Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Journal = DDC
Section = Marketed Drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1518 KiB  
Article
Simulation of Plasma Level Changes in Cerivastatin and Its Metabolites, Particularly Cerivastatin Lactone, Induced by Coadministration with CYP2C8 Inhibitor Gemfibrozil, CYP3A4 Inhibitor Itraconazole, or Both, Using the Metabolite-Linked Model
by Katsumi Iga
Drugs Drug Candidates 2025, 4(3), 34; https://doi.org/10.3390/ddc4030034 - 4 Jul 2025
Viewed by 333
Abstract
Background/Objective: Cerivastatin (Cer), a cholesterol-lowering statin, was withdrawn from the market due to fatal cases of rhabdomyolysis, particularly when co-administered with gemfibrozil (Gem), a strong CYP2C8 inhibitor. However, the pharmacokinetic (PK) mechanisms underlying these adverse events remain unclear. This study investigates the impact [...] Read more.
Background/Objective: Cerivastatin (Cer), a cholesterol-lowering statin, was withdrawn from the market due to fatal cases of rhabdomyolysis, particularly when co-administered with gemfibrozil (Gem), a strong CYP2C8 inhibitor. However, the pharmacokinetic (PK) mechanisms underlying these adverse events remain unclear. This study investigates the impact of drug–drug interactions (DDIs) involving Gem and itraconazole (Itr), a potent CYP3A4 inhibitor, on plasma concentrations of Cer and its major metabolites—M23, M1, and cerivastatin lactone (Cer-L)—with a focus on the risk of excessive Cer-L accumulation. Methods: We applied a newly developed Metabolite-Linked Model that simultaneously characterizes parent drug and metabolite kinetics by estimating metabolite formation fractions (fM) and elimination rate constants (KeM). The model was calibrated using observed DDI data from Cer + Gem and Cer + Itr scenarios and then used to predict outcomes in an untested Cer + Gem + Itr combination. Results: The model accurately reproduced observed metabolite profiles in single-inhibitor DDIs. Predicted AUCR values for Cer-L were 4.2 (Cer + Gem) and 2.1 (Cer + Itr), with reduced KeM indicating CYP2C8 and CYP3A4 as primary elimination pathways. In the dual-inhibitor scenario, Cer-L AUCR reached ~70—far exceeding that of the parent drug—suggesting severe clearance impairment and toxic accumulation. Conclusions: Dual inhibition of CYP2C8 and CYP3A4 may cause dangerously elevated Cer-L levels, contributing to Cer-associated rhabdomyolysis. This modeling approach offers a powerful framework for evaluating DDI risks involving active or toxic metabolites, supporting safer drug development and regulatory assessment. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Graphical abstract

9 pages, 869 KiB  
Review
Suzetrigine: A Novel Non-Opioid Analgesic for Acute Pain Management—A Review
by Meaghan Jones, Aryanna Demery and Rami A. Al-Horani
Drugs Drug Candidates 2025, 4(3), 32; https://doi.org/10.3390/ddc4030032 - 4 Jul 2025
Viewed by 579
Abstract
Suzetrigine represents a groundbreaking advancement in acute pain management as the first FDA-approved selective Nav1.8 inhibitor. This comprehensive review synthesizes data from clinical trials, pharmacological studies, and prescribing information to evaluate its mechanism, efficacy, safety, and clinical implications. With demonstrated superiority [...] Read more.
Suzetrigine represents a groundbreaking advancement in acute pain management as the first FDA-approved selective Nav1.8 inhibitor. This comprehensive review synthesizes data from clinical trials, pharmacological studies, and prescribing information to evaluate its mechanism, efficacy, safety, and clinical implications. With demonstrated superiority over placebo in pivotal trials (SPID48: 29.3–48.4; p < 0.0001) and a favorable safety profile devoid of opioid-like addiction risks, suzetrigine offers a much-needed alternative in the opioid crisis era. However, its modest effect size compared to full-dose opioids, CYP3A-mediated drug interactions, and limited long-term data warrant judicious use. This article provides a balanced perspective on suzetrigine’s role in modern pain management protocols. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

16 pages, 596 KiB  
Review
Targeted but Troubling: CYP450 Inhibition by Kinase and PARP Inhibitors and Its Clinical Implications
by Martin Kondža, Josipa Bukić, Ivan Ćavar and Biljana Tubić
Drugs Drug Candidates 2025, 4(2), 24; https://doi.org/10.3390/ddc4020024 - 26 May 2025
Viewed by 1107
Abstract
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review [...] Read more.
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review aims to provide a comprehensive and critical overview of CYP450 enzyme inhibition, focusing specifically on the impact of kinase inhibitors (KIs) and poly adenosine diphosphate-ribose polymerase (PARP) inhibitors. A systematic review of the current literature was conducted, focusing on the molecular mechanisms of CYP450 inhibition, including reversible, time-dependent, mechanism-based, and pseudo-irreversible inhibition. Specific attention was given to the inhibitory profiles of clinically relevant KIs and PARP inhibitors, with analysis of pharmacokinetic consequences and regulatory considerations. Many KIs, such as abemaciclib and ibrutinib, demonstrate time-dependent or quasi-irreversible inhibition of CYP3A4, while PARP inhibitors like olaparib and rucaparib exhibit moderate reversible and time-dependent CYP3A4 inhibition. These inhibitory activities can significantly alter the pharmacokinetics of co-administered drugs, leading to increased risk of toxicity or therapeutic failure. Regulatory guidelines now recommend early identification of time-dependent and mechanism-based inhibition using physiologically based pharmacokinetic) (PBPK) modeling. CYP450 inhibition by KIs and PARP inhibitors represents a critical but often underappreciated challenge in oncology pharmacotherapy. Understanding the mechanistic basis of these interactions is essential for optimizing treatment regimens, improving patient safety, and supporting personalized oncology care. Greater clinical vigilance and the integration of predictive modeling tools are necessary to mitigate the risks associated with CYP-mediated DDIs. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

16 pages, 10821 KiB  
Article
Synergistic Solutions: Exploring Clotrimazole’s Potential in Prostate and Bladder Cancer Cell Lines
by Mariana Pereira and Nuno Vale
Drugs Drug Candidates 2024, 3(3), 455-470; https://doi.org/10.3390/ddc3030027 - 28 Jun 2024
Viewed by 1795
Abstract
Clotrimazole (CLZ), traditionally an antifungal agent, unveils promising avenues in cancer therapy, particularly in addressing bladder and prostate cancers. In vitro assessments underscore its remarkable efficacy as a standalone treatment, significantly diminishing cancer cell viability. Mechanistically, CLZ operates through multifaceted pathways, including the [...] Read more.
Clotrimazole (CLZ), traditionally an antifungal agent, unveils promising avenues in cancer therapy, particularly in addressing bladder and prostate cancers. In vitro assessments underscore its remarkable efficacy as a standalone treatment, significantly diminishing cancer cell viability. Mechanistically, CLZ operates through multifaceted pathways, including the inhibition of Ca2+-dependent K+ channels, suppression of glycolysis-related enzymes, and modulation of the ERK-p65 signaling cascade, thus underscoring its potential as a versatile therapeutic agent. Our investigation sheds light on intriguing observations regarding the resilience of UM-UC-5 bladder cancer cells against high doses of paclitaxel (PTX), potentially attributed to heightened levels of the apoptosis-regulating protein Mcl-1. However, synergistic studies demonstrate that the combination of Doxorubicin (DOXO) and CLZ emerges as particularly potent, especially in prostate cancer contexts. This effectiveness could be associated with the inhibition of drug efflux mediated by multidrug resistance-associated protein 1 (MRP1), underscoring the importance of exploring combination therapies in cancer treatment paradigms. In essence, our findings shed light on the anticancer potential of CLZ, emphasizing the significance of tailored approaches considering specific cancer types and molecular pathways in drug repurposing endeavors. While further validation and clinical exploration are warranted, the insights gleaned from this study offer promising prospects for enhancing cancer therapy efficacy. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

17 pages, 2357 KiB  
Review
Zilucoplan: A Newly Approved Macrocyclic Peptide for Treatment of Anti-Acetylcholine Receptor Positive Myasthenia Gravis
by Lia Costa and Carla Fernandes
Drugs Drug Candidates 2024, 3(2), 311-327; https://doi.org/10.3390/ddc3020018 - 27 Mar 2024
Cited by 2 | Viewed by 6601
Abstract
Zilucoplan is a synthetic macrocyclic peptide approved by the Food and Drug Administration (FDA), in October 2023, for the treatment of generalized myasthenia gravis. It is considered as an orphan drug that causes the inhibition of terminal complement cascade activation with a dual [...] Read more.
Zilucoplan is a synthetic macrocyclic peptide approved by the Food and Drug Administration (FDA), in October 2023, for the treatment of generalized myasthenia gravis. It is considered as an orphan drug that causes the inhibition of terminal complement cascade activation with a dual mechanism of action preventing the formation of the membrane attack complex (MAC) and the destruction of the neuromuscular junction. This drug has been demonstrated to be able to treat the generalized myasthenia gravis without significant adverse effects, with good efficacy, safety, and tolerability profile. Zilucoplan is not only innovative and promising in the therapeutics of generalized myasthenia gravis, but it could also be beneficial for the treatment of other diseases as well as a model for synthesis of analogues to improve pharmacological profile. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

24 pages, 1378 KiB  
Review
Nose-to Brain Delivery of Resveratrol, a Non-Invasive Method for the Treatment of Cerebral Ischemia
by Iván Alquisiras-Burgos, Irma Gabriela González-Herrera, Sergio Alcalá-Alcalá and Penélope Aguilera
Drugs Drug Candidates 2024, 3(1), 102-125; https://doi.org/10.3390/ddc3010007 - 26 Jan 2024
Cited by 4 | Viewed by 4115
Abstract
Cerebral ischemia represents a particular condition among neurological diseases due to its high frequency, high associated mortality, and the permanent disability in patients that survive it. Numerous studies in animal models have demonstrated the protective properties of resveratrol against cerebral ischemia. Resveratrol is [...] Read more.
Cerebral ischemia represents a particular condition among neurological diseases due to its high frequency, high associated mortality, and the permanent disability in patients that survive it. Numerous studies in animal models have demonstrated the protective properties of resveratrol against cerebral ischemia. Resveratrol is a soluble molecule in polar solvents with high membrane permeability; however, it is rapidly metabolized at the liver and is also a substrate of the ATP binding cassette transporters located at the blood–brain barrier. These circumstances reduced bioavailability of resveratrol to the brain. In this review, we examined nasal resveratrol’s formulations including nanocarriers such as nanostructured lipid carriers, nanoemulsions, nanoparticles, bilosomes, cubosomal, and transferosomes that are directly transported to the brain. An intranasal administration route evades resveratrol transformation due to liver metabolism. Components of nanoformulations increased resveratrol absorption to the brain by enhancing permeation through specific approaches and also maintaining stability during storage. Both characteristics improved the delivery of resveratrol with conserved antioxidant capacity and protective properties for neurological models. Although demonstration that the nanoformulations prevents resveratrol’s blood–brain barrier retention is missing, properties of resveratrol’s nanoformulation encourage testing in clinical trials; however, regulatory approval for a novel nanocarrier in nasal drug delivery is complicated and needs approval. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

18 pages, 5219 KiB  
Review
Repositioning Oxybutynin Hydrochloride: State of the Art in Synthesis, Mode of Action, Metabolism, and Formulations
by Jean Jacques Vanden Eynde
Drugs Drug Candidates 2023, 2(4), 865-882; https://doi.org/10.3390/ddc2040043 - 24 Oct 2023
Viewed by 3791
Abstract
For decades, oxybutynin hydrochloride has been prescribed to improve bladder control in cases of incontinence and excessive urination frequency. This review summarizes synthetic methods enabling the preparation of the racemic drug and, in a detailed manner, preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid, a [...] Read more.
For decades, oxybutynin hydrochloride has been prescribed to improve bladder control in cases of incontinence and excessive urination frequency. This review summarizes synthetic methods enabling the preparation of the racemic drug and, in a detailed manner, preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid, a key intermediate in the synthesis of (S)-oxybutynin. The mode of action and metabolism are briefly addressed in order to explain the main adverse effects associated with its use and to justify the evolution observed in the diverse commercial formulations. Repositioning opportunities are discussed in terms of clinical trials for the management of hyperhidrosis, hot flashes, and obstructive sleep apnea. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

19 pages, 2947 KiB  
Review
Requiem for Rimonabant: Therapeutic Potential for Cannabinoid CB1 Receptor Antagonists after the Fall
by Taryn Bosquez-Berger, Gergő Szanda and Alex Straiker
Drugs Drug Candidates 2023, 2(3), 689-707; https://doi.org/10.3390/ddc2030035 - 30 Aug 2023
Cited by 10 | Viewed by 7828
Abstract
The endocannabinoid system is found throughout the CNS and the body where it impacts many important physiological processes. Expectations were high that targeting cannabinoid receptors would prove therapeutically beneficial; pharmaceutical companies quickly seized on the appetitive and metabolic effects of cannabinoids to develop [...] Read more.
The endocannabinoid system is found throughout the CNS and the body where it impacts many important physiological processes. Expectations were high that targeting cannabinoid receptors would prove therapeutically beneficial; pharmaceutical companies quickly seized on the appetitive and metabolic effects of cannabinoids to develop a drug for the treatment of weight loss. Alas, the experience with first-in-class cannabinoid type-1 receptor (CB1R) antagonist rimonabant is a now-classic cautionary tale of the perils of drug development and the outcome of rimonabant’s fall from grace dealt a blow to those pursuing therapies involving CB1R antagonists. And this most commercially compelling application of rimonabant has now been partially eclipsed by drugs with different mechanisms of action and greater effect. Still, blocking CB1 receptors causes intriguing metabolic effects, some of which appear to occur outside the CNS. Moreover, recent years have seen a startling change in the legal status of cannabis, accompanied by a popular embrace of ‘all things cannabis’. These changes combined with new pharmacological strategies and diligent medicinal chemistry may yet see the field to some measure of fulfillment of its early promise. Here, we review the story of rimonabant and some of the therapeutic niches and strategies that still hold promise after the fall. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

18 pages, 1941 KiB  
Review
Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors
by Kajetan Karaszewski and Wiesław Wiktor Jędrzejczak
Drugs Drug Candidates 2023, 2(2), 459-476; https://doi.org/10.3390/ddc2020023 - 31 May 2023
Cited by 4 | Viewed by 3775
Abstract
Exportin 1 (XPO1) is a crucial molecule of nucleocytoplasmic transport. Among others, it exports molecules important for oncogenesis from the nucleus to the cytoplasm. The expression of XPO1 is increased in numerous malignancies, which contributes to the abnormal localization of tumor suppressor proteins [...] Read more.
Exportin 1 (XPO1) is a crucial molecule of nucleocytoplasmic transport. Among others, it exports molecules important for oncogenesis from the nucleus to the cytoplasm. The expression of XPO1 is increased in numerous malignancies, which contributes to the abnormal localization of tumor suppressor proteins in the cytoplasm and subsequent cell cycle dysregulation. Selective inhibitors of nuclear export (SINEs) are novel anticancer agents that target XPO1, arrest tumor suppressor proteins in the nucleus, and induce apoptosis in cancer cells. Selinexor, a first-in-class SINE, has already been approved for the treatment of relapsed/refractory multiple myeloma and relapsed/refractory diffuse large B cell lymphoma not otherwise specified. It has also been proven effective in relapsed/refractory and previously untreated acute myeloid leukemia patients. In addition, numerous studies have yielded promising results in other malignancies of the hematopoietic system and solid tumors. However, future clinical use of selinexor and other SINEs may be hampered by their significant toxicity. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

22 pages, 1127 KiB  
Systematic Review
A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment
by Ruchi Jakhmola Mani, Mridul Anand, Kritie Agarwal, Avi Tiwari, Qazi Amanur Rahman Hashmi, Tumul Vikram Singh, Potshangbam Nongdam, Deepshikha Pande Katare and Angamba Meetei Potshangabam
Drugs Drug Candidates 2023, 2(2), 210-231; https://doi.org/10.3390/ddc2020013 - 3 Apr 2023
Viewed by 4046
Abstract
Liver cancer is a high mortality cancer, and its increasing prevalence is a concern worldwide. Current treatment modalities for liver cancer include chemotherapy and immunotherapy. These therapies provide symptomatic relief and help prolong the lives of patients but are not an absolute cure. [...] Read more.
Liver cancer is a high mortality cancer, and its increasing prevalence is a concern worldwide. Current treatment modalities for liver cancer include chemotherapy and immunotherapy. These therapies provide symptomatic relief and help prolong the lives of patients but are not an absolute cure. In this paper we have explored an alternative approach, drug repurposing, to identify drugs for treating liver cancer. Databases like PubMed, ScienceDirect, and JSTOR were used for literature mining, and the PRISMA 2020 systemic review guidelines were followed to identify drugs that have been trialed for repurposing in liver cancer. The protein receptors and target protein classes of all the drugs were identified using the Swiss Target Prediction tool. Further, the biological interactions and pathways followed by the drugs were studied via protein interaction networks using Cytoscape. Molecular pathways such as Bile acid receptor activity, Inosine-5′-monophosphate (IMP) dehydrogenase activity, JUN kinase activity, Nitric-oxide synthase activity, and Mitogen-activated protein (MAP) kinase activity were observed to be influenced by these drugs. The fact that the genes targeted by these repurposed drugs are common with the differentially expressed genes in liver cancer is an excellent starting point to verify the current hypothesis. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

16 pages, 551 KiB  
Review
Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery
by Ben A. Wilson and Jaideep J. Pandit
Drugs Drug Candidates 2023, 2(1), 121-136; https://doi.org/10.3390/ddc2010008 - 7 Mar 2023
Cited by 1 | Viewed by 2955
Abstract
Recurrence of cancer after primary tumour resection is a leading cause of cancer-related mortality. Preclinical research indicates that surgery induces a stress response that inhibits cell-mediated immunity as a possible basis for risk of recurrence. Other preclinical evidence suggests that, conversely, propofol and [...] Read more.
Recurrence of cancer after primary tumour resection is a leading cause of cancer-related mortality. Preclinical research indicates that surgery induces a stress response that inhibits cell-mediated immunity as a possible basis for risk of recurrence. Other preclinical evidence suggests that, conversely, propofol and local anaesthetics diminish the effects of the surgical stress response and so could directly inhibit cancer progression, and this is supported by several retrospective cohort studies and meta-analyses. However, the first large-scale randomised clinical trial (RCT), comparing recurrence after mastectomy in patients anaesthetised with either propofol/local anaesthetic or sevoflurane/opioids, concluded that recurrence was not significantly improved in the propofol/local anaesthetic group (p = 0.84). Other cancers may prove more responsive and results from a number of ongoing RCTs, encompassing several cancer types, are currently awaited. These trials should establish whether choice of anaesthetic technique is an important determinant of cancer recurrence risk. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

26 pages, 4172 KiB  
Review
Testolactone: The Rise and Fall of a Drug
by Marina P. Savic, Ivana Z. Kuzminac and Andrea R. Nikolic
Drugs Drug Candidates 2023, 2(1), 69-94; https://doi.org/10.3390/ddc2010005 - 4 Feb 2023
Cited by 8 | Viewed by 6298
Abstract
Testolactone is structurally related to testosterone and belongs to the first generation of aromatase inhibitors. It is a non-selective irreversible aromatase enzyme inhibitor that was one of the first steroids used in the clinical treatment of breast cancer. The use of testolactone in [...] Read more.
Testolactone is structurally related to testosterone and belongs to the first generation of aromatase inhibitors. It is a non-selective irreversible aromatase enzyme inhibitor that was one of the first steroids used in the clinical treatment of breast cancer. The use of testolactone in the treatment of breast cancer started in 1970, although its ability to inhibit aromatase was not discovered until 1975. Its use was primarily based on the inhibition of estrogen synthesis, which was applied in the treatment of estrogen-dependent breast cancers, in the treatment of disorders of sex steroid excess, familial male-limited precocious puberty, or in the treatment of patients with McCune–Albright syndrome, etc. The weak inhibitory activity of testolactone, and the moderate clinical response, prevented its widespread use, which ultimately resulted in withdrawal from the drug market in 2008. This review paper is dedicated to testolactone, its rise in the second half of the 20th century, and its fall in the first decade of the 21st century. Regardless of withdrawal from the market, for many years testolactone was a drug that improved the quality of life of patients facing one of the most serious diseases today, and for this reason, this paper describes medicinal application, synthesis, and modifications of testolactone. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Graphical abstract

Back to TopTop