Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Journal = Land
Section = Water, Energy, Land and Food (WELF) Nexus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2472 KiB  
Article
Increase in Grain Production Potential of China Under 2030 Well-Facilitated Farmland Construction Goal
by Jianya Zhao, Fanhao Yang, Yanglan Zhang and Shu Wang
Land 2025, 14(8), 1538; https://doi.org/10.3390/land14081538 - 27 Jul 2025
Viewed by 384
Abstract
To promote high-quality agricultural development and implement the “storing grain in the land” strategy, the construction of Well-Facilitated Farmland (WFF) plays a critical role in enhancing grain production capacity and optimizing the spatial distribution of food supply, thereby contributing to national food security. [...] Read more.
To promote high-quality agricultural development and implement the “storing grain in the land” strategy, the construction of Well-Facilitated Farmland (WFF) plays a critical role in enhancing grain production capacity and optimizing the spatial distribution of food supply, thereby contributing to national food security. However, accurately assessing the potential impact of WFF construction on China’s grain production and regional self-sufficiency by 2030 remains a significant challenge. Existing studies predominantly focus on the provincial level, while fine-grained analyses at the city level are still lacking. This study quantifies the potential increase in grain production in China under the 2030 WFF construction target by employing effect size analysis, multi-weight prediction, and Monte Carlo simulation across multiple spatial scales (national, provincial, and city levels), thereby addressing the research gap at finer spatial resolutions. By integrating 2030 population projections and applying a grain self-sufficiency calculation formula, it further evaluates the contribution of WFF to regional grain self-sufficiency: (1) WFF could generate an additional 31–48 million tons of grain, representing a 5.26–8.25% increase; (2) grain supply in major crop-producing regions would expand, while the supply–demand gap in balanced regions would narrow; and (3) the number of cities with grain self-sufficiency ratios below 50% would decrease by 11.1%, while those exceeding 200% would increase by 25.5%. These findings indicate that WFF construction not only enhances overall grain production potential but also facilitates a transition from “overall supply-demand balance” to “structural security” within China’s food system. This study provides critical data support and policy insights for building a more resilient and regionally adaptive agricultural system. Full article
Show Figures

Figure 1

22 pages, 504 KiB  
Article
Rural Public Science and Technology Services, Land Productivity, and Agricultural Modernization: Case Study of Southwest China
by Tingting Huang and Qinghua Huang
Land 2025, 14(8), 1530; https://doi.org/10.3390/land14081530 - 24 Jul 2025
Viewed by 243
Abstract
The realization of agricultural modernization inevitably requires the improvement of agricultural land productivity. Rural public science and technology services is an important driving force to improve agricultural land productivity. However, can rural public science and technology services accelerate the process of agricultural modernization [...] Read more.
The realization of agricultural modernization inevitably requires the improvement of agricultural land productivity. Rural public science and technology services is an important driving force to improve agricultural land productivity. However, can rural public science and technology services accelerate the process of agricultural modernization by improving land productivity? This paper innovatively constructs an evaluation index system and an mediating mechanism model, measures the comprehensive index of agricultural modernization and rural public science and technology services through the global entropy method, and empirically tests the mediating effect of the mechanism of “land productivity” with the help of measurement methods such as the Sobel–Goodman test and Bootstrap test. The research results find that rural public science and technology services can positively promote agricultural modernization and pass the 1% significance level test. There is a significant mediating effect of “increasing production” in the impact of rural public science and technology services on agricultural modernization, that is, rural public science and technology services can significantly promote agricultural modernization through the mechanism of “improving land productivity”. Government intervention and economic growth are significantly positive, which can significantly promote agricultural modernization. These findings have clear policy implications: Chinese government should accelerate the filling of gaps in rural public technology services between urban and rural areas in the southwest region, empower land productivity through science and technology, and promote the transformation of agricultural scientific and technological achievements into real productive forces. This research is helpful to provide policy reference and case experience for similar areas to speed up agricultural modernization by giving full play to the mechanism of “improving land productivity” of agricultural science and technology services. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

16 pages, 5691 KiB  
Article
Balancing Urban Expansion and Food Security: A Spatiotemporal Assessment of Cropland Loss and Productivity Compensation in the Yangtze River Delta, China
by Qiong Li, Yinlan Huang, Jianping Sun, Shi Chen and Jinqiu Zou
Land 2025, 14(7), 1476; https://doi.org/10.3390/land14071476 - 16 Jul 2025
Viewed by 284
Abstract
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key [...] Read more.
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key concern. This study examines the central region of the Yangtze River Delta (YRD) in China, integrating CLCD (China Land Cover Dataset) land use/cover data (2001–2023), MOD17A2H net primary productivity (NPP) data, and statistical records to evaluate the impacts of urban expansion on grain yield. The analysis focuses on three components: (1) grain yield loss due to cropland conversion, (2) compensatory yield from newly added cropland under the requisition–compensation policy, (3) yield increases from stable cropland driven by agricultural enhancement strategies. Using Sen’s slope analysis, the Mann–Kendall trend test, and hot/coldspot analysis, we revealed that urban expansion converted approximately 14,598 km2 of cropland, leading to a grain production loss of around 3.49 million tons, primarily in the economically developed cities of Yancheng, Nantong, Suzhou, and Shanghai. Meanwhile, 8278 km2 of new cropland was added through land reclamation, contributing only 1.43 million tons of grain—offsetting just 41% of the loss. In contrast, stable cropland (102,188 km2) contributed an increase of approximately 9.84 million tons, largely attributed to policy-driven productivity gains in areas such as Chuzhou, Hefei, and Ma’anshan. These findings suggest that while compensatory cropland alone is insufficient to mitigate the food security risks from urbanization, the combined strategy of “Safeguarding Grain in the Land and in Technology” can more than compensate for production losses. This study underscores the importance of optimizing land use policy, strengthening technological interventions, and promoting high-efficiency land management. It provides both theoretical insight and policy guidance for balancing urban development with regional food security and sustainable land use governance. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

20 pages, 1111 KiB  
Article
Assessing Policy Consistency and Synergy in China’s Water–Energy–Land–Food Nexus for Low-Carbon Transition
by Xiaonan Zhu, Cheng Zhou and Clare Richardson-Barlow
Land 2025, 14(7), 1431; https://doi.org/10.3390/land14071431 - 8 Jul 2025
Viewed by 499
Abstract
The need for integrated governance of water–energy–land–food (WELF) systems has become paramount in achieving sustainable low-carbon transitions, yet policy consistency across these interdependent sectors remains critically underexplored. This study presents the first systematic assessment of policy consistency and synergy within China’s WELF framework, [...] Read more.
The need for integrated governance of water–energy–land–food (WELF) systems has become paramount in achieving sustainable low-carbon transitions, yet policy consistency across these interdependent sectors remains critically underexplored. This study presents the first systematic assessment of policy consistency and synergy within China’s WELF framework, employing an innovative mixed-methods approach that combines a modified Policy Modeling Consistency (PMC) Index with Content Analysis Methodology (CAM). Policy consistency follows a clear hierarchy: energy (PMC = 9.06, ‘Perfect’), water (8.26, ‘Good’), land (7.03, ‘Acceptable’), and food systems (6.91, ‘Acceptable’), with land–food policies exhibiting critical gaps in multifunctional design. Policy synergy metrics further reveal pronounced sectoral disparities: energy (PS = 0.89) and water (0.81) policies demonstrate strong alignment with central government objectives, whereas land (0.68) and food (0.64) systems exhibit constrained integration capacities due to uncoordinated policy architectures and competing sectoral priorities. Building on these findings, we propose three key interventions: (1) institutional restructuring through the establishment of an inter-ministerial coordination body with binding authority to align WELF sector priorities and enforce consistent and synergy targets, (2) the strategic rebalancing of policy instruments by reallocating fiscal incentives toward nexus-optimizing projects while developing innovative market-based mechanisms for cross-sectoral resource exchange, and (3) adaptive governance implementation through regional policy pilots, dynamic feedback systems, and capacity-building networks to enable context-sensitive WELF transitions while maintaining strategic consistency and synergy. These recommendations directly address the structural deficiencies in WELF governance fragmentation and incentive misalignment identified through our rigorous analysis, while simultaneously advancing theoretical discourse and offering implementable policy solutions for achieving integrated low-carbon transition. Full article
Show Figures

Figure 1

27 pages, 18307 KiB  
Article
Analysis of Changes in Supply and Demand of Ecosystem Services in the Sanjiangyuan Region and the Main Driving Factors from 2000 to 2020
by Wenming Gao, Qian Song, Haoxiang Zhang, Shiru Wang and Jiarui Du
Land 2025, 14(7), 1427; https://doi.org/10.3390/land14071427 - 7 Jul 2025
Viewed by 313
Abstract
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, [...] Read more.
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, to quantitatively assess the supply–demand dynamics of key ESs and their spatial heterogeneity from 2000 to 2020. It further aims to elucidate the underlying driving mechanisms, thereby providing a scientific basis for optimizing regional ecological management. Four key ES indicators were selected: water yield (WY), grass yield (GY), soil conservation (SC), and habitat quality (HQ). ES supply and demand were quantified using an integrated approach incorporating the InVEST model, the Revised Universal Soil Loss Equation (RUSLE), and spatial analysis techniques. Building on this, the spatial patterns and temporal evolution characteristics of ES supply–demand relationships were analyzed. Subsequently, the Geographic Detector Model (GDM) and Geographically and Temporally Weighted Regression (GTWR) model were employed to identify key drivers influencing changes in the comprehensive ES supply–demand ratio. The results revealed the following: (1) Spatial Patterns: Overall ES supply capacity exhibited a spatial differentiation characterized by “higher values in the southeast and lower values in the northwest.” Areas of high ES demand were primarily concentrated in the densely populated eastern region. WY, SC, and HQ generally exhibited a surplus state, whereas GY showed supply falling short of demand in the densely populated eastern areas. (2) Temporal Dynamics: Between 2000 and 2020, the supply–demand ratios of WY and SC displayed a fluctuating downward trend. The HQ ratio remained relatively stable, while the GY ratio showed a significant and continuous upward trend, indicating positive outcomes from regional grass–livestock balance policies. (3) Driving Mechanisms: Climate and natural factors were the dominant drivers of changes in the ES supply–demand ratio. Analysis using the Geographical Detector’s q-statistic identified fractional vegetation cover (FVC, q = 0.72), annual precipitation (PR, q = 0.63), and human disturbance intensity (HD, q = 0.38) as the top three most influential factors. This study systematically reveals the spatial heterogeneity characteristics, dynamic evolution patterns, and core driving mechanisms of ES supply and demand in an alpine pastoral region, addressing a significant research gap. The findings not only provide a reference for ES supply–demand assessment in similar regions regarding indicator selection and methodology but also offer direct scientific support for precisely identifying priority areas for ecological conservation and restoration, optimizing grass–livestock balance management, and enhancing ecosystem sustainability within the Sanjiangyuan Region. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

19 pages, 1441 KiB  
Article
Water–Energy–Land–Food Nexus to Assess the Environmental Impacts from Coal Mining
by Reginaldo Geremias and Naoki Masuhara
Land 2025, 14(7), 1360; https://doi.org/10.3390/land14071360 - 26 Jun 2025
Viewed by 388
Abstract
The water–energy–land–food (WELF) nexus is an established framework that allows for a more holistic, systemic and integrated analysis of resources and territorial planning. The main objective of this study was to apply the WELF nexus approach to assess the environmental impacts from coal [...] Read more.
The water–energy–land–food (WELF) nexus is an established framework that allows for a more holistic, systemic and integrated analysis of resources and territorial planning. The main objective of this study was to apply the WELF nexus approach to assess the environmental impacts from coal mining. Data on the water resource, electricity sector, food production and land occupation in the coal region of the Urussanga River basin (Brazil) were described and compared with the area without the coal industry (Canoas/Pelotas basin, Brazil). Indicators evaluating reliability, robustness, equilibrium and diversity (Shannon index-H) were used to evaluate the impacts of mining on the WELF system. The results indicate that coal provides socioeconomic development in the region; however, it has several negative environmental effects. WELF indicators showed that the Urussanga basin has less robustness in the subsystem of water consumption per capita (0.19), installed electrical capacity (0.01) and agricultural production per capita (0.22) compared to Canoas/Pelotas at 0.73, 1.0 and 1.0, respectively. The basin also presented lower diversity in the water consumption sector (H = 0.81) and in the variety of agricultural products (H = 1.58) compared to Canoas/Pelotas (H = 1.0; H = 1.69, respectively). It was concluded that coal mining can affect the WELF system globally, revealing the need to propose alternatives to prevent and mitigate its effects. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

20 pages, 3309 KiB  
Article
Water–Energy–Land–Food Nexus Performance and Regional Inequality Toward Low-Carbon Transition in China
by Qi Yao, Hailin Cao and Ruilian Zhang
Land 2025, 14(7), 1343; https://doi.org/10.3390/land14071343 - 24 Jun 2025
Cited by 1 | Viewed by 414
Abstract
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development [...] Read more.
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development goals. Using a multi-dimensional performance index and spatial econometric analysis, we identified key synergies and trade-offs among resource systems under low-carbon policy scenarios. The results revealed significant regional inequalities in nexus efficiency, with economically developed regions exhibiting higher integration and resource optimization, while less-developed areas face persistent structural challenges. These disparities underscore the need for regionally tailored policy interventions that address localized constraints while promoting cohesive national strategies. Our findings provide critical insights for policymakers aiming to align resource management with China’s climate commitments and sustainable development agenda. Full article
Show Figures

Figure 1

27 pages, 1136 KiB  
Article
Circular Pathways to Sustainability: Asymmetric Impacts of the Circular Economy on the EU’s Capacity Load Factor
by Brahim Bergougui
Land 2025, 14(6), 1216; https://doi.org/10.3390/land14061216 - 5 Jun 2025
Cited by 2 | Viewed by 547
Abstract
Amid escalating environmental crises—ranging from biodiversity loss to climate instability—the circular economy has emerged as a promising pathway to align economic growth with ecological limits. The objective of this study is to examine the asymmetric impact of a novel composite circular economy index [...] Read more.
Amid escalating environmental crises—ranging from biodiversity loss to climate instability—the circular economy has emerged as a promising pathway to align economic growth with ecological limits. The objective of this study is to examine the asymmetric impact of a novel composite circular economy index (CEI)—constructed via entropy weighting—on the load capacity factor (LCF), a holistic sustainability metric, across 27 EU member states over 2010–2023. Employing the method of moments quantile regression (MMQR) and controlling for GDP, foreign direct investment, trade openness, employment, and population growth, the main findings indicate pronounced heterogeneity: positive CEI shocks yield a 1.219 percent increase in LCF at the 90th quantile versus just 0.229 percent at the 10th, revealing a “sustainability premium” for high-performing economies, while negative shocks inflict a −5.253 percent decline at the 90th quantile, exposing their greater vulnerability. Low-LCF countries, by contrast, display relative resilience to downturns, likely due to less entrenched circular systems. Panel Granger causality tests further reveal bidirectional feedback loops between LCF and economic growth, investment, and labor markets, alongside a unidirectional effect from trade openness to enhanced sustainability. These insights carry clear policy implications: high-LCF nations require safeguards against circularity backsliding, whereas low-LCF members need capacity-building to convert latent resilience into sustained gains—together forming a nuanced blueprint for achieving the EU’s 2050 climate-neutrality ambitions. Full article
Show Figures

Figure 1

31 pages, 1727 KiB  
Review
A Novel Framework to Represent Hypoxia in Coastal Systems
by Aavudai Anandhi, Ruth Book and Gulnihal Ozbay
Land 2025, 14(6), 1169; https://doi.org/10.3390/land14061169 - 29 May 2025
Viewed by 521
Abstract
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used [...] Read more.
Policymakers face the challenge of increasing food and energy production while reducing nutrient pollution. Coastal hypoxic zones, often caused by human activity, are a key indicator of sustainability. The purpose of this study is to develop a novel framework that can be used by policymakers to assess strategies to reduce or eliminate hypoxic zones in coastal waters. The developed framework includes socioecological conditions by integrating the Driver–Pressure–State–Impact–Response (DPSIR) framework and multiple thinking approaches (nexus, systems, and goal-oriented) with sustainable development goals (SDGs) and their targets, the food–energy–water (FEW) nexus, agricultural conservation practices (ACPs), and the collective knowledge from the published literature and experts, all applied to hypoxia in oceans. Four categories of ACPs with potential positive effects on hypoxia were identified: conservation cropping systems, conservation drainage systems, riparian buffer systems, and wetland systems. The Gulf of Mexico, a large hypoxic zone, served as a case study. The methods from the development of this framework may be tailored to some 500 global coastal hypoxic zones, covering 245,000 km2 of oceans. Full article
(This article belongs to the Section Water, Energy, Land and Food (WELF) Nexus)
Show Figures

Figure 1

25 pages, 7891 KiB  
Article
Energy–Environment–Industry Intersection: Rural and Urban Inequity and Approach to Just Transition
by Li Sun, Sitong Wang and Jinqiu Wang
Land 2025, 14(6), 1161; https://doi.org/10.3390/land14061161 - 28 May 2025
Viewed by 341
Abstract
The intersection of energy, environment, and industry presents distinct challenges and opportunities in rural and urban settings, highlighting disparities in access, impact, and policy effectiveness. This paper examines the systemic inequities between rural and urban regions in the transition to a sustainable energy [...] Read more.
The intersection of energy, environment, and industry presents distinct challenges and opportunities in rural and urban settings, highlighting disparities in access, impact, and policy effectiveness. This paper examines the systemic inequities between rural and urban regions in the transition to a sustainable energy future. It explores how policies and technologies can promote a just transition that ensures equitable economic development, environmental protection, and energy access for all communities. The key findings reveal that the average urban environmental pollution has transitioned from 10.1574 in 2007 to 8.9540 in 2022, indicating an improvement over time. From 2007 to 2022, the average level of rural environmental pollution has transitioned from 15.1123 in 2007 to 14.2675 in 2022, suggesting an improvement in performance over the specified timeframe. This shows that rural environmental pollution (14.8442) is more serious than urban environmental pollution (9.0892), even though rural environmental pollution is constantly improving. Regarding driving factors affecting urban and rural environmental pollution, we illustrate that energy consumption and environmental protection investment are important factors through which environmental regulation influences urban environmental pollution, while only environmental protection investment is an important factor through which environmental regulation influences rural environmental pollution. The findings suggest that only in the western region do stronger environmental regulations significantly reduce urban pollution, while strengthening environmental regulations improves rural pollution across all three regions, with the most pronounced effect in the west. By integrating quantitative and policy analysis, the study proposes inclusive strategies that balance economic resilience, social justice, and environmental sustainability, fostering a fair transition toward a low-carbon future. Full article
Show Figures

Figure 1

19 pages, 721 KiB  
Review
A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment
by Adam Canning
Land 2025, 14(5), 1116; https://doi.org/10.3390/land14051116 - 20 May 2025
Cited by 1 | Viewed by 1161
Abstract
Water hyacinth (Eichhornia crassipes) is a globally invasive aquatic weed with high biomass productivity and nutrient content, offering potential as a low-cost organic soil amendment. This review synthesizes findings from 35 studies identified through a structured Web of Science search, examining [...] Read more.
Water hyacinth (Eichhornia crassipes) is a globally invasive aquatic weed with high biomass productivity and nutrient content, offering potential as a low-cost organic soil amendment. This review synthesizes findings from 35 studies identified through a structured Web of Science search, examining its use as mulch, compost, biochar, and foliar extract. Reported agronomic benefits include improvements in soil organic carbon, nutrient availability (particularly nitrogen and potassium), microbial activity, and crop yields. However, most studies are short-term and conducted under greenhouse or pot conditions, limiting field-scale generalizability. Additionally, reporting of compost composition and contaminant levels is inconsistent, raising concerns about food safety. While logistical and economic feasibility remain underexplored, emerging evidence suggests that with proper processing, water hyacinth amendments could reduce fertilizer dependence and contribute to circular bioeconomy goals. Future research should prioritize field trials, standardized production protocols, and life cycle assessments to evaluate long-term performance, risks, and climate benefits. Full article
(This article belongs to the Special Issue Sustainable Agricultural Land Management towards a Net-Zero Pathway)
Show Figures

Figure 1

15 pages, 4536 KiB  
Article
A Machine Learning Approach to Generate High-Resolution Maps of Irrigated Olive Groves
by Rosa Gutiérrez-Cabrera, Ana M. Tarquis and Javier Borondo
Land 2025, 14(5), 1001; https://doi.org/10.3390/land14051001 - 6 May 2025
Viewed by 619
Abstract
The increasing severity of water scarcity in southern Europe, caused by climate change, requires advanced and more efficient approaches to agricultural water management. In particular, in this paper, we address this problem for olive groves—a cornerstone of the region’s economy. We propose a [...] Read more.
The increasing severity of water scarcity in southern Europe, caused by climate change, requires advanced and more efficient approaches to agricultural water management. In particular, in this paper, we address this problem for olive groves—a cornerstone of the region’s economy. We propose a novel framework for generating high-resolution maps of irrigated olive groves that integrates remote sensing imagery and machine learning. Our approach leverages multi-temporal Sentinel-2 data, specifically the Normalized Difference Vegetation Index (NDVI), to capture seasonal vegetation dynamics. For classification, we explore two distinct models: (1) A Dynamic Time Warping (DTW)-based approach (with and without the Sakoe–Chiba Band constraints), where DTW aligns temporal NDVI sequences to enable robust comparisons of irrigation regimes, followed by a K-Nearest Neighbor classifier (KNN) that classifies plots as irrigated or rainfed. (2) An eXtreme Gradient Boosting (XGBoost) model that directly uses temporal NDVI profiles. Additionally, we compare the dependence of model performance on the length of the NDVI time series (ranging from one to seven seasons), finding that XGBoost requires a shorter time series to achieve optimal results, while KNN with DTW can benefit from longer historical records. Indeed, XGBoost nearly reaches its maximum accuracy using only data based on three seasons, achieving 0.79 compared to its peak performance of 0.80. Hence, our results indicate that this approach can accurately differentiate between irrigated and rainfed plots, enabling the generation of high-resolution irrigation maps for southern Spain. Finally, we argue that the results of this paper go beyond mere mapping: they lay the foundation for a comprehensive management guide that can optimize water use, with broad implications. Such implications range from empowering precision agriculture to providing a roadmap for land management, ensuring both the sustainability and productivity of olive groves in drought-affected regions. Full article
Show Figures

Figure 1

24 pages, 3887 KiB  
Article
Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income?
by Jing Zhang, Jingchun Wang, Yafei Li and Yueying Mu
Land 2025, 14(5), 973; https://doi.org/10.3390/land14050973 - 30 Apr 2025
Viewed by 413
Abstract
The adoption of conservation agriculture techniques plays a crucial role in preventing soil erosion and guaranteeing food security. The purpose of this paper is to examine the impact of the adoption of conservation agricultural technologies on income. Based on the survey data of [...] Read more.
The adoption of conservation agriculture techniques plays a crucial role in preventing soil erosion and guaranteeing food security. The purpose of this paper is to examine the impact of the adoption of conservation agricultural technologies on income. Based on the survey data of 922 households in five provinces and cities in the Bohai Rim region in 2023, the study analyzes the impact of different attributes of technology adoption on farm household income through ESR (endogenous switching regression) models and different forms of mediated effects models. The empirical results show the following: (1) The income effects generated by different adoption statuses of conservation agriculture (CA) technologies vary, and the income effects for farmers who adopt multiple conservation agriculture (CA) technologies jointly are even worse. (2) Farmers’ time allocation mediates the effects of technology attributes on adoption. Specifically, farm work is the main mediating variable, while off-farm work plays a moderating role between the yield effect and income. (3) The complex technology adoption chain inhibits farmers from increasing production and income, while the farmers’ jobs in the non-agricultural sector have reduced this impact to a certain extent. In terms of policy recommendations, governments should enhance technical training programs for farmers, improve the market environment, and offer access to highly mechanized agricultural production trusteeship services to encourage the greater adoption of conservation agriculture (CA) technology among farmers. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

27 pages, 15125 KiB  
Article
Detection of Agricultural Terraces Platforms Using Machine Learning from Orthophotos and LiDAR-Based Digital Terrain Model: A Case Study in Roya Valley of Southeast France
by Michael Vincent Tubog, Karine Emsellem and Stephane Bouissou
Land 2025, 14(5), 962; https://doi.org/10.3390/land14050962 - 29 Apr 2025
Cited by 1 | Viewed by 977
Abstract
Terraces have long transformed steep slopes into gradual steps, reducing erosion and enabling agriculture on marginal land. In France’s Roya Valley, these dry stone structures, neglected for decades, demonstrated remarkable resilience during storm Alex in October 2020. This prompted civil society and researchers [...] Read more.
Terraces have long transformed steep slopes into gradual steps, reducing erosion and enabling agriculture on marginal land. In France’s Roya Valley, these dry stone structures, neglected for decades, demonstrated remarkable resilience during storm Alex in October 2020. This prompted civil society and researchers to identify terraces that could support food security and agri-tourism initiatives. This study aimed to develop a semi-automatic method for detecting and mapping terraced areas using LiDAR and orthophoto data from French repositories, processed with GIS and analyzed through a Support Vector Machine (SVM) classification algorithm. The model identified 18 terraces larger than 1 hectare in Saorge and 35 in La Brigue. Field visits confirmed evidence of abandonment in several areas. Accuracy tests showed a user accuracy (UA) of 97% in Saorge and 72% in La Brigue. This disparity reflects site-specific differences, including terrain steepness, vegetation density, and data resolution. These results highlight the value of machine learning for terrace mapping while emphasizing the need to account for local geomorphological and data-quality factors to improve model performance. Enhanced terrace detection supports sustainable land management, agricultural revitalization, and risk mitigation in mountainous regions, offering practical tools for future landscape restoration and food resilience planning. Full article
Show Figures

Figure 1

20 pages, 4679 KiB  
Article
Exploring the Balance Between Ecosystem Services and Economic Benefits via Multi-Objective Land Use Optimization
by Xiaoyun Li and Zhaonian Lu
Land 2025, 14(5), 920; https://doi.org/10.3390/land14050920 - 23 Apr 2025
Viewed by 491
Abstract
Excessive human activities associated with rapid industrialization and urbanization have exerted tremendous pressure on limited land resources. Scientific land use planning is essential for attaining sustainable development. This study focuses on multi-objective land use optimization in Xinjiang, China’s largest arid region, targeting the [...] Read more.
Excessive human activities associated with rapid industrialization and urbanization have exerted tremendous pressure on limited land resources. Scientific land use planning is essential for attaining sustainable development. This study focuses on multi-objective land use optimization in Xinjiang, China’s largest arid region, targeting the dual goals of maximizing ecosystem services and economic benefits. The non-dominated sorting genetic algorithm II (NSGA-II) and the future land simulation (FLUS) model are integrated innovatively to explore optimal land use in terms of both quantity and spatial distribution. Four distinct development scenarios are predefined and compared: natural development, ecological preservation, economic development, and sustainable development. The main results are as follows: (1) The fragile ecosystem of Xinjiang has been under tremendous pressure during the past 40 years. The predominant pattern in land use transition was the increase in construction land (+115.66%) and cultivated land (+47.18%) at the expense of grassland (−5.48%) and forest land (−4.15%), both of which hold substantial ecological significance. (2) Among these predefined scenarios, the sustainable development scenario is considered more favorable in the future due to its ability to balance ecological preservation and economic development. All the ecologically valuable lands will have certain degrees of growth, whereas the expansion scale of construction land will be effectively controlled. (3) The lack of high-quality land and the unpredictability of water resources will be the two major obstacles to implementing this sustainable development scenario. To overcome them, the government should provide policy and financial support for restricting construction land expansion, exploiting unused land, and strengthening water conservation. This study contributes to formulating more effective land use strategies under multiple conflicting goals and ultimately achieving sustainable development of the economy and ecology in Xinjiang as well as other similar regions. Full article
(This article belongs to the Special Issue Energy-Water-Land Nexus Under Low-Carbon Globalization)
Show Figures

Figure 1

Back to TopTop