Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Journal = Forests
Section = Forest Health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6358 KiB  
Article
First Assessment of the Biodiversity of True Slime Molds in Swamp Forest Stands of the Knyszyn Forest (Northeast Poland) Using the Moist Chambers Detection Method
by Tomasz Pawłowicz, Igor Żebrowski, Gabriel Michał Micewicz, Monika Puchlik, Konrad Wilamowski, Krzysztof Sztabkowski and Tomasz Oszako
Forests 2025, 16(8), 1259; https://doi.org/10.3390/f16081259 (registering DOI) - 1 Aug 2025
Abstract
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from [...] Read more.
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from eight swampy sub-compartments were incubated for over four months, resulting in the detection of fifteen slime mold species. Four of these taxa are newly reported for northern and north-eastern Poland, while several have been recorded only a handful of times in the global literature. These findings underscore how damp, nutrient-rich conditions foster Eumycetozoa and demonstrate the effectiveness of moist-chamber culturing in revealing rare or overlooked taxa. Current evidence shows that, although slime molds may occasionally colonize living plant or fungal tissues, their influence on crop productivity and tree vitality is negligible; they are therefore better regarded as biodiversity indicators than as pathogens or pests. By establishing a replicable framework for studying water-logged environments worldwide, this work highlights the ecological importance of swamp forests in sustaining microbial and slime mold diversity. Full article
Show Figures

Figure 1

19 pages, 1636 KiB  
Article
Persistence of Phytoplasma and Control Efficacy of Oxytetracycline Tree Injection for Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara Decline Disease
by Geon-Woo Lee, Kyung-Don Kang, Yeong-Don Lee, Sun-Keun Lee and Sang-Sub Han
Forests 2025, 16(8), 1260; https://doi.org/10.3390/f16081260 (registering DOI) - 1 Aug 2025
Abstract
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving [...] Read more.
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving tree vitality. Two formulations—oxytetracycline hydrochloride (4.3%) and oxytetracycline calcium alkyltrimethyl ammonium (17%)—were administered to 40 infected individuals across two sites using a gravity-fed injection system. Treatment efficacy was evaluated based on chlorophyll content as an indicator of physiological recovery, while phytoplasma presence was assessed by PCR at 150 days after injection. The oxytetracycline hydrochloride group showed the highest suppression, with a 70% phytoplasma non-detection rate as determined by PCR analysis. Treated trees exhibited significantly higher chlorophyll content compared to untreated infected controls. These findings suggest that minimally invasive tree injection using oxytetracycline can provide temporary suppression of phytoplasma and support physiological recovery in E. sylvestris. Full article
(This article belongs to the Special Issue Forest Pathogen Detection, Diagnosis and Control)
25 pages, 5776 KiB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 296
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 3952 KiB  
Article
Prediction of the Potentially Suitable Area for Anoplophora glabripennis (Coleoptera: Cerambycidae) in China Based on MaxEnt
by Kaiwen Tan, Mingwang Zhou, Hongjiang Hu, Ning Dong and Cheng Tang
Forests 2025, 16(8), 1239; https://doi.org/10.3390/f16081239 - 28 Jul 2025
Viewed by 161
Abstract
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area [...] Read more.
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area can help control the harm caused by ALB more effectively. In this study, we applied the maximum entropy model to predict the suitable area for ALB. Moreover, the prediction results revealed that ALB is distributed mainly in northern, eastern, central, southern, southwestern, and northwestern China, and its high-fit areas are located mainly in northern, northwestern, and southwestern China. The average minimum temperature in September, precipitation seasonality (coefficient of variation), the average maximum temperature in April, and average precipitation in October had the greatest influence on ALB. The greatest distribution probabilities were observed at the September average minimum temperature of 16 °C, the precipitation seasonality (coefficient of variation) of 130%, the April average maximum temperature of 14 °C, and the October average precipitation of 30 mm. Furthermore, with climate change, the non-suitability area for the ALB will show a decreasing trend in the future. The intermediate suitability area will increase, while the low and high suitability areas will first increase and then decrease. Taken together, the potentially suitable areas for ALB in China include the Beijing–Tianjin–Hebei region and the Shanghai region in North China and East China, providing a deeper understanding of ALB control. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

19 pages, 1766 KiB  
Article
A Simple Model to Predict the Temporal Nitrogen Saturation Point of a Jack Pine (Pinus banksiana L.) Forest
by Andrew M. McDonough and Shaun A. Watmough
Forests 2025, 16(7), 1195; https://doi.org/10.3390/f16071195 - 19 Jul 2025
Viewed by 295
Abstract
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana [...] Read more.
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana Lamb.) forests dominated by cryptogams. For the model, a series of differential equations using empirically derived rate constants (k) were applied to estimate changes in net N pools in biotic and abiotic components across a narrow N deposition gradient (0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1). Critical soil C:N ratios were used as the model limit to signify saturation. We explored the saturation response time by priming the model to mineralize approximately one percent of the soil N pool after the critical C:N ratio was reached. A portion of this pool was made available to jack pine trees. Nitrogen leaching below the rooting zone occurred when the mass of N mineralized from the soil organic- and A horizon layers exceeded the theoretical mass required by jack pine, driving the mineral soil below the critical C:N ratio. The model suggests that N leaching below the rooting zone could happen around 50 (1% LFH N mineralization) years after the onset of deposition at 25 kg N ha−1 yr−1. In contrast, N deposition rates ≤ 20 kg N ha−1 yr−1 are not expected to be associated with N leaching over this timeframe. The modeled results are consistent with empirical surveys of jack pine forests exposed to elevated N deposition for several decades. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 4047 KiB  
Article
A Methodological Approach for the Integrated Assessment of the Condition of Field Protective Forest Belts in Southern Dobrudzha, Bulgaria
by Yonko Dodev, Georgi Georgiev, Margarita Georgieva, Veselin Ivanov and Lyubomira Georgieva
Forests 2025, 16(7), 1184; https://doi.org/10.3390/f16071184 - 18 Jul 2025
Viewed by 167
Abstract
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons [...] Read more.
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons and the advanced age of trees have adversely impacted the health status of planted species and resulted in the decline and dieback of the FPFBs. Physiologically stressed trees have become less able to resist pests, such as insects and diseases. In this work, an original new methodology for the integrated assessment of the condition of FPFBs and their protective capacity is presented. The presented methods include the assessment of structural and functional characteristics, as well as the health status of the dominant tree species. Five indicators were identified that, to the greatest extent, present the ability of forest belts to perform their protective functions. Each indicator was evaluated separately, and then an overlay analysis was applied to generate an integrated assessment of the condition of individual forest belts. Three groups of FPFBs were differentiated according to their condition: in good condition, in moderate condition, and in bad condition. The methodology was successfully tested in Southern Dobrudzha, but it could be applied to other regions in Bulgaria where FPFBs were planted, regardless of their location, composition, origin, and age. This methodological approach could be transferred to other countries after adapting to their geo-ecological and agroforest specifics. The methodological approach is an informative and useful tool to support decision-making about FPFB management, as well as the proactive planning of necessary forestry activities for the reconstruction of degraded belts. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

12 pages, 2137 KiB  
Article
Electrophysiology and Behavior of Tomicus yunnanensis to Pinus yunnanensis Volatile Organic Compounds Across Infestation Stages in Southwest China
by Jinlin Liu, Mengdie Zhang, Lubing Qian, Zhenji Wang and Zongbo Li
Forests 2025, 16(7), 1178; https://doi.org/10.3390/f16071178 - 17 Jul 2025
Viewed by 266
Abstract
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four [...] Read more.
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four infestation stages (healthy, early-infested, weakened, near-dead) using dynamic headspace sampling. Chemical profiling via gas chromatography–mass spectrometry (GC-MS) identified 51 terpenoids, with α-pinene as the most abundant component. VOC profiles differed markedly between healthy and early-infested trees, while gradual shifts in compound diversity and abundance occurred from the weakened to near-dead stages. Bioactive compounds were screened using gas chromatography–electroantennographic detection (GC-EAD) and a Y-tube olfactometer. Electrophysiological responses in T. yunnanensis were triggered by α-pinene, β-pinene, 3-carene, 2-thujene, and 4-allylanisole. Behavioral tests revealed that α-pinene, 3-carene, and 2-thujene acted as attractants, whereas β-pinene and 4-allylanisole functioned as repellents. These results indicate that infestation-induced VOC dynamics guide beetle behavior, with attractants likely promoting host colonization during early infestation and repellents signaling deteriorating host suitability in later stages. By mapping these chemical interactions, our study identifies potential plant-derived semiochemicals for targeted pest management. Integrating these compounds with pheromones could enhance the monitoring and control strategies for T. yunnanensis, offering ecologically sustainable solutions for pine ecosystems. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 3226 KiB  
Article
Nematocidal Activity and Intestinal Receptor-Binding Affinity of Endogenous Lectins in Bursaphelenchus xylophilus (Pinewood Nematode)
by Songqing Wu, Yunzhu Sun, Zibo Li, Xinquan Li, Wei Yu and Yajie Guo
Forests 2025, 16(7), 1177; https://doi.org/10.3390/f16071177 - 16 Jul 2025
Viewed by 288
Abstract
Pine wilt disease, a devastating disease severely impacting pine ecosystems, is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner & Bührer, 1934) Nickle, 1970 (Nematoda: Parasitaphelenchidae). Controlling B. xylophilus is crucial for preventing and managing pine wilt disease. Recently discovered novel nematocidal lectins [...] Read more.
Pine wilt disease, a devastating disease severely impacting pine ecosystems, is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner & Bührer, 1934) Nickle, 1970 (Nematoda: Parasitaphelenchidae). Controlling B. xylophilus is crucial for preventing and managing pine wilt disease. Recently discovered novel nematocidal lectins could provide more advantageous materials for utilizing genetically engineered bacteria to control this pathogen. Therefore, this study focuses on identifying novel nematocidal toxins within B. xylophilus lectins. Overall, we obtained twenty-one galectin, one L-type lectin (LTL), and three chitin-binding domain (CBD) genes by screening the B. xylophilus genome database; these genes were successfully expressed proteins. The bioassay results indicated that Bxgalectin2, Bxgalectin3, Bxgalectin4, Bxgalectin9, and BxLTL1 induced mortality rates exceeding 50% in B. xylophilus. Notably, Bxgalectin4 showed the strongest nematocidal activity, causing 88% mortality in the treated nematode population. The enzyme-linked immunosorbent assays further demonstrated that Bxgalectin3 (Kd = 8.992 nM) and Bxgalectin4 (Kd = 9.634 nM) had a higher binding affinity to GPI-anchored proteins from B. xylophilus. Additionally, Bxgalectin2 (Kd = 16.50 nM), Bxgalectin9 (Kd = 16.48 nM), and BxLTL1 (Kd = 24.34 nM) can bind to the GPI-anchored protein. This study reports, for the first time, that lectins endogenous to B. xylophilus exhibit nematocidal activity against their own species. These findings open up the possibility of using nematode lectins as potent control agents in the biological control of B. xylophilus. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 5309 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Viewed by 409
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

12 pages, 2590 KiB  
Article
Summer Cafe: In Vitro Case Study of Biological Repellents Against the Large Pine Weevil
by Ilze Matisone, Kristaps Ozoliņš, Roberts Matisons, Mārtiņš Spāde, Uldis Grīnfelds and Rinalds Trukšs
Forests 2025, 16(7), 1139; https://doi.org/10.3390/f16071139 - 10 Jul 2025
Viewed by 198
Abstract
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of [...] Read more.
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of a novel biological repellent, consisting of plant-based oils, beeswax, calcium carbonate, vanillin, pine bark extractives, terpentine, abrasive particles, solvent, and a viscosity agent, in comparison with commercially available repellent Norfort LDW 115. The application complexity of the repellents, their persistence on seedlings, and the extent of H. abietis damage were evaluated. The five alternative repellents had higher protection compared to the control repellent, highlighting the potential for new alternative repellents. The base (without additives) repellent provided the highest protection, indicating a redundancy of admixtures. A mixed cumulative link model, employed to estimate differences between the repellents, estimated 85% undamaged and none significantly damaged saplings in the case of the base repellent. However, the consistency and hence persistence of certain repellents on plantlets would benefit from improvements; further field studies are needed to upscale the test of the stability and efficiency of high levels in real environments under different H. abietis population pressures. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 2765 KiB  
Article
Improving Survey Methods for the Spotted Lanternfly (Hemiptera: Fulgoridae): Influence of Collection Device, Tree Host, and Lure on Trap Catch and Detection
by Everett G. Booth, Sarah M. Devine, Emily K. L. Franzen, Kelly M. Murman, Miriam F. Cooperband and Joseph A. Francese
Forests 2025, 16(7), 1128; https://doi.org/10.3390/f16071128 - 9 Jul 2025
Viewed by 314
Abstract
Since its introduction into the USA, the spotted lanternfly (SLF), Lycorma delicatula, (White) (Hemiptera: Fulgoridae) has spread across the landscape relatively unchecked. With a wide host range, it is considered a serious pest of native forest species, as well as agricultural crops. [...] Read more.
Since its introduction into the USA, the spotted lanternfly (SLF), Lycorma delicatula, (White) (Hemiptera: Fulgoridae) has spread across the landscape relatively unchecked. With a wide host range, it is considered a serious pest of native forest species, as well as agricultural crops. Circle traps placed on Ailanthus altissima (Miller) Swingle (Sapindales: Simaroubaceae) are passive traps collecting SLF as they walk up and down the tree trunk. These traps are successful at detecting new populations of SLF, but this can be challenging to implement at a large scale due to costs and host availability. To improve and facilitate SLF trapping practices, we investigated three key trapping components: improved collection containers, placement on alternative hosts, and lure (methyl salicylate) impact. In initial trials comparing collection jars to removable plastic bags, the adult SLF catch was four times higher using the bag design. In a multi-state survey at varying population densities, the bag traps were comparable to the jar traps but were significantly more effective than BugBarrier® tree bands, especially during the adult stage. Catch and detection in circle traps placed on alternative hosts, Acer spp. L. (Sapindales: Sapindalaceae) and Juglans nigra L. (Fagales: Juglandaceae), were comparable to those placed on the preferred host A. altissima, especially in the earlier life stages. Additionally, detection rates of methyl salicylate-baited traps on all three hosts were comparable to those on non-baited traps. These results suggest that circle traps fitted with bags provide higher trap catch and an improvement in sample quality. In addition, circle traps were equally effective when placed on maple and black walnut, while methyl salicylate lures do not enhance trap catch or detection. Full article
(This article belongs to the Special Issue Management of Forest Pests and Diseases—2nd Edition)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
A Bxtlp Gene Affects the Pathogenicity of Bursaphelenchus xylophilus
by Shuisong Liu, Qunqun Guo, Ziyun Huang, Wentao Feng, Yingying Zhang, Wenying Zhao, Ronggui Li and Guicai Du
Forests 2025, 16(7), 1122; https://doi.org/10.3390/f16071122 - 7 Jul 2025
Viewed by 252
Abstract
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense [...] Read more.
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense and a wide range of developmental processes in fungi, plants, and animals. In this study, a tlp gene of B. xylophilus (Bxtlp) (GenBank: OQ863020.1) was amplified via PCR and cloned into the expression vector pET-15b to construct the recombinant vector PET-15b-Bxtlp, which was then transformed into Escherichia coli BL-21(DE3). The recombinant protein was successfully purified using Ni-NTA affinity chromatography. The effect of the Bxtlp gene on the vitality and pathogenicity of PWNs was elucidated through RNA interference (RNAi) and overexpression. Bxtlp dsRNA significantly reduced the feeding, motility, spawning, and reproduction abilities of PWN; shortened its lifespan; and increased the female–male ratio. In contrast, the recombinant BxTLP markedly enhanced the reproductive ability of PWN. In addition, Bxtlp dsRNA increased reactive oxygen species (ROS) content in nematodes, while the recombinant BxTLP was confirmed to have antioxidant capacity in vitro. Furthermore, the bioassays on Pinus thunbergii saplings demonstrated that Bxtlp could significantly influence PWN pathogenicity. Overall, we speculate that Bxtlp affects the pathogenicity of PWNs mainly via regulating ROS levels, the motility, and hatching of PWN. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 344
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

18 pages, 7356 KiB  
Review
Applied Chemical Ecology of Spruce Beetle in Western North America
by Christopher J. Fettig, Jackson P. Audley and Allen Steven Munson
Forests 2025, 16(7), 1103; https://doi.org/10.3390/f16071103 - 3 Jul 2025
Viewed by 277
Abstract
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back [...] Read more.
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back to the mid-20th century and focuses on spruce beetle populations in Alaska, U.S., western Canada, and the central and southern Rocky Mountains, U.S. Spruce beetle aggregation pheromone components include frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), seudenol (3-methyl-2-cyclohexen-1-ol), MCOL (1-methyl-2-cyclohexen-1-ol), and verbenene (4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene). The attraction of spruce beetle to one aggregation pheromone component is enhanced by the co-release of other aggregation pheromones and host compounds (e.g., α-pinene). Several baits that attract spruce beetles are commercially available and are used for survey and detection, population suppression, snag creation, and experimental purposes. The antiaggregation pheromone is MCH (3-methyl-2-cyclohexen-1-one), which has been evaluated for reducing colonization of felled spruce since the 1970s. Beginning in the early 2000s, MCH has been evaluated for protecting live, standing spruce from colonization by and mortality attributed to spruce beetle. With a few exceptions, significant reductions in levels of spruce beetle colonization and/or spruce mortality were reported. More recent efforts have combined MCH with other repellents (e.g., nonhost compounds) in hope of increasing levels of tree protection. Today, several formulations of MCH are registered for tree protection purposes in the U.S. and Canada. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

19 pages, 9587 KiB  
Article
Histological and Histochemical Analysis of Austrocedrus chilensis Trees Healthy and Infected with Phytophthora austrocedri
by Oscar Troncoso and Alina G. Greslebin
Forests 2025, 16(7), 1073; https://doi.org/10.3390/f16071073 - 27 Jun 2025
Viewed by 274
Abstract
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 [...] Read more.
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 years old) and artificially inoculated saplings (8–12 years old) to identify the pathogen’s colonization strategies and the tree’s histological responses. Using light and scanning electronic microscopy along with several histochemical techniques (Lugol, toluidine blue, vanillin-HCl, Phloroglucinol, Calcofluor white, and aniline blue), we found that P. austrocedri can grow in all active tissues, leading to cambium and parenchyma necrosis. The pathogen spreads through sieve cells and tracheids, moving to the adjacent cells via sieve plates and bordered pits and colonizing nearby parenchyma cells. We observed loss of starch in necrotic tissues. In contrast, starch accumulation and an increase in the number of polyphenolic cells occur in the healthy areas adjacent to the margins of the lesion, indicating a tree’s induced defense mechanisms. The tree’s responses include cambium reprogramming, which leads to the formation of traumatic resin ducts, alterations in cell shape and size, and the deposition of phenolic compounds. We analyze the tree responses and discuss their potential relationship with a methyl jasmonate-induced defense and a hypersensitive-like response. Full article
(This article belongs to the Section Forest Health)
Show Figures

Graphical abstract

Back to TopTop