, but more markedly in the MS group (p < 0.001), also with a significant interaction (p < 0.001). HOMA-IR rose significantly in healthy individuals (p = 0.036) but not in participants with MS. Adiponectin remained stable across groups and seasons. At baseline, the MS group had significantly higher rates of diabetes (p = 0.050), hypertension (p = 0.001), and hyperlipidemia (p = 0.049). These findings suggest that PM2.5 may influence metabolic and hormonal profiles, particularly in individuals with existing metabolic disorders. Full article
19 pages, 3761 KiB  
Article
Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant
by Wenhao Wang, Yutong Liu, Nanxin Ma, Rui Wang, Lifan Fan, Chen Chen, Qiqi Yan, Zhihua Ren, Xia Ning, Shuting Wei and Tingting Ku
Toxics 2025, 13(8), 613; https://doi.org/10.3390/toxics13080613 - 22 Jul 2025
Abstract
Environmental contaminants exhibit heterogeneous neurotoxicity profiles, yet systematic comparisons between legacy neurotoxicants and emerging pollutants remain scarce. To address this gap, we implemented an integrative transcriptome meta-analysis framework that harmonized eight transcriptomic datasets spanning in vivo and in vitro neural models exposed to [...] Read more.
Environmental contaminants exhibit heterogeneous neurotoxicity profiles, yet systematic comparisons between legacy neurotoxicants and emerging pollutants remain scarce. To address this gap, we implemented an integrative transcriptome meta-analysis framework that harmonized eight transcriptomic datasets spanning in vivo and in vitro neural models exposed to two legacy neurotoxicants (bisphenol A [BPA], 2, 2′, 4, 4′-tetrabromodiphenyl ether [BDE-47]) and polystyrene nanoplastics (PSNPs) as an emerging contaminant. Our analysis revealed a substantial overlap (68% consistency) in differentially expressed genes (DEGs) between BPA and PSNPs, with shared enrichment in extracellular matrix disruption pathways (e.g., “fibronectin binding” and “collagen binding”, p < 0.05). Network-based toxicogenomic mapping linked all three contaminants to six neurological disorders, with BPA showing the strongest associations with Hepatolenticular Degeneration. Crucially, a sex-stratified analysis uncovered male-specific transcriptional responses to BPA (e.g., lipid metabolism and immune response dysregulation), whereas female models showed no equivalent enrichment. This highlights the sex-specific transcriptional characteristics of BPA exposure. This study establishes a novel computational toxicology workflow that bridges legacy and emerging contaminant research, providing mechanistic insights for chemical prioritization and gender-specific risk assessment. Full article
Show Figures

Figure 1

52 pages, 34158 KiB  
Article
Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield
by Mohamed Tharwat S. Heikal, Aya S. Shereif, Árpád Csámer and Fatma Deshesh
Toxics 2025, 13(8), 612; https://doi.org/10.3390/toxics13080612 - 22 Jul 2025
Abstract
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing [...] Read more.
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing mineralizations. The current investigation focused on the radiological and geochemical characterization of naturally occurring radionuclides, specifically 238U, 226Ra, 232Th, and 40K, within three strategically selected granitic prospects, namely, J. Tawlah albite granite (TW), J. Hamra (HM), and J. Abu Al Dod alkali feldspar syenite and granites (AD). Concerning the radioactivity levels of the investigated granitic stocks, specifically the activity concentrations of 238U, 226Ra, 232Th, and 40K, the measured average values demonstrate significant variability across the TW, HM, and AD stocks. The average 238U concentrations are 195 (SD = 38.7), 88.66 (SD = 25.6), and 214.3 (SD = 140.8) Bq/kg for TW, HM, and AD granitic stocks, respectively. Corresponding 226Ra levels are recorded at 172.4 (SD = 34.6), 75.62 (SD = 25.9), and 198.4 (SD = 139.5) Bq/kg. For 232Th, the concentrations are markedly elevated in TW at 5453.8 (SD = 2182.9) Bq/kg, compared to 77.16 (SD = 27.02) and 160.2 (SD = 103.8) Bq/kg in HM and AD granitic stocks, respectively. Meanwhile, 40K levels are reported at 1670 (SD = 535.9), 2846.2 (SD = 249.9), and 3225 (SD = 222.3) Bq/kg for TW, HM, and AD granitic plutons, respectively. Notably, these values exceed the global average background levels, indicating an anomalous enrichment of the studied granitic occurrences. The mean radiological hazard indices for each granitic unit generally exceed global benchmarks, except for AEDEout in the HM and AD stocks, which remain below international limits. The geochemical disparities observed are indicative of post-magmatic alteration processes, as substantiated by the interpretation of remote sensing datasets. In light of the significant radiological burden presented by these granitic stocks, it is essential to implement a rigorous precautionary framework for any future mining. These materials must be categorically excluded from uses that entail direct human exposure, especially in residential construction or infrastructure projects. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

15 pages, 2473 KiB  
Article
Selenium Reduces Cadmium-Induced Cardiotoxicity by Modulating Oxidative Stress and the ROS/PARP-1/TRPM2 Signalling Pathway in Rats
by Yener Yazğan, Ömer Faruk Keleş, Mehmet Hafit Bayir, Hacı Ahmet Çiçek, Adem Ahlatcı and Kenan Yıldızhan
Toxics 2025, 13(8), 611; https://doi.org/10.3390/toxics13080611 - 22 Jul 2025
Abstract
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD [...] Read more.
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD is linked to oxidative damage and inflammation. A trace element with anti-inflammatory, anti-apoptotic, and antioxidant qualities, selenium (SEL) can be taken as a dietary supplement. The biotoxicity of heavy metal CAD is significantly inhibited by SEL, a mineral that is vital to human and animal nutrition. Through ROS-induced PARP-1/ADPR/TRPM2 pathways, this study seeks to assess the preventive benefits of selenium against cardiovascular damage caused by CAD. The SEL showed encouraging results in reducing inflammatory and oxidative reactions. Rats were given 0.5 mg/kg SEL and 3 mg/kg 2-Aminoethyl diphenylborinate (2-APB) intraperitoneally for five days, in addition to 25 mg/kg CAD given via gavage. Histopathological examination findings revealed that the morphologic changes in the hearts of the CAD group rats were characterised by marked necrosis and the degeneration of myocytes and congestion of vessels. Compared to the rats in the CAD group, the hearts of the SEL, 2-APB and SEL+2-APB groups showed fewer morphological alterations. Moreover, in rats given CAD, there was an increase in cardiac malondialdehyde (MDA), total oxidant (TOS), reactive oxygen species (ROS), caspase (Casp-3-9), and TNF-α, whereas glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant (TAS) decreased. SEL improved antioxidants, avoided tissue damage, and reduced cardiac MDA, TOS, and ROS. In rats given CAD, SEL decreased cardiac PARP-1, TRPM2, TNF-α, and caspase. In summary, by reducing oxidative stress and cardiac damage and modifying the ROS/PARP-1/TRPM2 pathway, SEL protected against CAD cardiotoxicity. Full article
Show Figures

Graphical abstract

11 pages, 1012 KiB  
Article
Quantification of Ultra-Trace Lead in Water After Preconcentration on Nano-Titanium Oxide Using the Slurry Sampling ETAAS Method
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(8), 610; https://doi.org/10.3390/toxics13080610 - 22 Jul 2025
Abstract
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental [...] Read more.
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental parameters affecting the DMSPE process, including pH, ionic strength, sorbent dosage, and preconcentration factor, were optimized. The optimized method demonstrated a preconcentration factor of 20, a relative standard deviation below 4.5%, and a detection limit of 0.11 µg/L. The procedure was validated using certified reference material (CRM TM-25.5) and applied to real water samples from a lake, a residential well, and industrial wastewater. Satisfactory recoveries (89–103%) confirmed the reliability of the method for the determination of low lead concentrations in complex matrices. Full article
Show Figures

Graphical abstract

25 pages, 400 KiB  
Review
Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety
by Zorana Srećkov, Zorica Mrkonjić, Mirjana Bojović, Olivera Nikolić, Danka Radić and Vesna Vasić
Toxics 2025, 13(8), 609; https://doi.org/10.3390/toxics13080609 - 22 Jul 2025
Abstract
Although microplastic pollution has been recognized as one of the major environmental challenges of the 21st century, its toxicological impact on crops, especially vegetables, has attracted limited scientific attention until recently. Vegetables represent a key component of the human diet, making any potential [...] Read more.
Although microplastic pollution has been recognized as one of the major environmental challenges of the 21st century, its toxicological impact on crops, especially vegetables, has attracted limited scientific attention until recently. Vegetables represent a key component of the human diet, making any potential contamination of great importance for food safety. In recent years, an increasing number of studies have been conducted to investigate the interactions between microplastics and vegetable crops. This review aims to synthesize the current knowledge on the sources of microplastics in agroecosystems, the mechanisms of uptake and translocation in plants, and the physiological and biochemical responses induced by micro- and nanoplastics. This work aims to improve the scientific basis for assessing the risk of microplastic contamination by identifying gaps in current understanding and suggesting future research directions. Full article
(This article belongs to the Section Emerging Contaminants)
24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 29
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

20 pages, 1258 KiB  
Article
The Crime of Vehicular Homicide in Italy: Trends in Alcohol and Drug Use in Fatal Road Accidents in Lazio Region from 2018 to 2024
by Francesca Vernich, Leonardo Romani, Federico Mineo, Giulio Mannocchi, Lucrezia Stefani, Margherita Pallocci, Luigi Tonino Marsella, Michele Treglia and Roberta Tittarelli
Toxics 2025, 13(7), 607; https://doi.org/10.3390/toxics13070607 - 19 Jul 2025
Viewed by 110
Abstract
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating [...] Read more.
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating circumstance of the offence and provides for a tightening of penalties. Our study aims to report on the analysis performed on blood samples collected between January 2018 and December 2024 from drivers convicted of road homicide and who tested positive for alcohol and/or drugs. The majority of the involved subjects were males belonging to the 18–30 and 41–50 age groups. Alcohol, cocaine and cannabinoids were the most detected substances and the most frequent polydrug combination was alcohol and cocaine. We also investigated other influencing factors in road traffic accidents as the day of the week and the time of the day in which fatal road traffic accident occurred, and the time elapsed between the road accident and the collection of biological samples. Our data, in line with the international scenario, strongly support that, in addition to the tightening of penalties, raising awareness plays a key role in preventing alcohol- and drug-related traffic accidents by increasing risk perception and encouraging safer driving behaviors. Full article
(This article belongs to the Special Issue Current Issues and Research Perspectives in Forensic Toxicology)
Show Figures

Graphical abstract

24 pages, 1399 KiB  
Systematic Review
Nephrotoxicity of New Antibiotics: A Systematic Review
by Panagiotis Stathopoulos, Laura T. Romanos, Charalampos Loutradis and Matthew E. Falagas
Toxics 2025, 13(7), 606; https://doi.org/10.3390/toxics13070606 - 19 Jul 2025
Viewed by 115
Abstract
Drug-induced nephrotoxicity is a common and serious problem in clinical practice. We conducted a systematic review of studies reporting nephrotoxicity events associated with antibiotics approved since 2018. The agents assessed included aztreonam/avibactam, cefepime/enmetazobactam, cefiderocol, ceftobiprole, contezolid, gepotidacin, imipenem/cilastatin/relebactam, lascufloxacin, lefamulin, levonadifloxacin, plazomicin, and [...] Read more.
Drug-induced nephrotoxicity is a common and serious problem in clinical practice. We conducted a systematic review of studies reporting nephrotoxicity events associated with antibiotics approved since 2018. The agents assessed included aztreonam/avibactam, cefepime/enmetazobactam, cefiderocol, ceftobiprole, contezolid, gepotidacin, imipenem/cilastatin/relebactam, lascufloxacin, lefamulin, levonadifloxacin, plazomicin, and sulbactam/durlobactam. Literature searches were conducted in PubMed, Scopus, Web of Science, and major pharmacovigilance databases (Vigibase, FAERS, EudraVigilance, EMA, FDA, NMPA, PMDA, and CDSCO) in May 2025, along with reference citation tracking. Studies were included if they reported safety or adverse event data. The risk of bias was assessed using validated tools in accordance with the study design. Out of 2105 potentially relevant records, 74 studies met inclusion criteria, comprising 52 clinical trials, 17 observational studies, 1 registry-based study, 3 case series, and 1 case report. Nephrotoxicity was rarely reported for any of the newly approved antibiotics. No renal adverse events were found in the available studies for aztreonam/avibactam, levonadifloxacin, and contezolid. Most studies were of moderate to high quality; two were classified as low quality. However, nephrotoxicity was inconsistently assessed, with variable definitions and methodologies used. Although current data suggest a low frequency of nephrotoxicity, limitations in study design and reporting preclude firm conclusions. There is a need for post-marketing studies to better characterize renal safety. Clinicians should remain vigilant and continue to monitor for and report renal-related adverse events. Full article
(This article belongs to the Special Issue Nephrotoxicity Induced by Drugs and Chemicals in the Environment)
Show Figures

Figure 1

19 pages, 1944 KiB  
Article
Impact of Polystyrene Microplastics on Human Sperm Functionality: An In Vitro Study of Cytotoxicity, Genotoxicity and Fertility-Related Genes Expression
by Filomena Mottola, Maria Carannante, Ilaria Palmieri, Lorenzo Ibello, Luigi Montano, Mariaceleste Pezzullo, Nicola Mosca, Nicoletta Potenza and Lucia Rocco
Toxics 2025, 13(7), 605; https://doi.org/10.3390/toxics13070605 - 19 Jul 2025
Viewed by 188
Abstract
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to [...] Read more.
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to PS-MPs levels (105 and 210 μg/mL) for 30–60–90 min. Semen parameters, genome stability, sperm DNA fragmentation (SDF) and reactive oxygen species (ROS) production were analyzed before and after exposure. Moreover, we also evaluated the expression level of spermatozoa-specific expressed genes essential for the fusion with oocyte (DCST1, DCST2, IZUMO1, SPACA6, SOF1, and TMEM95). After PS-MP exposure, semen concentration and morphology did not differ, while sperm vitality and motility decreased in a time-dependent manner. In addition, sperm agglutination was observed in the groups exposed to both PS-MPs concentrations tested. A time- and concentration-dependent reduction in genomic stability, as well as increased SDF and ROS production, was also observed. Moreover, all investigated transcripts were down-regulated after PS-MP exposure. Our results confirm the oxidative stress-mediated genotoxicity and cytotoxicity of PS-MPs on human spermatozoa. The sperm agglutination observed after treatment could be due to the aggregation of PS-MPs already adhered to the sperm membranes, hindering sperm movement and fertilizing capability. Interestingly, the downregulation of genes required for sperm–oocyte fusion, resulting from data on the in vitro experimental system, suggests that PS-MP exposure may have implications for sperm functionality. While these findings highlight potential mechanisms of sperm dysfunction, further investigations using in vivo models are needed to determine their broader biological implications. Possible environmental and working exposure to pollutants should be considered during the counselling for male infertility. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

23 pages, 4894 KiB  
Article
Evaluating Copper-Induced Oxidative Stress in Germinating Wheat Seeds Using Laser Photoacoustic Spectroscopy and EPR Techniques
by Mioara Petrus, Cristina Popa, Ana-Maria Bratu, Alexandra Camelia Joita and Vasile Bercu
Toxics 2025, 13(7), 604; https://doi.org/10.3390/toxics13070604 - 18 Jul 2025
Viewed by 234
Abstract
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the [...] Read more.
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the gas emission dynamics and oxidative stress biomarkers. Seeds were germinated in agar and exposed to CuSO4 at concentrations of 1 µM, 100 µM, 1 mM, and 10 mM; distilled water served as the control. Ethylene and ammonia emissions were quantified using CO2 laser photoacoustic spectroscopy, while electron paramagnetic resonance (EPR) spectroscopy was employed to detect free radicals and Cu2+ complexes. Exposure to Cu concentrations ≥ 1 mM significantly inhibited germination and biomass accumulation. Enhanced ethylene and ammonia emissions, particularly at 10 mM, indicated stress-related metabolic responses. The EPR spectra confirmed the presence of semiquinone radicals and Cu2+ complexes under higher Cu levels. These results demonstrate that photoacoustic and EPR techniques are effective tools for the early detection of metal-induced phytotoxicity and offer a non-invasive approach to environmental toxicity screening and plant stress assessment. Full article
Show Figures

Graphical abstract

13 pages, 793 KiB  
Article
Environmental Risk and Management of Iron Tailings in Road Subgrade
by Xiaowei Xu, Dapeng Zhang, Jie Cao, Chaoyue Wu, Yi Wang, Jing Hua, Zehua Zhao, Jun Zhang and Qi Yu
Toxics 2025, 13(7), 603; https://doi.org/10.3390/toxics13070603 - 17 Jul 2025
Viewed by 145
Abstract
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess [...] Read more.
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess risks and regional characteristics. Results show high Potential Hazard Indices (PHIs) for arsenic, manganese, barium, nickel, and lead, with PHI values between 4.2 and 22.7. Simulations indicate that manganese and nickel concentrations may exceed groundwater standards, particularly in humid areas. The study recommends controlling the iron tailings mixing ratio based on climate, suggesting limits of 35% in humid, 60% in semi-humid, and more lenient ratios in arid and semi-arid regions. It also underscores the need for improved risk assessment methodologies and region-specific management strategies at the national level. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Human Health)
Show Figures

Figure 1

16 pages, 747 KiB  
Article
Thermoset Polyester Resin Microplastics: Effects on Enzymatic Biomarkers and Toxicological Endpoint Responses of Eisenia fetida Earthworms
by David Amaya-Vías, Gemma Albendín, Vanessa Aranda-Quirós, Rocío Rodríguez-Barroso, Dolores Coello and Juana María Arellano
Toxics 2025, 13(7), 602; https://doi.org/10.3390/toxics13070602 - 17 Jul 2025
Viewed by 241
Abstract
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the [...] Read more.
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the potential effects of two thermoset polyester resin-derived microplastics (R930A-SP and R930A-DVE1) on the survival, behavior, morphological changes and subcellular damage of earthworms Eisenia fetida. The proposed experimental conditions simulated environmentally relevant concentrations, taking as a reference other related microplastics present in the environment. Thus, E. fetida specimens were exposed to five concentrations (100, 500, 1000, 1500 and 2000 mg resin per kg soil) of these two resins for 14 days. At concentrations and exposure times studied, no significant effects on growth, measured as weight loss, or on the enzyme biomarkers (cholinesterase, carboxylesterase and glutathione S-transferase) were observed. Similarly, no behavioral changes were detected in earthworms, and the survival rate was 100%. Likewise, no differences were observed between the different formulations of the polyester resins studied. However, this study could serve as a starting point for further studies with higher concentrations and/or exposure times, as well as in combination with other pollutants. Full article
(This article belongs to the Special Issue Ecotoxicological Effects of Microplastics on the Soil Environment)
Show Figures

Graphical abstract

32 pages, 3188 KiB  
Article
Forty Years After Chernobyl: Radiocaesium in Wild Edible Mushrooms from North-Eastern Poland and Its Relevance for Dietary Exposure and Food Safety
by Iwona Mirończuk-Chodakowska, Jacek Kapała, Karolina Kujawowicz, Monika Sejbuk and Anna Maria Witkowska
Toxics 2025, 13(7), 601; https://doi.org/10.3390/toxics13070601 - 17 Jul 2025
Viewed by 142
Abstract
Wild-growing edible mushrooms are known to bioaccumulate radionuclides from their environment, particularly the natural isotope potassium-40 (40K) and anthropogenic cesium-137 (137Cs). However, region-specific data for commercially relevant species in north-eastern Poland remain limited, despite the cultural and economic importance [...] Read more.
Wild-growing edible mushrooms are known to bioaccumulate radionuclides from their environment, particularly the natural isotope potassium-40 (40K) and anthropogenic cesium-137 (137Cs). However, region-specific data for commercially relevant species in north-eastern Poland remain limited, despite the cultural and economic importance of mushroom foraging and export. This study aimed to assess the radiological safety of wild mushrooms intended for human consumption, with particular attention to regulatory compliance and potential exposure levels. In this study, 230 mushroom samples representing 19 wild edible species were analyzed using gamma spectrometry, alongside composite soil samples collected from corresponding foraging sites. The activity concentration of 137Cs in mushrooms ranged from 0.94 to 159.0 Bq/kg fresh mass (f.m.), and that of 40K from 64.4 to 150.2 Bq/kg f.m. None of the samples exceeded the regulatory limit of 1250 Bq/kg f.m. for 137Cs. The highest estimated annual effective dose was 2.32 µSv from 137Cs and 0.93 µSv from 40K, with no exceedance of regulatory limits observed in any sample. A strong positive correlation was observed between 137Cs activity in soil and mushroom dry mass (Spearman’s Rho = 0.81, p = 0.042), supporting predictable transfer patterns. Additionally, the implications of mushroom drying were assessed considering Council Regulation (Euratom) 2016/52, which mandates radionuclide levels in dried products be evaluated based on their reconstituted form. After such adjustment, even the most contaminated dried samples were found to comply with food safety limits. These findings confirm the radiological safety of wild mushrooms from north-eastern Poland and contribute novel data for a region with limited prior monitoring, in the context of current food safety regulations. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

Back to TopTop