Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,745)

Search Parameters:
Journal = Insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9792 KB  
Article
Quantifying Key Environmental Determinants Shaping the Ecological Niche of Fruit Moth Carposina sasakii Matsumura, 1900 (Lepidoptera, Carposinidae)
by Ziyu Huang, Ling Wu, Huimin Yao, Shaopeng Cui, Angie Deng, Ruihe Gao, Fei Yu, Weifeng Wang, Shiyi Lian, Yali Li, Lina Men and Zhiwei Zhang
Insects 2026, 17(1), 109; https://doi.org/10.3390/insects17010109 (registering DOI) - 18 Jan 2026
Abstract
Carposina sasakii Matsumura is a significant lepidopteran pest in the Carposinidae family, inflicting substantial damage on stone and pome fruit trees such as jujube, peach, and apple. Using MaxEnt, we assessed the worldwide climatic suitability for C. sasakii and its key environmental drivers, [...] Read more.
Carposina sasakii Matsumura is a significant lepidopteran pest in the Carposinidae family, inflicting substantial damage on stone and pome fruit trees such as jujube, peach, and apple. Using MaxEnt, we assessed the worldwide climatic suitability for C. sasakii and its key environmental drivers, evaluating how climate change impacts dispersal risks. Integrating global occurrence records with 37 environmental variables, the model (AUC = 0.982) quantitatively identifies July precipitation (prec7), minimum average temperatures in April and August (tmin4 and tmin8, respectively), and maximum average temperature in May (tmax5) as critical distribution determinants. Among these, prec7 exhibits the highest contribution (threshold approximately 370 mm). The current suitable habitat spans 10.39 × 102 km2, concentrated predominantly in East Asia’s temperate monsoon zone (eastern China, the Korean Peninsula, and Japan) and southern North America. Under future climate scenarios, the high-emission pathway (SSP585) will reduce highly suitable areas, while moderately suitable zones expand coastward. In contrast, SSP370 projects a significant, albeit phased, habitat increase with a 19.61% growth rate. Precipitation regimes and extreme temperatures jointly regulate niche differentiation in C. sasakii, whose range shifts toward Southeast Asia and suboptimal regions in Europe and America, underscoring cascading climate change effects. These findings provide a scientific basis for transnational monitoring, early warning systems, and regional ecological governance. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 691 KB  
Article
Toxicity and Residual Effect of Toxic Baits on Adults of Spodoptera frugiperda (Lepidoptera: Noctuidae): Implications for Pest Management
by José Gomes da Silva Filho, Otavio Ribeiro Duarte, Paloma Stüpp, Júlia Peralta Ferreira, Lígia Caroline Bortoli, Juarez da Silva Alves, Larissa Pasqualotto, Michele Trombin de Souza, Mireli Trombin de Souza, Vanessa Nogueira Soares, Juliano Pazini, Leandro do Padro Ribeiro, Ruben Machota Junior and Daniel Bernardi
Insects 2026, 17(1), 108; https://doi.org/10.3390/insects17010108 (registering DOI) - 18 Jan 2026
Abstract
Spodoptera frugiperda is a major agricultural pest both in Brazil and worldwide, with widespread resistance to synthetic insecticides. This study evaluated the toxicity and residual activity of toxic bait formulations combining 17 insecticides with the plant-based kairomone attractant Noctovi® 43SB against S. [...] Read more.
Spodoptera frugiperda is a major agricultural pest both in Brazil and worldwide, with widespread resistance to synthetic insecticides. This study evaluated the toxicity and residual activity of toxic bait formulations combining 17 insecticides with the plant-based kairomone attractant Noctovi® 43SB against S. frugiperda adults. Bioassays were conducted with 48 h-old, food-deprived adults. Toxicity was assessed by incorporating insecticides at 2% concentration into Noctovi® 43SB. Residual activity was measured by applying toxic baits on cotton leaves and testing at 3, 7, 15, 21, and 30 days after application (DAA). Insecticides based on methomyl, spinetoram, spinosad, indoxacarb, malathion, and zeta-cypermethrin induced over 95% mortality. Methomyl showed the greatest toxicity (LC50 = 322 mg a.i. L−1; LC90 = 1160 mg a.i. L−1). Eleven insecticides maintained residual activity (≥70%) after 30 DAA, except malathion. Overall, toxic bait formulations combining Noctovi® 43SB with methomyl, spinosad, spinetoram, or indoxacarb proved highly effective, offering both rapid and prolonged control of S. frugiperda adults. These findings highlight attract-and-kill as a promising tool for sustainable management of this pest. Full article
(This article belongs to the Special Issue Spodoptera frugiperda: Current Situation and Future Prospects)
Show Figures

Figure 1

13 pages, 2005 KB  
Review
Chemical Ecology of Host- and Mate-Finding in the Cypress Bark Beetle Phloeosinus aubei, with Notes on Congeneric Species
by Gábor Bozsik, Armin Tröger, Stefan Schulz, Michael J. Domingue and Gábor Szőcs
Insects 2026, 17(1), 107; https://doi.org/10.3390/insects17010107 - 16 Jan 2026
Viewed by 103
Abstract
Recent intensive research on the cypress bark beetle, Phloeosinus aubei was prompted because of its invasion of Central Europe that caused serious damage to scale-leaved conifer ornamental trees. This dynamic also increased the risk of accidental introduction into North America. In contrast to [...] Read more.
Recent intensive research on the cypress bark beetle, Phloeosinus aubei was prompted because of its invasion of Central Europe that caused serious damage to scale-leaved conifer ornamental trees. This dynamic also increased the risk of accidental introduction into North America. In contrast to other historically well-studied bark beetles infesting spruce, pine or broad-leaf trees, intense study of the pheromones and host plant kairomones of bark beetles associated with cupressaceous trees has only begun in the past decade. This highly specialized clade is represented by the genus Phloeosinus. The pressing need for semiochemical-baited traps demands the identification of behavior-modifying compounds. This challenge involves unraveling the various stimuli interacting in the complex communication system to reveal the composition of signal bouquets and the absolute configuration of their components capable of evoking behavior responses. In this short overview we describe the recent research results on host-finding and intraspecific chemical communication of P. aubei, with a short outlook on the species of this genus. Full article
(This article belongs to the Special Issue Beetles: Biology, Ecology, and Integrated Management)
Show Figures

Figure 1

18 pages, 950 KB  
Article
Selected Essential Oils Act as Repellents Against the House Cricket, Acheta domesticus
by Torben K. Heinbockel, Rasha O. Alzyoud, Shazia Raheel and Vonnie D. C. Shields
Insects 2026, 17(1), 106; https://doi.org/10.3390/insects17010106 - 16 Jan 2026
Viewed by 80
Abstract
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring [...] Read more.
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring bacteria, fungi, viruses, and toxins, causing foodborne illnesses. They can contaminate stored grains, packaged foods, or animal feed due to deposition of their feces, lowering the quality of the food and creating food safety risks. Synthetic insect repellents, such as pyrethroids and carbamates, have been used previously in integrated pest management practices to control crickets. Though successful as repellents, they have been associated with health and environmental risks and concerns. The use of organic green repellents, such as plant essential oils, may be a viable alternative in pest management practices. In this study, we tested the effects of 27 plant-based essential oils on the behavior of A. domesticus. A. domesticus were introduced into an open arena to allow them unrestricted movement. A transparent plastic bottle containing an essential oil treatment was placed in the arena to allow voluntary entry by the crickets. Following a predetermined observation period, the number of crickets that entered the bottle was recorded, and percent entry was calculated as the proportion of individuals inside the bottle relative to the total number in the arena. Analysis of the percentage entry into the bottles allowed for a comparative assessment of repellency of the selected essential oils examined in this study. Essential oils that elicited high levels of entry into the bottle were categorized as having weak or no repellency, while those that demonstrated reduced entry were classified as moderate or strong repellents. Our results indicated that A. domesticus responded with strong repellent behavior to nearly half of the essential oils tested, while four essential oils and two synthetic repellents evoked no significant repellent responses. Four strong repellent essential oils, namely peppermint, rosemary, cinnamon, and lemongrass, were tested at different concentrations and showed a clear dose-dependent repellent effect. The results suggest that selected essential oils can be useful in the development of more natural “green” insect repellents. Full article
Show Figures

Figure 1

17 pages, 2327 KB  
Article
Validamycin Inhibits the Reproductive Capacity of Spodoptera frugiperda (Lepidoptera: Noctuidae) by Suppressing the Activity of Trehalase
by Fan Zhong, Sijing Wan, Shangrong Hu, Yuxin Ge, Ye Han, Xinyu Zhang, Min Zhou, Yan Li and Bin Tang
Insects 2026, 17(1), 105; https://doi.org/10.3390/insects17010105 - 16 Jan 2026
Viewed by 50
Abstract
Spodoptera frugiperda (J. E. Smith, 1797), an omnivorous crop pest worldwide, reproduces prolifically. Validamycin, a competitive natural inhibitor of trehalase, is regarded as an effective and safe insecticide. Pupae were injected with a validamycin gradient (0.5–10 µg/µL) to block trehalase; enzyme activity and [...] Read more.
Spodoptera frugiperda (J. E. Smith, 1797), an omnivorous crop pest worldwide, reproduces prolifically. Validamycin, a competitive natural inhibitor of trehalase, is regarded as an effective and safe insecticide. Pupae were injected with a validamycin gradient (0.5–10 µg/µL) to block trehalase; enzyme activity and the Vitellogenin gene (Vg)/its receptor gene (VgR) expression (rpL10 reference) were subsequently quantified to determine the compound’s impact on S. frugiperda ontogeny and fecundity. Validamycin directly inhibited pupal membrane-bound trehalase, sharply lowering glycogen. Both pupal and adult mortality rose with dose, yielding marked abnormalities versus the Control Check (CK) group. At 0.5 μg/μL validamycin, eggs blackened and clumped in the lateral oviduct, blocking release; treated females produced far fewer eggs by day 4, exhibited ovarian atrophy, shorter lifespan, and low hatchability. The expression levels of Vg and VgR in the ovaries of the fall armyworm were consistent with the changes in the ovarian developmental phenotype. Validamycin significantly inhibited the activity of trehalase in S. frugiperda, severely hindering their normal eclosion and lowering the potential reproductive capacity of S. frugiperda. Simultaneously, it directly affects ovarian development and the lifespan of female moths. The results provide data to support the development of new methods for controlling S. frugiperda. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

21 pages, 3426 KB  
Article
Graphene Oxide-Induced Toxicity in Social Insects: Study on Ants Through Integrated Analysis of Physiology, Gut Microbiota, and Transcriptome
by Ting Lei, Ziyuan Wang, Xinyu Wang, Shulan Zhao and Li’an Duo
Insects 2026, 17(1), 104; https://doi.org/10.3390/insects17010104 - 16 Jan 2026
Viewed by 92
Abstract
Ants act as keystone species in terrestrial ecosystems, providing important ecosystem services. The large-scale production and application of GO constitute a predominant contributor to its inevitable environmental dispersion. Most GO toxicity studies have focused on plants, animals, and microorganisms, with limited research on [...] Read more.
Ants act as keystone species in terrestrial ecosystems, providing important ecosystem services. The large-scale production and application of GO constitute a predominant contributor to its inevitable environmental dispersion. Most GO toxicity studies have focused on plants, animals, and microorganisms, with limited research on ground-dwelling ants. In the study, we used Camponotus japonicus as a model to investigate the toxic effects of GO on ants by integrating physiological characteristics, gut microbiota and transcriptome profiling. Results showed that GO exposure induced mitochondrial dysfunction, as evidenced by mitochondrial ROS accumulation and elevated mitochondrial membrane permeability. Physiological assessments revealed that GO exposure induced oxidative stress. Specifically, GO treatment significantly suppressed superoxide dismutase (SOD) and catalase (CAT) activities, while enhancing peroxidase (POD) and carboxylesterase (CarE) activities and increasing the levels of malondialdehyde (MDA) and trehalose. Gut microbiota analyses showed that GO remarkably reduced the relative abundance of beneficial bacterial symbionts (e.g., Candidatus Blochmannia) and destabilized the whole community structure. Furthermore, transcriptome profiling revealed 680 differentially expressed genes (DEGs) in the ants after GO exposure, most of which were significantly enriched in pathways associated with oxidative phosphorylation. This study suggests that GO may compromise ant-mediated ecosystem function and provides a reference for understanding the environmental risks of GO. Our findings also offer new insights for protecting the ecosystem services of ants. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

27 pages, 3948 KB  
Review
Evolution of Insect Pollination Before Angiosperms and Lessons for Modern Ecosystems
by Ilaria Negri and Mario E. Toledo
Insects 2026, 17(1), 103; https://doi.org/10.3390/insects17010103 - 16 Jan 2026
Viewed by 58
Abstract
Insect pollination, a critical ecological process, pre-dates the emergence of angiosperms by nearly 200 million years, with fossil evidence indicating pollination interactions between insects and non-angiosperm seed plants during the Late Paleozoic. This review examines the symbiotic relationships between insects and gymnosperms in [...] Read more.
Insect pollination, a critical ecological process, pre-dates the emergence of angiosperms by nearly 200 million years, with fossil evidence indicating pollination interactions between insects and non-angiosperm seed plants during the Late Paleozoic. This review examines the symbiotic relationships between insects and gymnosperms in pre-angiosperm ecosystems, highlighting the complexity of these interactions. Fossil records suggest that the mutualistic relationships between insects and gymnosperms, which facilitated plant reproduction, were as intricate and diverse as the modern interactions between angiosperms and their pollinators, particularly bees. These early pollination systems likely involved specialized behaviors and plant adaptations, reflecting a sophisticated evolutionary dynamic long before the advent of flowering plants. The Anthropocene presents a dichotomy: while climate change and anthropogenic pressures threaten insect biodiversity and risk disrupting angiosperm reproduction, such upheaval may simultaneously generate opportunities for novel plant–insect interactions as ecological niches are vacated. Understanding the deep evolutionary history of pollination offers critical insight into the mechanisms underlying the resilience and adaptability of these mutualisms. The evolutionary trajectory of bees—originating from predatory wasps, diversifying alongside angiosperms, and reorganizing after mass extinctions—exemplifies this dynamic, demonstrating how pollination networks persist and reorganize under environmental stress and underscoring the enduring health, resilience, and adaptability of these essential ecological systems. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

7 pages, 770 KB  
Communication
Evaluating Real-Time PCR to Quantify Drosophila suzukii Infestation of Fruit Crops
by Matthew G. Gullickson, Vincenzo Averello, Mary A. Rogers, William D. Hutchison and Adrian Hegeman
Insects 2026, 17(1), 102; https://doi.org/10.3390/insects17010102 - 16 Jan 2026
Viewed by 74
Abstract
Common methods for detecting Drosophila suzukii (spotted-wing drosophila, SWD) in fruit, such as microscopy, physical extraction, and incubation, are time-consuming and may underrepresent egg and first instar larvae counts, the smallest life stages of SWD. To address these limitations, we evaluated a quantitative [...] Read more.
Common methods for detecting Drosophila suzukii (spotted-wing drosophila, SWD) in fruit, such as microscopy, physical extraction, and incubation, are time-consuming and may underrepresent egg and first instar larvae counts, the smallest life stages of SWD. To address these limitations, we evaluated a quantitative real-time PCR (qPCR) protocol to detect and quantify SWD eggs using a linear model of the log-transformed ratio of eggs to sample volume (µL) in Tris buffer and fruit tissue. Compared to traditional approaches, this method reduces identification time from several weeks to approximately five hours. We observed a negative linear correlation between qPCR cycle threshold and egg concentration in both standard and fruit tissue samples, with similar model fits (R2 = 0.7215 for field fruit tissue; R2 = 0.874 for standard samples). This DNA-based protocol improves infestation detection speed and accuracy by enabling rapid, species-specific identification of D. suzukii in fruit tissue, addressing limitations of morphological identification of eggs and larvae. Further refinement for fruit tissue could enhance real-world applicability. Rapid detection may enable timely assessment of varietal resistance to SWD and support safer control strategies targeting early life stages, helping to prevent pest development and fruit degradation. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

13 pages, 2612 KB  
Article
Herring-Based Diets Provide Robust Support for Anopheles gambiae Development and Colony Maintenance
by Samuel S. Akporh, Ibrahim K. Gyimah, Aaron A. Lartey, Samuel O. Darkwah, Godwin K. Amlalo, Sampson Gbagba, Ali Bin Idrees Alhassan, Godwin Hamenu, Dominic Acquah-Baidoo, Joannitta Joannides, Gladys N. Doughan, Godwin A. Koffa, Enyonam A. Akpakli, Akua O. Y. Danquah, Samuel K. Dadzie, Duncan K. Athinya, Rinki Deb, Rebecca Pwalia and Jewelna Akorli
Insects 2026, 17(1), 101; https://doi.org/10.3390/insects17010101 - 16 Jan 2026
Viewed by 115
Abstract
Laboratory maintenance of mosquitoes is important for studying vector biology and transmission of diseases, and for testing vector control tools. Standard operating procedures require feeding larvae with commercial fish meal. However, for many insectaries in sub-Saharan Africa, the commonly used feeds are imported [...] Read more.
Laboratory maintenance of mosquitoes is important for studying vector biology and transmission of diseases, and for testing vector control tools. Standard operating procedures require feeding larvae with commercial fish meal. However, for many insectaries in sub-Saharan Africa, the commonly used feeds are imported and accompanied by procurement challenges. Changing the larval feed abruptly without allowing the larvae to adapt to new brands of feed also leads to a decrease in mosquito colonies in the laboratory. We investigated locally acquired beans, maize, and dried herrings as alternate feeds for mosquito larvae reared under laboratory conditions. Four replicates for each treatment were prepared, each containing 100 first instar larvae of Anopheles gambiae Tiassalé mosquitoes. The larvae were introduced into 500 mL of dechlorinated tap water and maintained under standard environmental insectary conditions. The larvae were provided with 40 mg of the designated powdered feed—beans, maize, and herring fish—in single and combined treatments. Tetra® goldfish meal was included as a control. The larval mortality, developmental time, and number of pupae were recorded to evaluate the effectiveness of the feeds. Adult mosquitoes were weighed and measured to assess fitness, and females from each treatment were blood-fed and allowed to lay eggs to evaluate fertility. Larval survival differed significantly across diets (Kruskal–Wallis, p = 0.01), with maize-fed larvae showing the highest mortality (41.3%) and those with herring-based diets the lowest. Pupation and adult emergence were poorest in the maize and maize–bean groups, while the maize–herring combination achieved the highest emergence (92.6%, p = 0.03). Although overall differences were detected among the groups, conservative pairwise tests did not pinpoint specific group contrasts, but effect size estimates suggested biologically meaningful patterns. Generally, adult body weight and wing length did not differ by treatment except in maize-fed males (β = 0.371 mm, p = 0.022). Herring fish-based diets consistently supported larval survival, timely development, and robust fecundity, whereas maize-based diets were nutritionally inadequate. These findings highlight herring fish-based diets as a sustainable and cost-effective alternative to commercial feeds for maintaining Anopheles mosquito colonies, with potential to strengthen vector research capacity in resource-limited laboratories. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 32961 KB  
Article
Bioclimatic and Land Use/Land Cover Factors as Determinants of Crabronidae (Hymenoptera) Community Structure in Yunnan, China
by Nawaz Haider Bashir, Muhammad Naeem, Qiang Li and Huanhuan Chen
Insects 2026, 17(1), 100; https://doi.org/10.3390/insects17010100 - 15 Jan 2026
Viewed by 131
Abstract
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, [...] Read more.
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, these wasps might be under threat from environmental changes, and we need to assess the biodiversity patterns of these wasps in Yunnan Province. Unfortunately, no information is currently available about the pattern and factors responsible for the assemblages of these wasps within our study region. This study provides the first province-level assessment of habitat suitability, species richness, assemblage structure, and environmental determinants for Crabronidae in Yunnan by integrating species distribution modeling (SDM), multivariate clustering, and ordination analyses. More than 50 species were studied to assess habitat suitability in Yunnan using MaxEnt. Model performance was robust (AUC > 0.7). Suitability patterns varied distinctly among regions. Species richness peaked in southern Yunnan, particularly in the counties of Jinghong, Mengla, Menghai, and Jiangcheng Hani & Yi. Land use/land cover (LULC) variables were the dominant predictors for 90% of species, whereas precipitation-related variables contributed most strongly to the remaining 10%. Ward’s hierarchical clustering grouped the 125 counties into three community assemblage zones, with Zone III comprising the most significant area. A unique species composition was found within a particular zone, and clear separation among zones based on environmental variation was supported by Principal Component Analysis (PCA), which explained more than 70% variability among zones. Furthermore, Canonical Correspondence Analysis (CCA) indicated that both LULC and climatic factors shaped community structure assemblages, with axes 1 and 2 explaining 70% of variance (p = 0.001). The most relevant key factors in each zone were precipitation variables (bio12, bio14, bio17), which were dominant in Zone I; for Zone II, temperature and vegetation variables were most important; and urban, wetland, and water variables were most important in Zone III. Full article
Show Figures

Figure 1

14 pages, 488 KB  
Article
Using a Standardized Protocol to Assess Female Codling Moth, Cydia pomonella (L.), Mating Status Under Mating Disruption Technologies
by Alan Lee Knight, Michele Preti and Esteban Basoalto
Insects 2026, 17(1), 99; https://doi.org/10.3390/insects17010099 - 15 Jan 2026
Viewed by 73
Abstract
Implementing mating disruption (MD) programs to manage codling moth (CM), Cydia pomonella (L.), should be based on knowledge of how effectively each program disrupts female mating. A recent survey of 142 pome fruit orchards under MD in Washington State and Oregon found that, [...] Read more.
Implementing mating disruption (MD) programs to manage codling moth (CM), Cydia pomonella (L.), should be based on knowledge of how effectively each program disrupts female mating. A recent survey of 142 pome fruit orchards under MD in Washington State and Oregon found that, on average, about half of the CM females caught in traps baited with a kairomone-based lure were mated. However, significantly lower proportions of mated females were sampled when the intensity of the MD program was increased. A standardized protocol that could reduce the large inter-orchard variability was developed, involving weekly releases of sterilized CM adults. Eleven trials were conducted in 2023 and 2024 across 82 orchards treated with 20 MD programs. The intensive MD programs were significantly more effective in reducing mating of both wild and sterile CM females. Three advantages of using sterile moths to assess CM MD were identified: (i) it minimized the impact of wild immigrant females or individuals previously exposed to sublethal spray residues; (ii) it allowed greater numbers of females to be dissected, thus increasing the precision of the mean value; and (iii) it and allowed the collection of sufficient sampling data (>5 CM females per site) from 30% more orchards than relying on wild moth catch. Full article
Show Figures

Figure 1

13 pages, 821 KB  
Article
Triple-Olfactory Mechanism Synergy: Development of a Long-Lasting DEET–Botanical Composite Repellent Against Aedes albopictus
by Chen-Xu Lin, Xin-Yi Huang, Yi-Hai Sun, Bi-Hang Lan, An-Qi Deng, Le-Yan Chen, Qiu-Yun Lin, Xi-Tong Huang, Jun-Long Li, Cheng Wu and Li-Hua Xie
Insects 2026, 17(1), 98; https://doi.org/10.3390/insects17010098 - 14 Jan 2026
Viewed by 206
Abstract
Mosquito-borne diseases, including dengue fever, chikungunya, and Zika, continue to pose a substantial global public health challenge. This is largely attributable to the absence of effective vaccines and the expanding distribution of vectors such as Aedes albopictus (Ae. albopictus). Repellents, therefore, [...] Read more.
Mosquito-borne diseases, including dengue fever, chikungunya, and Zika, continue to pose a substantial global public health challenge. This is largely attributable to the absence of effective vaccines and the expanding distribution of vectors such as Aedes albopictus (Ae. albopictus). Repellents, therefore, remain a critical component of prevention strategies for disease prevention. However, existing formulations have notable limitations. Synthetic repellents such as DEET provide broad-spectrum efficacy but may raise safety concerns, especially at high concentrations. In contrast, botanical repellents, such as citronella and camphor oils, offer more favorable safety profiles but are restricted by short protection durations due to their high volatility. To overcome these drawbacks, this research developed a composite mosquito repellent through the strategic combination of DEET (5–15%), citronella oil (10–20%), and camphor oil (5–15%). This formulation leverages interactions across multiple olfactory pathways to simultaneously enhance efficacy and reduce the DEET concentration. Orthogonal experimental optimization identified an optimized formulation, Mix-3 (consisting of 15% DEET, 15% citronella oil, and 10% camphor oil in 75% ethanol), which achieved a mean complete protection time of 9.45 h. Mix-3 provided longer protection than 7% DEET (mean difference = 5.50 h, p < 0.001), 4.5% IR3535 (2.83 h, p < 0.001), 10% citronella oil (3.58 h, p < 0.001), and 15% DEET (6.50 h, p < 0.001). Catnip oil did not contribute significantly to repellency (p = 0.895). This study demonstrates that the rational combination of synthetic and botanical repellents effectively overcomes the limitations of single-agent formulations, providing a long-lasting and scalable approach for vector control. Full article
Show Figures

Graphical abstract

16 pages, 7117 KB  
Article
Morphological Description and Physiological Changes in the Hindgut of Female Asiophrida xanthospilota (Chrysomelidae, Coleoptera) Across Reproductive Stages
by Jacob M. Muinde, Ze-Qun Dong, Caren A. Ochieng, Wei Wang, Esther N. Kioko, Le Zong, Wen-Jie Li, Cong-Qiao Li, Si-Pei Liu, Zheng-Zhong Huang and Si-Qin Ge
Insects 2026, 17(1), 97; https://doi.org/10.3390/insects17010097 - 14 Jan 2026
Viewed by 210
Abstract
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the [...] Read more.
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the leaves of Cotinus coggygria Scop. (Anacardiaceae). Using light microscopy, scanning electron microscopy, and micro-computed tomography, we described and illustrated the hindgut anatomy of adult female A. xanthospilota during the pre-mated and post-mated reproductive phases. We further examined the physiological changes in the hindgut associated with fecal retention, and assessed hindgut muscle activity across these two reproductive stages. The hindgut of adult A. xanthospilota consists of three regions: ileum, colon, and rectum. The ileum is a thin, straight or coiled, tube enclosed by malpighian tubules and supported by circular and longitudinal muscles. The colon lies between the ileum and rectum, possesses a chitinized cuticle, and is externally covered with tracheae and tracheoles. A rectal valve separates the colon from the rectum, which forms the posterior end of the alimentary canal and is characterized by intimal spines and robust circular muscles. During the post-mated phase, fecal retention causes pronounced dilation of the hindgut, substantially increasing the volume occupied by food remnants. Electromyographic recordings revealed high hindgut muscle activity in pre-mated females, characterized by short and variable bursts, whereas post-mated females exhibited reduced activity with longer and more sustained bursts. The functional implications of these specialized structural features are discussed. Overall, these morphological and physiological adaptations enhance the fecal retention strategy by increasing fecal capacity, regulating hindgut motility, and enabling the formation of a protective fecal case around the egg mass. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 1270 KB  
Article
Do the Ecoregions Support Distinct Hilly and Mountain Stream Chironomid Assemblages in South-East Europe?
by Viktorija Ergović, Predrag Simović, Miran Koh, Djuradj Milošević, Dubravka Čerba, Ana Petrović and Zlatko Mihaljević
Insects 2026, 17(1), 96; https://doi.org/10.3390/insects17010096 - 14 Jan 2026
Viewed by 94
Abstract
The region of South-East Europe, located in geologically and climatically diverse areas, hosts a wide range of freshwater habitats. However, comprehensive studies of macroinvertebrate communities are limited, and research on Chironomidae (Diptera) is particularly scarce. We present data on the diversity and structure [...] Read more.
The region of South-East Europe, located in geologically and climatically diverse areas, hosts a wide range of freshwater habitats. However, comprehensive studies of macroinvertebrate communities are limited, and research on Chironomidae (Diptera) is particularly scarce. We present data on the diversity and structure of chironomid assemblages in hilly and mountainous streams across three ecoregions: the Pannonian Lowland (Ecoregion 11), the Dinaric Western Balkans (Ecoregion 5), and the Eastern Balkans (Ecoregion 7) and provide a comparative overview of their community patterns based on 130 samples. According to the CCA results and Monte Carlo permutation tests, water temperature, dissolved oxygen, conductivity, pH, and altitude were identified as statistically significant parameters influencing Chironomidae assemblages across the ecoregions, collectively explaining 72.20% of the variation. The higher diversity indices were recorded in each season in the Pannonian Lowland and the highest within-ecoregion similarity. Dissimilarity was highest between ER11 and ER7 and lowest between ER5 and ER7. These results demonstrate that the ecoregion was the strongest influence of the studied environmental variables on Chironomidae assemblages, with community patterns closely reflecting their spatial distribution across distinct ecoregional settings. Full article
(This article belongs to the Special Issue Aquatic Insects: Ecology, Diversity and Conservation)
Show Figures

Figure 1

16 pages, 1012 KB  
Systematic Review
Ex Situ Breeding and Conservation of Osmoderma Species: A Systematic Review and Evidence-Based Breeding Guidelines for Reintroduction
by Šarūnas Kulbokas, Aurelija Mikalčiūtė and Gintarė Stankevičė
Insects 2026, 17(1), 94; https://doi.org/10.3390/insects17010094 - 14 Jan 2026
Viewed by 181
Abstract
Hermit beetles (Osmoderma spp.) are protected and endangered across Europe, experiencing ongoing decline throughout most of their range. Because nearly all populations are small and isolated, Osmoderma genus is highly susceptible to extinction and requires active conservation measures. The primary cause of [...] Read more.
Hermit beetles (Osmoderma spp.) are protected and endangered across Europe, experiencing ongoing decline throughout most of their range. Because nearly all populations are small and isolated, Osmoderma genus is highly susceptible to extinction and requires active conservation measures. The primary cause of decline in the genus is habitat loss, particularly the removal of hollow trees that provide essential larval habitat. The nutritional wood mold within these hollows, on which larvae depend for 3–4 years of development, is directly linked to population survival. The aim of this study was to develop methodical ex situ breeding guidelines for reintroduction designed to eliminate environmental constraints and ecological requirement gaps. We first synthesize literature-based evidence on habitat conditions, applied methods, study durations, and key ecological insights relevant to Osmoderma conservation. Based on these results, we then create an ex situ breeding guideline for reintroduction, combining published data with practical breeding objectives in cases where empirical data are limited. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop