Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (728)

Search Parameters:
Journal = Fractal Fract
Section = Engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1628 KiB  
Article
Reliability Evaluation and Optimization of System with Fractional-Order Damping and Negative Stiffness Device
by Mingzhi Lin, Wei Li, Dongmei Huang and Natasa Trisovic
Fractal Fract. 2025, 9(8), 504; https://doi.org/10.3390/fractalfract9080504 (registering DOI) - 31 Jul 2025
Abstract
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed [...] Read more.
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed a novel intelligent algorithm and conducted an optimal reliability assessment for a Negative Stiffness Device (NSD) seismic isolation structure incorporating fractional-order damping. This algorithm combines the Gaussian Radial Basis Function Neural Network (GRBFNN) with the Particle Swarm Optimization (PSO) algorithm. It takes the reliability function with unknown parameters as the objective function, while using the Backward Kolmogorov (BK) equation, which governs the reliability function and is accompanied by boundary and initial conditions, as the constraint condition. During the operation of this algorithm, the neural network is employed to solve the BK equation, thereby deriving the fitness function in each iteration of the PSO algorithm. Then the PSO algorithm is utilized to obtain the optimal parameters. The unique advantage of this algorithm is its ability to simultaneously achieve the optimization of implicit objectives and the solution of time-dependent BK equations.To evaluate the performance of the proposed algorithm, this study compared it with the algorithm combines the GRBFNN with Genetic Algorithm (GA-GRBFNN)across multiple dimensions, including performance and operational efficiency. The effectiveness of the proposed algorithm has been validated through numerical comparisons and Monte Carlo simulations. The control strategy presented in this paper provides a solid theoretical foundation for improving the reliability performance of mechanical engineering systems and demonstrates significant potential for practical applications. Full article
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
Pore Evolution and Fractal Characteristics of Marine Shale: A Case Study of the Silurian Longmaxi Formation Shale in the Sichuan Basin
by Hongzhan Zhuang, Yuqiang Jiang, Quanzhong Guan, Xingping Yin and Yifan Gu
Fractal Fract. 2025, 9(8), 492; https://doi.org/10.3390/fractalfract9080492 - 28 Jul 2025
Viewed by 235
Abstract
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the [...] Read more.
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the shale’s pore structure. Physical simulation experiments were conducted on field-collected shale samples, revealing the evolution of total organic carbon, mineral composition, porosity, and micro-fractures. The fractal dimension of shale pore was characterized using the Frenkel–Halsey–Hill and capillary bundle models. The relationships among shale components, porosity, and fractal dimensions were investigated through a correlation analysis and a principal component analysis. A comprehensive evolution model for porosity and micro-fractures was established. The evolution of mineral composition indicates a gradual increase in quartz content, accompanied by a decline in clay, feldspar, and carbonate minerals. The thermal evolution of organic matter is characterized by the formation of organic pores and shrinkage fractures on the surface of kerogen. Retained hydrocarbons undergo cracking in the late stages of thermal evolution, resulting in the formation of numerous nanometer-scale organic pores. The evolution of inorganic minerals is represented by compaction, dissolution, and the transformation of clay minerals. Throughout the simulation, porosity evolution exhibited distinct stages of rapid decline, notable increase, and relative stabilization. Both pore volume and specific surface area exhibit a trend of decreasing initially and then increasing during thermal evolution. However, pore volume slowly decreases after reaching its peak in the late overmature stage. Fractal dimensions derived from the Frenkel–Halsey–Hill model indicate that the surface roughness of pores (D1) in organic-rich shale is generally lower than the complexity of their internal structures (D2) across different maturity levels. Additionally, the average fractal dimension calculated based on the capillary bundle model is higher, suggesting that larger pores exhibit more complex structures. The correlation matrix indicates a co-evolution relationship between shale components and pore structure. Principal component analysis results show a close relationship between the porosity of inorganic pores, microfractures, and fractal dimension D2. The porosity of organic pores, the pore volume and specific surface area of the main pore size are closely related to fractal dimension D1. D1 serves as an indicator of pore development extent and characterizes the changes in components that are “consumed” or “generated” during the evolution process. Based on mineral composition, fractal dimensions, and pore structure evolution, a comprehensive model describing the evolution of pores and fractal dimensions in organic-rich shale was established. Full article
Show Figures

Figure 1

38 pages, 6851 KiB  
Article
FGFNet: Fourier Gated Feature-Fusion Network with Fractal Dimension Estimation for Robust Palm-Vein Spoof Detection
by Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Fractal Fract. 2025, 9(8), 478; https://doi.org/10.3390/fractalfract9080478 - 22 Jul 2025
Viewed by 236
Abstract
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality [...] Read more.
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality and sophistication of fake images have improved, leading to an increased security threat from counterfeit images. In particular, palm-vein images acquired through near-infrared illumination exhibit low resolution and blurred characteristics, making it even more challenging to detect fake images. Furthermore, spoof detection specifically targeting palm-vein images has not been studied in detail. To address these challenges, this study proposes the Fourier-gated feature-fusion network (FGFNet) as a novel spoof detector for palm-vein recognition systems. The proposed network integrates masked fast Fourier transform, a map-based gated feature fusion block, and a fast Fourier convolution (FFC) attention block with global contrastive loss to effectively detect distortion patterns caused by generative models. These components enable the efficient extraction of critical information required to determine the authenticity of palm-vein images. In addition, fractal dimension estimation (FDE) was employed for two purposes in this study. In the spoof attack procedure, FDE was used to evaluate how closely the generated fake images approximate the structural complexity of real palm-vein images, confirming that the generative model produced highly realistic spoof samples. In the spoof detection procedure, the FDE results further demonstrated that the proposed FGFNet effectively distinguishes between real and fake images, validating its capability to capture subtle structural differences induced by generative manipulation. To evaluate the spoof detection performance of FGFNet, experiments were conducted using real palm-vein images from two publicly available palm-vein datasets—VERA Spoofing PalmVein (VERA dataset) and PLUSVein-contactless (PLUS dataset)—as well as fake palm-vein images generated based on these datasets using a cycle-consistent generative adversarial network. The results showed that, based on the average classification error rate, FGFNet achieved 0.3% and 0.3% on the VERA and PLUS datasets, respectively, demonstrating superior performance compared to existing state-of-the-art spoof detection methods. Full article
Show Figures

Figure 1

18 pages, 451 KiB  
Article
Distinctive LMI Formulations for Admissibility and Stabilization Algorithms of Singular Fractional-Order Systems with Order Less than One
by Xinhai Wang, Xuefeng Zhang, Qing-Guo Wang and Driss Boutat
Fractal Fract. 2025, 9(7), 470; https://doi.org/10.3390/fractalfract9070470 - 19 Jul 2025
Viewed by 208
Abstract
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full [...] Read more.
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full rank matrices. This admissibility criterion does not involve complex variables and is different from all previous results, filling a gap in this area. Based on the LMIs in the generalized condition, the improved criterion utilizes a variable substitution technique to reduce the number of matrix variables to be solved from one pair to one, reflecting the admissibility more essentially. This improved result simplifies the programming process compared to the traditional approach that requires two matrix variables. To complete the state feedback controller design, the system matrices in the generalized admissibility criterion are decoupled, but bilinear constraints still occur in the stabilization criterion. For this case, where a feasible solution cannot be found using the MATLAB LMI toolbox, a branch-and-bound algorithm (BBA) is designed to solve it. Finally, the validity of these criteria and the BBA is verified by three examples, including a real circuit model. Full article
Show Figures

Figure 1

22 pages, 14847 KiB  
Article
Formation Control of Underactuated AUVs Using a Fractional-Order Sliding Mode Observer
by Long He, Mengting Xie, Ya Zhang, Shizhong Li, Bo Li, Zehui Yuan and Chenrui Bai
Fractal Fract. 2025, 9(7), 465; https://doi.org/10.3390/fractalfract9070465 - 18 Jul 2025
Viewed by 303
Abstract
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining [...] Read more.
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining fractional calculus and double-power convergence laws to enhance the estimation accuracy of high-frequency disturbances. An adaptive gain mechanism is introduced to avoid dependence on the upper bound of disturbances. Second, a formation cooperative control strategy based on path parameter coordination is proposed. By setting independent reference points for each AUV and exchanging path parameters, formation consistency is achieved with low communication overhead. For the followers’ speed control problem, an error-based expected speed adjustment mechanism is introduced, and a hyperbolic tangent function is used to replace the traditional arctangent function to improve the response speed of the system. Numerical simulation results show that this control method performs well in terms of path-following accuracy, formation maintenance capability, and disturbance suppression, verifying its effectiveness and robustness in complex marine environments. Full article
Show Figures

Figure 1

5 pages, 161 KiB  
Editorial
Closing Editorial for Applications of Fractional-Order Systems in Automatic Control
by German A. Munoz-Hernandez and Jose Fermi Guerrero-Castellanos
Fractal Fract. 2025, 9(7), 464; https://doi.org/10.3390/fractalfract9070464 - 17 Jul 2025
Viewed by 223
Abstract
Fractional-order systems have been applied in very diverse areas of science and engineering [...] Full article
(This article belongs to the Special Issue Applications of Fractional-Order Systems to Automatic Control)
22 pages, 3655 KiB  
Article
Analytical Description of Three-Dimensional Fractal Surface Wear Process Based on Multi-Stage Contact Theory
by Wang Zhang, Ling Li, Yang Liu, Jingjing Wang, Yao Li and Guozhang Chen
Fractal Fract. 2025, 9(7), 463; https://doi.org/10.3390/fractalfract9070463 - 16 Jul 2025
Viewed by 277
Abstract
Accurately revealing the sliding wear mechanisms of mechanical surfaces is crucial for enhancing the performance of mechanical surfaces. This study reveals the mechanism of stage transitions in three-dimensional surface wear processes from a microscopic contact perspective. Firstly, according to the fractal theory, a [...] Read more.
Accurately revealing the sliding wear mechanisms of mechanical surfaces is crucial for enhancing the performance of mechanical surfaces. This study reveals the mechanism of stage transitions in three-dimensional surface wear processes from a microscopic contact perspective. Firstly, according to the fractal theory, a mathematical model for the critical area scale controlling debris particle formation is established. Secondly, incorporating the contact area scale, a mathematical expression for the wear coefficient of surfaces, is proposed based on the multi-stage contact theory. Finally, the influences of fractal parameters on critical contact load, wear rate, and wear coefficient are systematically examined. The experimental findings substantiate that the proposed wear model exhibits an explicit deterministic formulation and demonstrates high predictive accuracy for the wear rate. Full article
Show Figures

Figure 1

20 pages, 4263 KiB  
Article
Quantitative Fractal Analysis of Fracture Mechanics and Damage Evolution in Recycled Aggregate Concrete Beams: Investigation of Dosage-Dependent Mechanical Response Under Incremental Load
by Xiu-Cheng Zhang and Xue-Fei Chen
Fractal Fract. 2025, 9(7), 454; https://doi.org/10.3390/fractalfract9070454 - 11 Jul 2025
Viewed by 255
Abstract
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli [...] Read more.
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli and compressive strengths, resulting in reduced deformation resistance, ductility, and more late-stage crack propagation. A direct proportional relationship existed between RCA/RFA replacement ratios and crack fractal dimensions. Second-order and third-order polynomial trend surface-fitting techniques were applied to examine the complex relationships among RFA/RCA dosage, applied load, and crack fractal dimension. The results indicated that the RFA dosage had a negative quadratic influence, while load had a positive linear effect, with dosage impact increasing with load. A second-order functional relationship was found between mid-span deflection and crack fractal dimension, reflecting nonlinear behavior consistent with concrete mechanics. This study enhances the understanding of recycled aggregate concrete beam fracture behavior, with the crack fractal dimension serving as a valuable quantitative indicator for damage state and crack complexity assessment. These findings are crucial for engineering design and application, enabling better evaluation of structural performance under various conditions. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

23 pages, 1107 KiB  
Article
Mathematical and Physical Analysis of the Fractional Dynamical Model
by Mohammed Ahmed Alomair and Haitham Qawaqneh
Fractal Fract. 2025, 9(7), 453; https://doi.org/10.3390/fractalfract9070453 - 11 Jul 2025
Viewed by 199
Abstract
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the [...] Read more.
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the modified (G/G2)-expansion technique, we are able to achieve the series of exact solitons. The results differ from the current solutions because of the fractional derivative. These solutions could be helpful in the telecommunication and bioscience domains. Contour plots, in two and three dimensions, are used to describe the results. Stability analysis is used to check the stability of the obtained solutions. Moreover, the stationary solutions of the focusing equation are studied through modulation instability. Future research on the focused model in question will benefit from the findings. The techniques used are simple and effective. Full article
Show Figures

Figure 1

26 pages, 18598 KiB  
Article
Fractal Feature of Manufactured Sand Ultra-High-Performance Concrete (UHPC) Based on MIP
by Xinlin Wang, Tinghong Pan, Yang Yang, Rongqing Qi, Dian Guan, Kaihe Dong, Run-Sheng Lin and Rongxin Guo
Fractal Fract. 2025, 9(7), 448; https://doi.org/10.3390/fractalfract9070448 - 5 Jul 2025
Viewed by 464
Abstract
To alleviate environmental pressures, manufactured sand (MS) are increasingly being used in the production of ultra-high-performance concrete (UHPC) due to their consistent supply and environmental benefits. However, manufactured sand properties are critically influenced by processing and production techniques, resulting in substantial variations in [...] Read more.
To alleviate environmental pressures, manufactured sand (MS) are increasingly being used in the production of ultra-high-performance concrete (UHPC) due to their consistent supply and environmental benefits. However, manufactured sand properties are critically influenced by processing and production techniques, resulting in substantial variations in fundamental characteristics that directly impact UHPC matrix pore structure and ultimately compromise performance. Traditional testing methods inadequately characterize UHPC’s pore structure, necessitating multifractal theory implementation to enhance pore structural interpretation capabilities. In this study, UHPC specimens were fabricated with five types of MS exhibiting distinct properties and at varying water to binder (w/b) ratios. The flowability, mechanical strength, and pore structure of the specimens were systematically evaluated. Additionally, multifractal analysis was conducted on each specimen group using mercury intrusion porosimetry (MIP) data to characterize pore complexity. SM-type sands have a more uniform distribution of pores of different scales, better pore structure and matrix homogeneity due to their finer particles, moderate stone powder content, and better cleanliness. Both excessively high and low stone powder content, as well as low cleanliness, will lead to pore aggregation and poor closure, degrading the pore structure. Full article
(This article belongs to the Special Issue Fractal and Fractional in Construction Materials)
Show Figures

Figure 1

18 pages, 5095 KiB  
Article
Discrete-Time Fractional-Order Sliding Mode Attitude Control of Multi-Spacecraft Systems Based on the Fully Actuated System Approach
by Yiqi Chen and Shuyi Shao
Fractal Fract. 2025, 9(7), 435; https://doi.org/10.3390/fractalfract9070435 - 1 Jul 2025
Viewed by 322
Abstract
In practical applications, most systems operate based on digital signals obtained through sampling. Applying fractional-order control to spacecraft attitude control is meaningful for achieving better performance, especially in the coordination of the multi-spacecraft attitude system. In this paper, a discrete-time fractional-order sliding mode [...] Read more.
In practical applications, most systems operate based on digital signals obtained through sampling. Applying fractional-order control to spacecraft attitude control is meaningful for achieving better performance, especially in the coordination of the multi-spacecraft attitude system. In this paper, a discrete-time fractional-order sliding mode attitude control problem is studied for multi-spacecraft systems based on the fully actuated system approach. Firstly, a discrete-time disturbance observer based on the fractional-order theory is constructed to estimate the disturbance. Secondly, a discrete-time fractional-order sliding mode controller is designed by combining the transformed fully actuated discrete-time system and the disturbance observer. Subsequently, every spacecraft can track the desired attitude under the designed controller. Finally, the simulation results show that the developed control method achieves faster convergence, smaller overshoot, and higher control accuracy. Full article
(This article belongs to the Special Issue Fractional Dynamics and Control in Multi-Agent Systems and Networks)
Show Figures

Figure 1

36 pages, 4192 KiB  
Article
Fractional Calculus for Neutrosophic-Valued Functions and Its Application in an Inventory Lot-Sizing Problem
by Rakibul Haque, Mostafijur Rahaman, Adel Fahad Alrasheedi, Dimplekumar Chalishajar and Sankar Prasad Mondal
Fractal Fract. 2025, 9(7), 433; https://doi.org/10.3390/fractalfract9070433 - 30 Jun 2025
Cited by 1 | Viewed by 330
Abstract
Past experiences and memory significantly contribute to self-learning and improved decision-making. These can assist decision-makers in refining their strategies for better outcomes. Fractional calculus is a tool that captures a system’s memory or past experience through its repeating patterns. In the realm of [...] Read more.
Past experiences and memory significantly contribute to self-learning and improved decision-making. These can assist decision-makers in refining their strategies for better outcomes. Fractional calculus is a tool that captures a system’s memory or past experience through its repeating patterns. In the realm of uncertainty, neutrosophic set theory demonstrates greater suitability, as it independently assesses membership, non-membership, and indeterminacy. In this article, we aim to extend the theory further by introducing fractional calculus for neutrosophic-valued functions. The proposed method is applied to an economic lot-sizing problem. Numerical simulations of the lot-sizing model suggest that strong memory employment with a memory index of 0.1 can lead to an increase in average profit in memory-independent phenomena with a memory index of 1 by approximately 44% to 49%. Additionally, the neutrosophic environment yields superior profitability results compared to both precise and imprecise settings. The synergy of fractional-order dynamics and neutrosophic uncertainty modeling paves the way for enhanced decision-making in complex, ambiguous environments. Full article
Show Figures

Figure 1

26 pages, 23383 KiB  
Article
Multi-Focus Image Fusion Based on Dual-Channel Rybak Neural Network and Consistency Verification in NSCT Domain
by Ming Lv, Sensen Song, Zhenhong Jia, Liangliang Li and Hongbing Ma
Fractal Fract. 2025, 9(7), 432; https://doi.org/10.3390/fractalfract9070432 - 30 Jun 2025
Cited by 1 | Viewed by 392
Abstract
In multi-focus image fusion, accurately detecting and extracting focused regions remains a key challenge. Some existing methods suffer from misjudgment of focus areas, resulting in incorrect focus information or the unintended retention of blurred regions in the fused image. To address these issues, [...] Read more.
In multi-focus image fusion, accurately detecting and extracting focused regions remains a key challenge. Some existing methods suffer from misjudgment of focus areas, resulting in incorrect focus information or the unintended retention of blurred regions in the fused image. To address these issues, this paper proposes a novel multi-focus image fusion method that leverages a dual-channel Rybak neural network combined with consistency verification in the nonsubsampled contourlet transform (NSCT) domain. Specifically, the high-frequency sub-bands produced by NSCT decomposition are processed using the dual-channel Rybak neural network and a consistency verification strategy, allowing for more accurate extraction and integration of salient details. Meanwhile, the low-frequency sub-bands are fused using a simple averaging approach to preserve the overall structure and brightness information. The effectiveness of the proposed method has been thoroughly evaluated through comprehensive qualitative and quantitative experiments conducted on three widely used public datasets: Lytro, MFFW, and MFI-WHU. Experimental results show that our method consistently outperforms several state-of-the-art image fusion techniques, including both traditional algorithms and deep learning-based approaches, in terms of visual quality and objective performance metrics (QAB/F, QCB, QE, QFMI, QMI, QMSE, QNCIE, QNMI, QP, and QPSNR). These results clearly demonstrate the robustness and superiority of the proposed fusion framework in handling multi-focus image fusion tasks. Full article
Show Figures

Figure 1

26 pages, 7464 KiB  
Article
Pore Structure and Multifractal Characteristics of the Upper Lianggaoshan Formation in the Northeastern Sichuan Basin, China
by Jingjing Guo, Guotao Luo, Haitao Wang and Liehui Zhang
Fractal Fract. 2025, 9(7), 430; https://doi.org/10.3390/fractalfract9070430 - 30 Jun 2025
Viewed by 273
Abstract
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of [...] Read more.
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of siltstone and shale samples from the Upper LGS Formation using low-pressure CO2 adsorption (LTCA), low-temperature N2 adsorption (LTNA), high-pressure mercury intrusion (HPMI), and nuclear magnetic resonance (NMR) methods. The single-exponent and multifractal dimensions of samples were determined, and the relationships between fractal dimensions and pore structures were explored. Results show that the pore size distribution (PSD) of siltstone and shale samples exhibits multi-peak characteristics, with mesopores (2–50 nm) being dominant in the total pore volumes. The multi-scaled pores in shale and siltstone samples exhibit fractal characteristics. The average values of single-fractal dimensions (D1, D2) obtained by LTNA data are 2.39 and 2.62 for shale samples, and 2.24 and 2.59 for siltstone samples, respectively. Compared to siltstones, the pore structures of shale samples exhibit greater complexity, indicated by larger fractal dimensions. The samples from subsections Liang 2 and Liang 3 exhibit greater heterogeneity compared to subsection Liang 1. The single-fractal dimensions of micropores and mesopores show positive correlations with specific surface area (SSA) and pore volume (PV), while the fractal dimension of macropores shows a negative correlation with average pore diameter and median radius. The average values of single-fractal dimension D3 obtained from HPMI data are 2.9644 and 2.9471 for shale and siltstone samples, respectively, indicating more complex structures of macropores in shale samples compared to siltstone samples. The average value of ΔDNMR and singularity strength range Δα obtained by a multifractal model for core samples from subsection Liang 1 are 1.868 and 2.155, respectively, which are the smallest among all of the three subsections, indicating that the heterogeneity of pore structures of subsection Liang 1 is the weakest. This research provides valuable guidance for shale oil development in the northeastern Sichuan Basin, China. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

21 pages, 4193 KiB  
Article
Comparative Evaluation of Fractional-Order Models for Lithium-Ion Batteries Response to Novel Drive Cycle Dataset
by Xinyuan Wei, Longxing Wu, Chunhui Liu, Zhiyuan Si, Xing Shu and Heng Li
Fractal Fract. 2025, 9(7), 429; https://doi.org/10.3390/fractalfract9070429 - 30 Jun 2025
Viewed by 382
Abstract
The high-fidelity lithium-ion battery (LIB) models are crucial for realizing an accurate state estimation in battery management systems (BMSs). Recently, the fractional-order equivalent circuit models (FOMs), as a frequency-domain modeling approach, offer distinct advantages for constructing high-precision battery models in field of electric [...] Read more.
The high-fidelity lithium-ion battery (LIB) models are crucial for realizing an accurate state estimation in battery management systems (BMSs). Recently, the fractional-order equivalent circuit models (FOMs), as a frequency-domain modeling approach, offer distinct advantages for constructing high-precision battery models in field of electric vehicles. However, the quantitative evaluations and adaptability of these models under different driving cycle datasets are still lacking and challenging. For this reason, comparative evaluations of different FOMs using a novel drive cycle dataset of a battery was carried out in this paper. First, three typical FOMs were initially established and the particle swarm optimization algorithm was then employed to identify model parameters. Complementarily, the efficiency and accuracy of the offline identification for three typical FOMs are also discussed. Subsequently, the terminal voltages of these different FOMs were investigated and evaluated under dynamic operating conditions. Results demonstrate that the FOM-W model exhibits the highest superiority in simulation accuracy, achieving a mean absolute error (MAE) of 9.2 mV and root mean square error (RMSE) of 19.1 mV under Highway Fuel Economy Test conditions. Finally, the accuracy verification of the FOM-W model under two other different dynamic operating conditions has also been thoroughly investigated, and it could still maintain a RMSE and MAE below 21 mV, which indicates its strong adaptability and generalization compared with other FOMs. Conclusions drawn from this paper can further guide the selection of battery models to achieve reliable state estimations of BMS. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

Back to TopTop