Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery
Abstract
:1. Introduction
2. Primary Tumour Resection and the Risk of Metastasis
3. The Perioperative Period and the Immune System
4. General Anaesthesia: A Janus Effect?
4.1. Evidence of Anaesthesia Promoting Cancer Recurrence
4.2. Evidence of Anaesthesia Inhibiting Cancer Recurrence
4.3. The Janus Effect: Analgesics
5. Evidence from Clinical Research
5.1. Propofol
5.2. Local Anaesthetics
6. Conclusions: Drug Development
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sessler, D.I.; Pei, L.; Huang, Y.; Fleischmann, E.; Marhofer, P.; Kurz, A.; Mayers, D.B.; Meyer-Treschan, T.A.; Grady, M.; Tan, E.Y.; et al. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial. Lancet 2019, 394, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.R. Effects of regional analgesia on stress responses to pediatric surgery. Pediatr. Anesth. 2012, 22, 19–24. [Google Scholar] [CrossRef]
- Angele, M.K.; Faist, E. Clinical review: Immunodepression in the surgical patient and increased susceptibility to infection. Crit. Care 2002, 6, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Heaney, Á.; Buggy, D.J. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br. J. Anaesth. 2012, 109 (Suppl. 1), i17–i28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, G.G. Surgery-induced immunosuppression and postoperative pain management. AACN Clin. Issues 2005, 16, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Coffey, J.C.; Wang, J.H.; Smith, M.J.F.; Bouchier-Hayes, D.; Cotter, T.G.; Redmond, H.P. Excisional surgery for cancer cure: Therapy at a cost. Lancet Oncol. 2003, 4, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Eschwège, P.; Dumas, F.; Blanchet, P.; Le Maire, V.; Benoit, G.; Jardin, A.; Lacour, B.; Loric, S. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet 1995, 346, 1528–1530. [Google Scholar] [CrossRef]
- O’Riain, S.C.; Buggy, D.J.; Kerin, M.J.; Watson, R.W.G.; Moriarty, D.C. Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2. Anesth. Analg. 2005, 100, 244–249. [Google Scholar] [CrossRef]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Beitsch, P.D.; Leitch, M.; Hoover, S.; Euhus, D.; et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, J.M.; McIver, C.M.; Stephenson, S.A.; Hewett, P.J.; Rieger, N.; Hardingham, J.E. Identification of early-stage colorectal cancer patients at risk of relapse post-resection by immunobead reverse transcription-PCR analysis of peritoneal lavage fluid for malignant cells. Clin. Cancer Res. 2006, 12, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Takagi, Y.; Aoki, S.; Futamura, M.; Saji, S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann. Surg. 2000, 232, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Tavare, A.N.; Perry, N.J.S.; Benzonana, L.L.; Takata, M.; Ma, D. Cancer recurrence after surgery: Direct and indirect effects of anesthetic agents. Int. J. Cancer 2012, 130, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Slingo, M.E.; Pandit, J.J. Oxygen sensing, anaesthesia and critical care: A narrative review. Anaesthesia 2022, 77, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Xia, W.H.; Zheng, M.Q.; Lu, C.Q.; Han, X.; Sun, Y.J. Surgical excision promotes tumor growth and metastasis by promoting expression of MMP-9 and VEGF in a breast cancer mode. Exp. Oncol. 2008, 30, 60–64. [Google Scholar]
- Li, H.; Zhao, B.; Liu, Y.; Deng, W.; Zhang, Y. Angiogenesis in residual cancer and roles o HIF-1α, VEGF and MMP-9 in the development of residual cancer after radiofrequency ablation and surgical resection in rabbits with liver cancer. Folia Morphol. 2020, 79, 71–78. [Google Scholar]
- Demicheli, R.; Miceli, R.; Moliterni, A.; Zambetti, M.; Hrushesky, W.J.; Retsky, M.W.; Valagussa, P.; Bonadonna, G. Breast cancer recurrence dynamics following adjuvant CMF is consistent with tumor dormancy and mastectomy-driven acceleration of the metastatic process. Ann. Oncol. 2005, 16, 1449–1457. [Google Scholar] [CrossRef]
- Wang, H.L.; Ning, T.; Li, M.; Lu, Z.J.; Yan, X.; Peng, Q.; Lei, N.; Zhang, H.; Luo, F. Effect of endostatin on preventing postoperative progression of distant metastasis in a murine lung cancer model. Tumari 2011, 97, 787–793. [Google Scholar] [CrossRef]
- Demicheli, R.; Retsky, M.W.; Hrushesky, W.J.M.; Baum, M.; Gukas, I.D. The effects of surgery on tumor growth: A century of investigations. Ann. Oncol. 2008, 19, 1821–1828. [Google Scholar] [CrossRef]
- Wu, F.P.K.; Westphal, J.R.; Hoekman, K.; Mels, A.K.; Statius Muller, M.G.; de Waal, R.W.; Beelen, R.H.; van Leeuwen, P.A.; Meijer, S.; Cuesta, M.A. The effects of surgery, with or without rhGM-CSF, on the angiogenic profile of patients treated for colorectal carcinoma. Cytokine 2004, 25, 68–72. [Google Scholar] [CrossRef]
- Peeters, C.F.J.M.; de Geus, L.F.; Westphal, J.R.; de Waal, R.M.; Ruiter, D.J.; Wobbes, T.; Oyen, W.J.; Ruers, T.J. Decrease in circulating anti-angiogenic factors (angiostatin and endostatin) after surgical removal of primary colorectal carcinoma coincides with increased metabolic activity of liver metastases. Surgery 2005, 137, 246–249. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Shakhar, G.; Ben-Eliyahu, S. Potential prophylactic measures against postoperative immunosuppression: Could they reduce recurrence rates in oncological patients? Ann. Surg. Oncol. 2003, 10, 972–992. [Google Scholar] [CrossRef] [PubMed]
- Ben-Eliyahu, S.; Page, G.G.; Yirmiya, R.; Shakhar, G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 1999, 80, 880–888. [Google Scholar] [CrossRef]
- Snyder, G.L.; Greenberg, S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br. J. Anaesth. 2010, 105, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrick-Martin, I.; Kell, M.R.; Buggy, D.J. Meta-analysis of the effect of central neuraxial regional anesthesia compared with general anesthesia on postoperative natural killer T lymphocyte function. J. Clin. Anesth. 2012, 24, 3–7. [Google Scholar] [CrossRef]
- Brittenden, J.; Heys, S.D.; Ross, J.; Eremein, O. Natural killer cells and cancer. Cancer 1996, 77, 1226–1243. [Google Scholar] [CrossRef]
- Melamed, R.; Rosenne, E.; Shakhar, K.; Schwartz, Y.; Abudarham, N.; Ben-Eliyahu, S. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: Suppression by surgery and the prophylactic use of a β-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav. Immun. 2005, 19, 114–126. [Google Scholar] [CrossRef]
- Vojvodic, A.; Vojvodic, P.; Vlaskovic-Jovicevic, T.; Sijan, G.; Dimitrijevic, S.; Peric-Hajzler, Z.; Matovic, D.; Wollina, U.; Tirant, M.; Thuong, N.V.; et al. Beta blockers and melenoma. J. Med. Sci. 2019, 7, 3110–3112. [Google Scholar]
- Xu, P.; Zhang, P.; Sun, Z.; Wang, Y.; Chen, J.; Miao, C. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway. Cancer Immunol. Immunother. 2015, 64, 1383–1392. [Google Scholar] [CrossRef]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.N.; Knight, P.R.; Murasko, D.M. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology 1993, 78, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhao, H.; Hennah, L.; Ning, J.; Liu, J.; Tu, H.; Ma, D. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br. J. Anaesth. 2015, 114, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Manicom, A.; Pandit, J.J. A narrative review of the role of anaesthesia and peri-operative medicine in improving outcomes after surgery for advanced ovarian cancer. Gynecol. Pelvic Med. 2022, 5, 21–28. [Google Scholar] [CrossRef]
- Ferrell, J.K.; Cattano, D.; Brown, R.E.; Patel, C.B.; Karni, R.J. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: A pilot study. Transl. Res. 2015, 166, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, G.C.; Gordon, J.; Forrest, J.B. Comparative effects of volatile anaesthetic agents and nitrous oxide on human leucocyte chemotaxis in vitro. Can. Anaesth. Soc. J. 1984, 31, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.; Jersky, J.; Katzav, S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J. Clin. Investig. 1981, 68, 678–685. [Google Scholar] [CrossRef]
- Loop, T.; Liu, Z.; Humar, M.; Benzing, A.; Pahl, H.L.; Geiger, K.K.; Pannen, B.H.J. Thiopental inhibits the activation of nuclear factor kappa B. Anesthesiology 2002, 96, 1202–1213. [Google Scholar] [CrossRef]
- Braun, S.; Gaza, N.; Werdehausen, R.; Hermanns, H.; Bauer, I.; Durieux, M.E.; Hollmann, M.W.; Stevens, M.F. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br. J. Anaesth. 2010, 105, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Roesslein, M.; Schibilsky, D.; Muller, L.; Goebel, U.; Schwer, C.; Humar, M.; Schmidt, R.; Geiger, K.K.; Pahl, H.L.; Pannen, B.H.; et al. Thiopental protects human T lymphocytes from apoptosis in vitro via the expression of heat shock protein 70. J. Pharmacol. Exp. Ther. 2008, 325, 217–225. [Google Scholar] [CrossRef]
- Cassinello, F.; Prieto, I.; del Olmo, M.; Rivas, S.; Strichartz, G.R. Cancer surgery: How may anesthesia influence outcome? J. Clin. Anesth. 2015, 27, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Kushida, A.; Inada, T.; Shingu, K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol. Immunotoxicol. 2007, 29, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.J.; Zhan, J.; Feng, X.B.; Wu, Y.; Rao, Y.; Wang, Y.L. A comparison of the effect of total intravenous anaesthesia with propofol and remifentanil and inhalational anaesthesia with isoflurane on the release of pro- and anti-inflammatory cytokines in patients undergoing open cholecystectomy. Anaesth. Intensive Care 2008, 36, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: Mediating mechanisms and prophylactic measures. Anesth. Analg. 2003, 97, 1331–1339. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Zhang, J.L.; Li, Z.W.; Hu, Z.H.; Liu, Z.; Li, Y. Propofol inhibits proliferation, migration, invasion and promotes apoptosis through down-regulating miR-374a in hepatocarcinoma cell Lines. Cell. Physiol. Biochem. 2018, 49, 2099–2110. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Zhu, Z.; Zheng, Y.; Song, B. Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int. J. Biol. Macromol. 2018, 120, 975–984. [Google Scholar] [CrossRef]
- Liu, W.Z.; Liu, N. Propofol inhibits lung cancer a549 cell growth and epithelial-mesenchymal transition process by upregulation of microrna-1284. Oncol. Res. 2018, 27, 1–8. [Google Scholar] [CrossRef]
- Hsu, S.-S.; Jan, C.-R.; Liang, W.-Z. Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes. Environ. Toxicol. 2017, 32, 2440–2454. [Google Scholar] [CrossRef]
- Xu, Y.-B.; Du, Q.H.; Zhang, M.Y.; Yun, P.; He, C.Y. Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2486–2494. [Google Scholar]
- Looney, M.; Doran, P.; Buggy, D.J. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor β in women undergoing anesthesia and surgery for breast cancer. Anesthesiology 2010, 113, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Vazquez, P.; Lindner, C.; Melia, U.; Pandit, J.J.; Martinez-Vazquez, P. Be Aware, Unaware and Confusion Everywhere: TIVA and Awareness. In Taking on TIVA.; Irwin, M.G., Wong, G.T.C., Lam, S.K., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 63–72. [Google Scholar]
- Beilin, B.; Martin, F.C.; Shavit, Y.; Gale, R.P.; Liebeskind, J.C. Suppression of natural killer cell activity by high-dose narcotic anesthesia in rats. Brain Behav. Immun. 1989, 3, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Kumar, S.; Khanna, S.; Mehta, Y. Are we causing the recurrence-impact of perioperative period on long-term cancer prognosis: Review of current evidence and practice. J. Anaesthesiol. Clin. Pharmacol. 2014, 30, 153. [Google Scholar] [CrossRef]
- Gupta, K.; Kshirsagar, S.; Chang, L.; Schwartz, R.; Law, P.Y.; Yee, D.; Hebbel, R.P. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002, 62, 4491–4498. [Google Scholar] [PubMed]
- Shavit, Y.; Ben-Eliyahu, S.; Zeidel, A.; Beilin, B. Effects of fentanyl on natural killer cell activity and on resistance to tumor metastasis in rats. Neuroimmunomodulation 2004, 11, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, R.; Moser, D.; Salfinger, H.; Frass, M.; Kapiotis, S. Sufentanil inhibits migration of human leukocytes through human endothelial cell monolayers. Anesth. Analg. 1998, 87, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Gaspani, L.; Rossoni, G.; Panerai, A.E.; Bianchi, M. Effect of the opioid remifentanil on cellular immune response in the rat. Int. Immunopharmacol. 2001, 1, 713–719. [Google Scholar] [CrossRef]
- Singleton, P.A.; Mirzapoiazova, T.; Hasina, R.; Salgia, R.; Moss, J. Increased μ-opioid receptor expression in metastatic lung cancer. Br. J. Anaesth. 2014, 113 (Suppl. S1), i103–i108. [Google Scholar] [CrossRef] [Green Version]
- Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; LaRiviere, P.J.; Chen, C.T.; Garcia, J.G.; et al. The novel role of the mu opioid receptor in lung cancer progression: A laboratory investigation. Anesth. Analg. 2011, 112, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Poroyko, V.A.; Salgia, R.; Moss, J.; Singleton, P.A. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS ONE 2014, 9, e91577. [Google Scholar] [CrossRef]
- Page, G.G.; Ben-Eliyahu, S.; Yirmiya, R.; Liebeskind, J.C. Morphine attenuates surgery-induced enhancement of metastatic colonization in rats. Pain 1993, 54, 21–28. [Google Scholar] [CrossRef]
- Page, G.G.; Mcdonald, J.S.; Ben-Eliyahu, S. Pre-operative versus postoperative administration of morphine: Impact on the neuroendocrine, behavioural, and metastatic-enhancing effects of surgery. Br. J. Anaesth. 1998, 81, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, H.P.; Cloote, A.; Weir, P.M.; Jenkins, I.; Murphy, P.J.; Pawade, A.K.; Rogers, C.A.; Wolf, A.R. Reducing stress responses in the pre-bypass phase of open heart surgery in infants and young children: A comparison of different fentanyl doses. Br. J. Anaesth. 2000, 84, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Wojtowicz-Praga, S. Reversal of tumor-induced immunosuppression by TGF-β inhibitors. Investig. New Drugs 2003, 21, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J.; DuBois, R.N. COX-2: A target for colon cancer prevention. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2, transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med. 2002, 8, 289–293. [Google Scholar] [CrossRef]
- Chang, S.H.; Liu, C.H.; Conway, R.; Han, D.K.; Nithipatikom, K.; Trifan, O.C.; Lane, T.F.; Hla, T. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc. Natl. Acad. Sci. USA 2004, 101, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Iñiguez, M.A.; Rodríguez, A.; Volpert, O.; Fresno, M.; Redondo, J.M. Cyclooxygenase-2: A therapeutic target in angiogenesis. Trends Mol. Med. 2003, 9, 73–78. [Google Scholar] [CrossRef]
- Glasner, A.; Avraham, R.; Rosenne, E.; Benish, M.; Zmora, O.; Shemer, S.; Meiboom, H.; Ben-Eliyahu, S. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol. 2010, 184, 2449–2457. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, M.; Li, Y.; Rogers, T.; Griffin, R.J.; Song, C.W.; Gupta, K. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br. J. Cancer 2007, 97, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Xu, Z.; Li, H. NSAIDs use and reduced metastasis in cancer patients: Results from a meta-analysis. Sci. Rep. 2017, 7, 1875. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Zhu, S.; Li, X.W.; Wang, F.; Hu, F.L.; Li, D.D.; Zhang, W.C.; Li, X. Association between NSAIDs use and breast cancer risk: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2009, 117, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.; Hankin, J.; Zhao, H.; Yao, S.; Ma, D. The potential benefits of the use of regional anesthesia in cancer patients. Int. J. Cancer 2015, 137, 2774–2784. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.P.; Diss, J.K.; Chioni, A.M.; Mycielska, M.E.; Pan, H.; Yamaci, R.F.; Pani, F.; Siwy, Z.; Krasowska, M.; Grzywna, Z. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res. 2005, 11, 5381–5389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, J.J.; McGuire, N. Unlicensed intravenous lidocaine for postoperative pain: Always a safer ‘licence to stop’ than to start. Anaesthesia 2021, 76, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Tada, M.; Mazeki, F.; Fukai, K.; Sakamoto, A.; Arai, M.; Mikata, R.; Tokuhisa, T.; Yokosuka, O. Procaine inhibits the proliferation and DNA methylation in human hepatoma cells. Hepatol. Int. 2007, 1, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Xu, Z.; Hung, M.S.; Lin, Y.C.; Wang, T.; Gong, M.; Zhi, X.; Jablons, D.M.; You, L. Procaine and procainamide inhibit the Wnt canonical pathway by promoter demethylation of WIF-1 in lung cancer cells. Oncol. Rep. 2009, 22, 1479–1484. [Google Scholar] [PubMed]
- Zhou, H.; Xu, M.; Luo, G.; Zhang, Y. Effects of procaine on human nasopharyngeal carcinoma cell strain CNE-2Z. J. Clin. Otorhinolaryngol. Head Neck Surg. 2007, 21, 1118–1121. [Google Scholar]
- Lucchinetti, E.; Awad, A.E.; Rahman, M.; Feng, J.; Lou, P.H.; Zhang, L.; Ionescu, L.; Lemieux, H.; Thébaud, B.; Zaugg, M. Antiproliferative effects of local anesthetics on mesenchymal stem cells: Potential implications for tumor spreading and wound healing. Anesthesiology 2012, 116, 841–856. [Google Scholar] [CrossRef] [Green Version]
- Mammoto, T.; Higashiyama, S.; Mukai, M.; Mammoto, A.; Ayaki, M.; Mashimo, T.; Hayashi, Y.; Kishi, Y.; Nakamura, H.; Akedo, H. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF). J. Cell. Physiol. 2002, 192, 351–358. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Kuroda, Y.; Hirose, M. The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth. Analg. 2006, 102, 1103–1107. [Google Scholar] [CrossRef]
- Yoon, J.R.; Whipple, R.A.; Balzer, E.M.; Cho, E.H.; Matrone, M.A.; Peckham, M.; Martin, S.S. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells. Breast Cancer Res. Treat. 2011, 129, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roger, S.; Rollin, J.; Barascu, A.; Besson, P.; Raynal, P.I.; Iochmann, S.; Lei, M.; Bougnoux, P.; Gruel, Y.; Le Guennec, J.Y. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int. J. Biochem. Cell Biol. 2007, 39, 774–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Shen, Y.; Cai, J.; Lei, M.; Wang, Z. Expression of voltage-gated sodium channel · subunit in human ovarian cancer. Oncol. Rep. 2010, 23, 1293–1299. [Google Scholar] [PubMed]
- Andrikopoulos, P.; Fraser, S.P.; Patterson, L.; Ahmad, Z.; Burcu, H.; Ottaviani, D.; Diss, J.K.; Box, C.; Eccles, S.A.; Djamgoz, M.B. Angiogenic functions of voltage-gated Na+ channels in human endothelial cells: Modulation of vascular endothelial growth factor (VEGF) signaling. J. Biol. Chem. 2011, 286, 16846–16860. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.Z.; Crowley, P.D.; Foley, A.G.; Xue, C.; Connolly, C.; Gallagher, H.C.; Buggy, D.J. Effect of perioperative lidocaine on metastasis after sevoflurane or ketamine-xylazine anaesthesia for breast tumour resection in a murine model. Br. J. Anaesth. 2018, 121, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Perez-Castro, R.; Patel, S.; Garavito-Aguilar, Z.V.; Rosenberg, A.; Recio-Pinto, E.; Zhang, J.; Blanck, T.J.; Xu, F. Cytotoxicity of local anesthetics in human neuronal cells. Anesth. Analg. 2009, 108, 997–1007. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liu, C.L.; Chen, M.J.; Hsu, Y.W.; Chen, S.N.; Lin, C.H.; Chen, C.M.; Yang, F.M.; Hu, M.C. Local anesthetics induce apoptosis in human breast tumor cells. Anesth. Analg. 2014, 118, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Hsu, Y.C.; Liu, C.L.; Huang, S.Y.; Hu, M.C.; Cheng, S.P. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS ONE 2014, 9, e89563. [Google Scholar] [CrossRef] [Green Version]
- Enlund, M.; Berglund, A.; Andreasson, K.; Cicek, C.; Enlund, A.; Bergkvist, L. The choice of anaesthetic-sevoflurane or propofol-and outcome from cancer surgery: A retrospective analysis. Upsala J. Med. Sci. 2014, 119, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Wigmore, T.J.; Mohammed, K.; Jhanji, S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: A retrospective analysis. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef]
- Sofra, M.; Fei, P.C.; Fabrizi, L.; Marcelli, M.E.; Claroni, C.; Gallucci, M.; Ensoli, F.; Forastiere, E. Immunomodulatory effects of total intravenous and balanced inhalation anesthesia in patients with bladder cancer undergoing elective radical cystectomy: Preliminary results. J. Exp. Clin. Cancer Res. 2013, 32, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kang, S.H.; Kim, Y.; Kim, H.A.; Kim, B.S. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: A retrospective study. Korean J. Anesthesiol. 2016, 69, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kim, D.W.; Kim, J.H.; Lee, K.Y.; Park, S.; Yoo, Y.C. Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget 2017, 8, 90477–90487. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Lee, H.B.; Han, W.; Noh, D.Y.; Park, S.K.; Kim, W.H.; Kim, J.T. Total intravenous anesthesia versus inhalation anesthesia for breast cancer surgery: A retrospective cohort study. Anesthesiology 2019, 130, 31–40. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Lee, M.S.; Lou, Y.S.; Lai, H.C.; Yu, J.C.; Lu, C.H.; Wong, C.S.; Wu, Z.F. Propofol-based total intravenous anesthesia did not improve survival compared to desflurane anesthesia in breast cancer surgery. PLoS ONE 2019, 14, e0224728. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.F.; Lee, M.S.; Wong, C.S.; Yeh, T.T.; Lai, H.C.; Wu, K.L.; Wu, Z.F.; Tseng, W.C. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology 2018, 129, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Kim, K.; Jheon, S.; Lee, J.; Do, S.H.; Hwang, J.W.; Song, I.A. Long-term oncologic outcomes for patients undergoing volatile versus intravenous anesthesia for non-small cell lung cancer surgery: A retrospective propensity matching analysis. Cancer Control 2018, 25, 1073274818775360. [Google Scholar] [CrossRef] [Green Version]
- Jun, I.J.; Jo, J.Y.; Kim, J.I.; Chin, J.H.; Kim, W.J.; Kim, H.R.; Lee, E.H.; Choi, I.C. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci. Rep. 2017, 7, 14020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Wang, Y.; Dong, L.; Zhao, S.; Wang, L.; Chen, H.; Xu, Y.; Wang, G. Effects of propofol-based total intravenous anesthesia on gastric cancer: A retrospective study. OncoTargets Ther. 2018, 11, 1141–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Zeng, M.; Ji, N.; Hao, S.; Zhou, Y.; Gao, Z.; Gu, H.; Zhang, L.; Ma, D.; Peng, Y.; et al. Impact of anesthesia on long-term outcomes in patients with supratentorial high-grade glioma undergoing tumor resection. J. Neurosurg. Anesthesiol. 2019, 32, 227–233. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, X.P.; Sun, Z.; Wang, H.Q.; Yu, W.F. Distant survival for patients undergoing surgery using volatile versus IV anesthesia for hepatocellular carcinoma with portal vein tumor thrombus: A retrospective study. BMC Anesthesiol. 2020, 20, 233. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Jang, W.S.; Choi, Y.D.; Hong, J.H.; Noh, S.; Yoo, Y.C. Comparison of biochemical recurrence after robot-assisted laparoscopic radical prostatectomy with volatile and total intravenous anesthesia. Int. J. Med. Sci. 2020, 17, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.; Li, R.; Liu, J.; Lin, J. Long-term prognosis after cancer surgery with inhalational anesthesia and total intravenous anesthesia: A systematic review and meta-analysis. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 83–94. [Google Scholar] [PubMed]
- Sury, M.R.; Palmer, J.H.; Cook, T.M.; Pandit, J.J. The state of UK anaesthesia: A survey of National Health Service activity in 2013. Br. J. Anaesth. 2014, 113, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Pandit, J.J.; Andrade, J.; Bogod, D.G.; Hitchman, J.M.; Jonker, W.R.; Lucas, N.; Mackay, J.H.; Nimmo, A.F.; O’Connor, K.; O’Sullivan, E.P.; et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: Summary of main findings and risk factors. Br. J. Anaesth. 2014, 113, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Biki, B.; Mascha, E.; Moriarty, D.C.; Fitzpatrick, J.M.; Sessler, D.I.; Buggy, D.J. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: A retrospective analysis. Anesthesiology 2008, 109, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Tsui, B.C.H.; Rashiq, S.; Schopflocher, D.; Murtha, A.; Broemling, S.; Pillay, J.; Finucane, B.T. Epidural anesthesia and cancer recurrence rates after radical prostatectomy. Can. J. Anesth. 2010, 57, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Wuethrich, P.Y.; Hsu Schmitz, S.F.; Kessler, T.M.; Thalmann, G.N.; Studer, U.E.; Stueber, F.; Burkhard, F.C. Potential influence of the anesthetic technique used during open radical prostatectomy on prostate cancer-related outcome: A retrospective study. Anesthesiology 2010, 113, 570–576. [Google Scholar] [CrossRef]
- Forget, P.; Tombal, B.; Scholtès, J.L.; Nzimbala, J.; Meulders, C.; Legrand, C.; Van Cangh, P.; Cosyns, J.P.; De Kock, M. Do intraoperative analgesics influence oncological outcomes after radical prostatectomy for prostate cancer? Eur. J. Anaesthesiol. 2011, 28, 830–835. [Google Scholar] [CrossRef]
- Wuethrich, P.Y.; Thalmann, G.N.; Studer, U.E.; Burkhard, F.C. Epidural analgesia during open radical prostatectomy does not improve long-term cancer-related outcome: A retrospective study in patients with advanced prostate cancer. PLoS ONE 2013, 8, e72873. [Google Scholar] [CrossRef] [Green Version]
- Roiss, M.; Schiffmann, J.; Tennstedt, P.; Kessler, T.; Blanc, I.; Goetz, A.; Schlomm, T.; Graefen, M.; Reuter, D.A. Oncological long-term outcome of 4772 patients with prostate cancer undergoing radical prostatectomy: Does the anaesthetic technique matter? Eur. J. Surg. Oncol. 2014, 40, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Sprung, J.; Scavonetto, F.; Yeoh, T.Y.; Kramer, J.M.; Karnes, R.J.; Eisenach, J.H.; Schroeder, D.R.; Weingarten, T.N. Outcomes after radical prostatectomy for cancer: A comparison between general anesthesia and epidural anesthesia with fentanyl analgesia: A matched cohort study. Anesth. Analg. 2014, 119, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Scavonetto, F.; Yeoh, T.Y.; Umbreit, E.C.; Weingarten, T.N.; Gettman, M.T.; Frank, I.; Boorjian, S.A.; Karnes, R.J.; Schroeder, D.R.; Rangel, L.J.; et al. Association between neuraxial analgesia, cancer progression, and mortality after radical prostatectomy: A large, retrospective matched cohort study. Br. J. Anaesth. 2014, 113 (Suppl. S1), i95–i102. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.S.; Kulkarni, S.; Humphreys, E.B.; Carter, H.B.; Mostwin, J.L.; Partin, A.W.; Han, M.; Wu, C.L. Spinal anesthesia does not impact prostate cancer recurrence in a cohort of men undergoing radical prostatectomy: An observational study. Reg. Anesth. Pain Med. 2014, 39, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Christopherson, R.; James, K.E.; Tableman, M.; Marshall, P.; Johnson, F.E. Long-term survival after colon cancer surgery: A variation associated with choice of anesthesia. Anesth. Analg. 2008, 107, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, A.; Ford, J.G.; Regelin, C.C.; You, J.; Mascha, E.J.; Sessler, D.I.; Durieux, M.E.; Nemergut, E.C. Association between epidural analgesia and cancer recurrence after colorectal cancer surgery. Anesthesiology 2010, 113, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Björnsson, A.; Fredriksson, M.; Hallböök, O.; Eintrei, C. Reduction in mortality after epidural anaesthesia and analgesia in patients undergoing rectal but not colonic cancer surgery: A retrospective analysis of data from 655 patients in Central Sweden. Br. J. Anaesth. 2011, 107, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Cummings, K.C.; Xu, F.; Cummings, L.C.; Cooper, G.S. A comparison of epidural analgesia and traditional pain management effects on survival and cancer recurrence after colectomy: A population-based study. Anesthesiology 2012, 116, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Day, A.; Smith, R.; Jourdan, I.; Fawcett, W.; Scott, M.; Rockall, T. Retrospective analysis of the effect of postoperative analgesia on survival in patients after laparoscopic resection of colorectal cancer. Br. J. Anaesth. 2012, 109, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Holler, J.P.N.; Ahlbrandt, J.; Burkhardt, E.; Gruss, M.; Röhrig, R.; Knapheide, J.; Hecker, A.; Padberg, W.; Weigand, M.A. Peridural analgesia may affect long-term survival in patients with colorectal cancer after surgery (PACO-RAS-Study): An analysis of a cancer registry. Ann. Surg. 2013, 258, 989–993. [Google Scholar] [CrossRef]
- Vogelaar, F.J.; Abegg, R.; van der Linden, J.C.; Cornelisse, H.G.; van Dorsten, F.R.; Lemmens, V.E.; Bosscha, K. Epidural analgesia associated with better survival in colon cancer. Int. J. Color. Dis. 2015, 30, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- MacFater, W.S.; Xia, W.; Barazanchi, A.W.H.; MacFater, H.S.; Lightfoot, N.; Svirskis, D.; Kahokehr, A.A.; Hill, A.G. Association between perioperative intraperitoneal local anaesthetic infusion and long-term survival and cancer recurrence after colectomy: Follow-up analysis of a previous randomized controlled trial. Aust. N. Z. J. Surg. 2020, 90, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Hiller, J.G.; Hacking, M.B.; Link, E.K.; Wessels, K.L.; Riedel, B.J. Perioperative epidural analgesia reduces cancer recurrence after gastro-oesophageal surgery. Acta Anaesthesiol. Scand. 2014, 58, 281–290. [Google Scholar] [CrossRef]
- Cummings, K.C.; Patel, M.; Htoo, P.T.; Bakaki, P.M.; Cummings, L.C.; Koroukian, S.A. A comparison of the effects of epidural analgesia versus traditional pain management on outcomes after gastric cancer resection: A population-based study. Reg. Anesth. Pain Med. 2014, 39, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Kim, H.I.; Kim, N.Y.; Lee, K.Y.; Kim, D.W.; Yoo, Y.C. Effect of postoperative analgesia technique on the prognosis of gastric cancer: A retrospective analysis. Oncotarget 2017, 8, 104594–104604. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Chen, H.; Xu, Y.; Zheng, X.; Wang, G. The effects of intra- and post-operative anaesthesia and analgesia choice on outcome after gastric cancer resection: A retrospective study. Oncotarget 2017, 8, 62658–62665. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Huang, Q.; Ye, S.; Ye, S.; Rong, T. Short and long-term outcomes of epidural or intravenous analgesia after esophagectomy: A propensity-matched cohort study. PLoS ONE 2016, 11, e0154380. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Liu, C.; Tan, H.; Ouyang, H.; Zhang, Y.; Zeng, W. Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: A retrospective analysis. Br. J. Anaesth. 2011, 106, 814–822. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, G.S.; Ahmad, S.; Schink, J.C.; Singh, D.K.; Fitzgerald, P.C.; McCarthy, R.J. Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Reg. Anesth. Pain Med. 2011, 36, 271–277. [Google Scholar] [CrossRef]
- Capmas, P.; Billard, V.; Gouy, S.; Lhommé, C.; Pautier, P.; Morice, P.; Uzan, C. Impact of epidural analgesia on survival in patients undergoing complete cytoreductive surgery for ovarian cancer. Anticancer Res. 2012, 32, 1537–1542. [Google Scholar]
- Lacassie, H.J.; Cartagena, J.; Brañes, J.; Assel, M.; Echevarría, G.C. The relationship between neuraxial anesthesia and advanced ovarian cancer-related outcomes in the Chilean population. Anesth. Analg. 2013, 117, 653–660. [Google Scholar] [CrossRef]
- Tseng, J.H.; Cowan, R.A.; Afonso, A.M.; Zhou, Q.; Iasonos, A.; Ali, N.; Thompson, E.; Sonoda, Y.; O’Cearbhaill, R.E.; Chi, D.S.; et al. Perioperative epidural use and survival outcomes in patients undergoing primary debulking surgery for advanced ovarian cancer. Gynecol. Oncol. 2018, 151, 287–293. [Google Scholar] [CrossRef]
- Doiron, R.C.; Jaeger, M.; Booth, C.M.; Booth, C.M.; Wei, X.; Robert Siemens, D. Is there a measurable association of epidural use at cystectomy and postoperative outcomes? A population-based study. Can. Urol. Assoc. J. 2016, 10, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weingarten, T.N.; Taccolini, A.M.; Ahle, S.T.; Dietz, K.R.; Dowd, S.S.; Frank, I.; Boorjian, S.A.; Thapa, P.; Hanson, A.C.; Schroeder, D.R.; et al. Perioperative management and oncological outcomes following radical cystectomy for bladder cancer: A matched retrospective cohort study. Can. J. Anesth. 2016, 63, 584–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.J.; Baek, S.; Joo, E.Y.; Yoon, S.H.; Kim, E.; Hong, B.; Hwang, J.H.; Kim, Y.K. Comparison of the effect of spinal anesthesia and general anesthesia on 5-year tumor recurrence rates after transurethral resection of bladder tumors. Oncotarget 2017, 8, 87667–87674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koumpan, Y.; Jaeger, M.; Mizubuti, G.B.; Tanzola, R.; Jain, K.; Hosier, G.; Hopman, W.; Siemens, D.R. Spinal anesthesia is associated with lower recurrence rates after resection of nonmuscle invasive bladder cancer. J. Urol. 2018, 199, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Chipollini, J.; Alford, B.; Boulware, D.C.; Forget, P.; Gilbert, S.M.; Lockhart, J.L.; Pow-Sang, J.M.; Sexton, W.J.; Spiess, P.E.; Poch, M.A.; et al. Epidural anesthesia and cancer outcomes in bladder cancer patients: Is it the technique or the medication? A matched-cohort analysis from a tertiary referral center. BMC Anesthesiol. 2018, 18, 157. [Google Scholar] [CrossRef]
- Zimmitti, G.; Soliz, J.; Aloia, T.A.; Gottumukkala, V.; Cata, J.P.; Tzeng, C.W.; Vauthey, J.N. Positive impact of epidural analgesia on oncologic outcomes in patients undergoing resection of colorectal liver metastases. Ann. Surg. Oncol. 2016, 23, 1003–1011. [Google Scholar] [CrossRef]
- Gottschalk, A.; Brodner, G.; Van Aken, H.K.; Ellger, B.; Althaus, S.; Schulze, H.J. Can regional anaesthesia for lymph-node dissection improve the prognosis in malignant melanoma. Br. J. Anaesth. 2012, 109, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Merquiol, F.; Montelimard, A.S.; Nourissat, A.; Molliex, S.; Zufferey, P.J. Cervical epidural anesthesia is associated with increased cancer-free survival in laryngeal and hypopharyngeal cancer surgery: A retrospective propensity-matched analysis. Reg. Anesth. Pain Med. 2013, 38, 398–402. [Google Scholar] [CrossRef]
- Myles, P.S.; Peyton, P.; Silbert, B.; Hunt, J.; Rigg, J.R.; Sessler, D.I.; ANZCA Trials Group Investigators. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: Randomised trial. Br. Med. J. 2011, 342, d1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.L.; Tai, Y.H.; Chan, M.Y.; Tsou, M.Y.; Chen, H.H.; Chang, K.Y. Effects of epidural analgesia on cancer recurrence and long-term mortality in patients after non-small-cell lung cancer resection: A propensity score-matched study. BMJ Open 2019, 9, e027618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.M.; Singh Ghotra, V.; Karam, J.A.; Karam, J.A.; Hernandez, M.; Pratt, G.; Cata, J.P. Regional anesthesia/analgesia and the risk of cancer recurrence and mortality after prostatectomy: A meta-analysis. Pain Manag. 2015, 5, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.; Chen, W.; Hou, W.; Li, L.; Ding, M.; Miao, C. The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: An updated meta-analysis. Oncotarget 2016, 7, 15262–15273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandhi, R.K.; Lee, S.; Abd-Elsayed, A. The relationship between regional anesthesia and cancer: A meta-analysis. Ochsner 2017, 17, 345–361. [Google Scholar]
- Cata, J.P.; Lasala, J.; Pratt, G.; Feng, L.; Shah, J.B. Association between perioperative blood transfusions and clinical outcomes in patients undergoing bladder cancer surgery: A systematic review and meta-analysis study. J. Blood Transfus. 2016, 2016, 9876394. [Google Scholar] [CrossRef] [Green Version]
- Agnes, A.; Lirosi, M.C.; Panunzi, S.; Santocchi, P.; Persiani, R.; D’Ugo, D. The prognostic role of perioperative allogeneic blood transfusions in gastric cancer patients undergoing curative resection: A systematic review and meta-analysis of non-randomized, adjusted studies. Eur. J. Surg. Oncol. 2018, 44, 404–419. [Google Scholar] [CrossRef]
- Li, S.-L.; Ye, Y.; Yuan, X.-H. Association between allogeneic or autologous blood transfusion and survival in patients after radical prostatectomy: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0171081. [Google Scholar] [CrossRef]
- Ben-Eliyahu, S.; Shakhar, G.; Rosenne, E.; Levinson, Y.; Beilin, B. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: A role for adrenergic mechanisms. Anesthesiology 1999, 91, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Pandit, J.J. Monitoring (un)consciousness: The implications of a new definition of ‘anaesthesia’. Anaesthesia 2014, 69, 801–807. [Google Scholar] [CrossRef] [Green Version]
Study | Study Type | Propofol/VA | Volatile Agent | Cancer Type | End Point | Hazard Ratio | 95% CI | Result |
---|---|---|---|---|---|---|---|---|
Enlund et al. (2014) [90] | RC | 1935/903 | Sevoflurane | Various | OS | 0.86 | 0.60–1.24 | − |
Wigmore et al. (2016) [91] | RC | 3316/3714 | Sevoflurane or isoflurane | Various | OS | 0.68 | 0.60–0.78 | + |
Sofra et al. (2013) [92] | RCT | 14/14 | Sevoflurane | Bladder | OS | nr | nr, p = 0.14 | − |
Lee et al. (2016) [93] | RC | 152/173 | Sevoflurane | Breast | OS | nr | nr, p = 0.38 | − |
RFS | 0.48 | 0.27–0.86 | + | |||||
Kim et al. (2017) [94] | RC | 56/2589 | Sevoflurane, isoflurane, enflurane or desflurane | Breast | OS | 1.14 | 0.49–2.60 | − |
Yoo et al. (2019) [95] | RC | 3085/2246 | Sevoflurane, isoflurane, enflurane or desflurane | Breast | OS | 0.96 | 0.69–1.33 | − |
RFS | 0.96 | 0.69–1.32 | − | |||||
Huang et al. (2019) [96] | RC | 344/632 | Desflurane | Breast | OS | 1.13 | 0.67–1.92 | − |
Wu et al. (2018) [97] | RC | 657/706 | Desflurane | Colorectal | OS | 0.27 | 0.22–0.35 | + |
Oh Et al. (2016) [98] | RC | 194/749 | Sevoflurane | Non-small cell lung | OS | 0.90 | 0.64–1.26 | − |
RFS | 1.31 | 0.84–2.04 | − | |||||
Jun et al. (2017) [99] | RC | 731/191 | Sevoflurane, isoflurane or desflurane | Oesophageal | OS | 0.63 | 0.50–0.81 | + |
RFS | 0.70 | 0.56–0.89 | + | |||||
Zheng et al. (2018) [100] | RC | 1506/1350 | Sevoflurane | Gastric | OS | 0.65 | 0.56–0.75 | + |
Dong et al. (2019) [101] | RC | 154/140 | Sevoflurane | Glioma | OS | nr | nr, p = 0.76 | − |
OS (Low Karnofsky) | 0.60 | 0.39–0.93 | + |
Study | Study Type | LA/Control | LA Technique | Control Technique | Cancer Type | End Point | Hazard Ratio | 95% CI | Result |
---|---|---|---|---|---|---|---|---|---|
Sessler et al. (2019) [1] | RCT | 1043/1065 | LA PVB + propofol | Opioid + sevoflurane | Breast | RFS | 0.97 | 0.74–1.28 | − |
Biki et al. (2008) [107] | RC | 102/123 | Epidural LA + GA | Opioid + GA | Prostate | BCR | 0.43 | 0.22–0.83 | + |
Tsui et al. (2010) [108] | RCT | 49/50 | Epidural LA + GA | GA | Prostate | BCR | 1.33 | 0.64–2.77 | − |
Wuethrich et al. (2010) [109] | RC | 103/158 | Epidural LA + GA | Opioid + NSAID + GA | Prostate | OS | 0.61 | 0.29–1.28 | − |
PFS | 0.45 | 0.27–0.75 | + | ||||||
Forget et al. (2011) [110] | RC | 578/533 | Epidural LA + GA | GA | Prostate | BCR | 0.84 | 0.52–1.17 | − |
Wuethrich et al. (2013) [111] | RC | 67/81 | Epidural LA + GA | Opioid + NSAID + GA | Prostate | OS | 1.17 | 0.63–2.17 | − |
Local RFS | 1.16 | 0.41–3.29 | − | ||||||
Distant RFS | 0.56 | 0.26–1.25 | − | ||||||
Roiss et al. (2014) [112] | RC | 3047/1725 | Spinal LA + GA | GA | Prostate | OS | 0.90 | 0.51–1.60 | − |
RFS | 1.11 | 0.54–2.27 | − | ||||||
BCR | 1.09 | 0.85–1.41 | − | ||||||
Sprung et al. (2014) [113] | RC | 486/486 | Epidural LA + GA | Opioid + GA | Prostate | OS | 0.81 | 0.61–1.08 | − |
RFS | 1.27 | 0.96–1.67 | − | ||||||
Scavonetto et al. (2014) [114] | RC | 1642/1642 | Neuraxial LA + GA | GA | Prostate | OS | 0.76 | 0.57–1.00 | + |
SP | 0.36 | 0.17–0.76 | + | ||||||
Tseng et al. (2014) [115] | RC | 1166/798 | Spinal LA + Sedative | GA | Prostate | BCR | 0.91 | 0.70–1.18 | − |
Christopherson et al. (2008) [116] | RCT | 85/92 | Epidural LA + GA | GA | Colorectal | OS | 1.43 | 0.75–2.70 | − |
Gottschalk et al. (2010) [117] | RC | 256/253 | Epidural LA + GA | GA | Colorectal | RFS | 0.82 | 0.49–1.35 | − |
Gupta et al. (2011) [118] | RC | 562/93 | Epidural LA + GA | PCA + GA | Colorectal | OS (colon) | 0.82 | 0.30–2.19 | − |
OS (rectal) | 0.45 | 0.22–0.90 | + | ||||||
Cummings et al. (2012) [119] | RC | 9278/40377 | Epidural LA + GA | GA | Colorectal | OS | 0.91 | 0.87–0.94 | + |
RFS | 1.05 | 0.95–1.15 | − | ||||||
Day et al. (2012) [120] | RC | 251/173 | Epidural or Spinal LA + GA | PCA + GA | Colorectal | OS | Nr | nr, p = 0.622 | − |
Holler et al. (2013) [121] | RC | 442/307 | Epidural LA + GA | GA | Colorectal | OS | 0.73 | nr, p < 0.002 | + |
Vogelaar et al. (2015) [122] | RC | 399/189 | Epidural LA + GA | GA | Colorectal | OS | 0.77 | 0.63–0.95 | + |
MacFater et al. (2020) [123] | RCT | 37/19 | IP LA + GA | IP Saline +GA | Colorectal | OS | 0.65 | nr, p = 0.620 | − |
Hiller etc. (2014) [124] | RC | 97/43 | Epidural LA + GA | GA | Gastric | OS | 0.42 | 0.0.21–0.83 | + |
TTR | 0.33 | 0.17–0.63 | + | ||||||
Cummings et al. (2014) [125] | RC | 766/1979 | Epidural LA + GA | GA | Gastric | OS | 0.93 | 0.84–1.03 | − |
Shin et al. (2017) [126] | RC | 4325/374 | Epidural PCA | i.v. PCA | Gastric | OS | 0.67 | 0.43–1.13 | − |
RFS | 1.10 | 0.86–1.40 | − | ||||||
Wang et al. (2017) [127] | RC | 1390/2856 | Epidural LA + GA | GA | Gastric | OS | 0.65 | 0.58–0.73 | + |
Li et al. (2016) [128] | RC | 178/178 | Epidural LA + GA | GA | Oesophageal | OS | Nr | nr, p = 0.470 | − |
RFS | Nr | nr, p = 0.460 | − | ||||||
Lin et al. (2011) [129] | RC | 106/37 | Epidural LA + GA | Opioid + GA | Ovarian | OS | 0.82 | 0.70–0.96 | + |
de Oliviera et al. (2011) [130] | RC | 55/127 | Epidural LA + GA | GA | Ovarian | P/O TTR | 0.86 | 0.52–1.41 | − |
I/O TTR | 0.37 | 0.19–0.73 | + | ||||||
Capmas et al. (2012) [131] | RC | 47/47 | Epidural PCA + GA | GA | Ovarian | OS | 1.25 | 0.39–4.04 | − |
RFS | 1.18 | 0.61–2.31 | − | ||||||
Lacassie et al. (2013) [132] | RC | 37/43 | Epidural LA + GA | GA | Ovarian | TTR | 0.72 | 0.40–1.33 | − |
Tseng et al. (2018) [133] | RC | 435/213 | Epidural LA + GA | GA | Ovarian | OS | 0.64 | 0.49–0.82 | + |
RFS | 0.75 | 0.60–0.94 | + | ||||||
Doiron et al. (2016) [134] | RC | 887/741 | Epidural LA + GA | GA | Bladder | OS | 0.91 | 0.80–1.03 | − |
Weingarten et al. (2016) [135] | RC | 195/195 | Spinal LA + GA | GA | Bladder | OS | 1.09 | 0.77–1.53 | − |
Choi et al. (2017) [136] | RC | 718/158 | Spinal LA | GA | Bladder | RFS | 0.62 | 0.48–0.79 | + |
Koumpan et al. (2018) [137] | RC | 135/96 | Spinal LA | GA | Bladder | RFS | 0.49 | 0.27–0.88 | + |
TTR | 0.64 | 0.46–0.88 | + | ||||||
Chipollini et al. (2018) [138] | RC | 215/215 | Epidural LA. + GA | GA | Bladder | RFS | 1.67 | 1.14–2.45 | − |
CSS | 1.53 | 1.04–2.25 | − | ||||||
Zimmitti et al. (2016) [139] | RC | 390/120 | Epidural LA +GA | GA | Liver | OS | 0.72 | 0.49–1.07 | − |
RFS | 0.74 | 0.56–0.95 | + | ||||||
Gottschalk et al. (2012) [140] | RC | 52/221 | Spinal LA | GA | Melanoma | OS | Nr | nr, P = 0.087 | + |
Merquiol et al. (2013) [141] | RC | 111/160 | Epidural LA + GA | Opioid + GA | Head and neck | OS | 0.82 | 0.70–0.96 | + |
Myles et al. (2011) [142] | RCT | 230/216 | Epidural LA + GA | GA | Abdominal surgery (e.g., colorectal) | RFS | 0.95 | 0.76–1.17 | − |
Wu et al. (2018) [143] | RC | 1799/392 | Epidural LA + GA | Opioid + GA | NSCLC | OS | 0.81 | 0.58–1.31 | − |
RFS | 0.93 | 0.76–1.14 | − |
Study | Study Design | Participation | Agents | Cancer Type | End Point | Expected Completion Date |
---|---|---|---|---|---|---|
NCT03034096 | Multicentre prospective | 2000 | Propofol TIVA vs. VA | Various | OS +RFS | December 2020 |
NCT01975064 | Multicentre prospective | 8000 | Propofol TIVA vs. sevoflurane | Breast + Colorectal | OS | December 2023 |
NCT02786329 | Single-centre prospective, 2 × 2 factorial | 450 | Propofol TIVA vs. VA and lidocaine vs. placebo | Colorectal | OS + RFS | December 2021 |
NCT02840227 | Multicentre prospective | 2000 | Epidural LA + GA vs. opioid + GA | Non-small cell lung carcinoma | RFS | December 2021 |
NCT01318161 | Single-centre prospective | 300 | Ropivacaine vs. morphine PCA | Colorectal | OS + RFS | December 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, B.A.; Pandit, J.J. Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery. Drugs Drug Candidates 2023, 2, 121-136. https://doi.org/10.3390/ddc2010008
Wilson BA, Pandit JJ. Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery. Drugs and Drug Candidates. 2023; 2(1):121-136. https://doi.org/10.3390/ddc2010008
Chicago/Turabian StyleWilson, Ben A., and Jaideep J. Pandit. 2023. "Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery" Drugs and Drug Candidates 2, no. 1: 121-136. https://doi.org/10.3390/ddc2010008
APA StyleWilson, B. A., & Pandit, J. J. (2023). Do Certain Anaesthetic Drugs Affect Postoperative Cancer Recurrence Rates? Implications for Drug Discovery. Drugs and Drug Candidates, 2(1), 121-136. https://doi.org/10.3390/ddc2010008