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Abstract: The endocannabinoid system is found throughout the CNS and the body where it impacts
many important physiological processes. Expectations were high that targeting cannabinoid receptors
would prove therapeutically beneficial; pharmaceutical companies quickly seized on the appetitive
and metabolic effects of cannabinoids to develop a drug for the treatment of weight loss. Alas,
the experience with first-in-class cannabinoid type-1 receptor (CB1R) antagonist rimonabant is a
now-classic cautionary tale of the perils of drug development and the outcome of rimonabant’s fall
from grace dealt a blow to those pursuing therapies involving CB1R antagonists. And this most
commercially compelling application of rimonabant has now been partially eclipsed by drugs with
different mechanisms of action and greater effect. Still, blocking CB1 receptors causes intriguing
metabolic effects, some of which appear to occur outside the CNS. Moreover, recent years have seen
a startling change in the legal status of cannabis, accompanied by a popular embrace of ‘all things
cannabis’. These changes combined with new pharmacological strategies and diligent medicinal
chemistry may yet see the field to some measure of fulfillment of its early promise. Here, we review
the story of rimonabant and some of the therapeutic niches and strategies that still hold promise after
the fall.
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1. The Endocannabinoid System
1.1. Receptors and Ligands

Cannabinoids have been in use for thousands of years [1,2], but systematic inquiry into
how cannabinoids work in the body began only in the 1940s when chemists isolated chemi-
cal constituents of cannabis such as cannabidiol (CBD) and tetrahydrocannabinol (THC) [3]
(Figure 1). Ultimately, more than a hundred chemically related phytocannabinoids were
identified, but the question of how cannabinoids act in the body remained a mystery for
decades. Cannabinoid research saw a flowering in the 1970s, with early indications that
cannabinoids might be helpful as therapeutics for some specific ailments. Synthetic THC
found use promoting appetite in AIDS patients and combatting nausea and vomiting in
patients undergoing chemotherapy [4–6]. But, by the mid-1980s, this research effort had
dissipated. The question of how cannabinoids act in the body remained unanswered until
the identification of cannabinoid receptors. These receptors, dubbed CB1 [7] and CB2 [8],
are part of a large family of proteins known as G protein-coupled receptors (GPCRs) that
includes targets for opiates, dopamine, serotonin, acetylcholine and many more receptors
involved in neuronal and non-neuronal signaling. Most medicines target GPCRs.
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Figure 1. Structure of THC, 2-arachidonoyl glycerol (2-AG), rimonabant and anandamide. 

As a consequence of the discovery of the cannabinoid receptors, we now know that 
cannabinoids act by plugging into an endogenous cannabinoid signaling system, similar 
to the way opium acts via opioid receptors in the body. Within a few years, two 
endogenous ligands were identified. These endocannabinoids are structurally unrelated 
to THC (Figure 1), consisting of arachidonic acid with distinct headgroups: 2-
arachidonoyl glycerol (2-AG, [9]) and arachidonoylethanolamide (AEA [10]), though AEA 
is also commonly referred to as anandamide, from the Sanskrit for bliss. 

  

Figure 1. Structure of THC, 2-arachidonoyl glycerol (2-AG), rimonabant and anandamide.

As a consequence of the discovery of the cannabinoid receptors, we now know that
cannabinoids act by plugging into an endogenous cannabinoid signaling system, similar to
the way opium acts via opioid receptors in the body. Within a few years, two endogenous lig-
ands were identified. These endocannabinoids are structurally unrelated to THC (Figure 1),
consisting of arachidonic acid with distinct headgroups: 2-arachidonoyl glycerol (2-AG, [9])
and arachidonoylethanolamide (AEA [10]), though AEA is also commonly referred to as
anandamide, from the Sanskrit for bliss.

1.2. Endocannabinoid Metabolism

Because endocannabinoids are membrane-preferring lipids, and in contrast to many
neuronal messengers, they are not released at the synapse by vesicles, instead, they are
produced enzymatically, ‘on demand’. Enzymes such as diacylglycerol lipases [11] or
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N-acyl phosphatidylethanolamine (NAPE)-phospholipase D [12,13] are activated to rapidly
synthesize the endocannabinoids AEA or 2-AG, respectively. After endocannabinoids
have activated their target receptors, they are then inactivated metabolically, modified
or broken into their constituent parts that are recycled for other purposes. The number
of enzymes that have been implicated in cannabinoid metabolism is not small, but the
main roles have been assigned to monoacylglycerol lipase (MAGL) for 2-AG [14], and fatty
acid amide hydrolase (FAAH) for AEA [15,16]. Endocannabinoid metabolizing enzymes
typically act not just on arachidonoyl acid-based lipids but also the shorter chain oleoyls,
palmitoyls and others. This has several biological consequences as some of the products
of eCB synthetizing enzymes are ligands for other receptors as in 2-oleoylglycerol (2-OG)
and GPR119 [17]. As a result, there is much current debate over what constitutes an
endocannabinoid and a cannabinoid receptor. To complicate matters, AEA and 2-AG can
both activate the TRPV1 receptor, best known as the receptor that is stimulated by chili
peppers and heat [18]. Anandamide remains the strongest candidate endogenous ligand for
this receptor. Consequently, the cannabinoid signaling system may encompass six or more
receptors, at least as many endogenous ligands, and a stable of enzymes to produce and
break them down. Moreover, endocannabinoids and endocannabinoid-derived arachidonic
acid are substrates of cyclooxygenases and may thus serve as precursors for prostamides
and prostanoids, that are active compounds with pleiotropic biological effects [19].

1.3. CB1 Receptor—Localization and Function

Since the discovery of endocannabinoids and cannabinoid receptors, the most attention
has been paid to the canonical cannabinoid receptors, particularly CB1R. Soon after the
receptor was first described, researchers mapped out its distribution, finding that it is widely
expressed in the brain (Figure 2; [20]) and throughout the body [21]. Indeed, there are few
neuronal systems that do not express CB1 receptors. And in contrast with most ligands
for GPCRs, the lipophilic cannabinoids readily cross into the CNS. In principle therefore,
cannabinoids represent a ‘target-rich’ therapeutic opportunity. The risk is that each site
also represents a potential off-target effect. A life-saving treatment in the cerebellum might
come with a perilous side-effect in the hippocampus, a subject to which we shall return.

Once it became clear where CB1 receptors were expressed, the question became ‘what
are they doing there?’. One clue came from anatomical studies: CB1 receptors tended
to reside presynaptically, near the release site for neurotransmitters [22]. GPCRs act by
converting an extracellular signal into an intracellular signal, often by initiating a signaling
cascade that rapidly amplifies the signal throughout the cell. The kind of signaling they
initiate and, ultimately, the biological consequence are defined by the G proteins to which
they couple, and it was soon learned that CB1 receptors primarily couple to Gi/o G proteins,
inhibiting calcium channels and adenylyl cyclase formation of cyclic AMP and activating
the Raf/Ras/MEK signaling cascade (Figure 3), though other signaling pathways such as
arrestin signaling also likely contribute to their function. In neurons, CB1 activation is pre-
dominantly inhibitory in nature, reducing the amount of neurotransmitters released from
neurons. Because endocannabinoids are typically produced post-synaptically, this means
that the direction of effect is retrograde, from post-synapse to pre-synapse. This contrasts
with classical neurotransmitters such as acetylcholine, glutamate and GABA. This means
that, by and large, the neuronal role of CB1R is to serve as a feedback inhibitor (reviewed
in [23]). Because CB1 receptors can inhibit either excitatory or inhibitory neurotransmitter
release, the net consequence of CB1 activation depends on the circuit; e.g., inhibiting an in-
hibitory circuit can result in a net excitation. In addition, new roles continue to be found for
CB1Rs in neurons and elsewhere (e.g., mitochondrial [24] or somatodendritic [25] CB1Rs).
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Figure 2. CB1R is widely distributed in the brain. With the notable exception of the thalamus (TH), 
the cannabinoid receptor type 1 (CB1) is seen in most regions of the mouse brain including cortex 
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cortex (PIR), olfactory tubercle (Tu), lateral olfactory tract (LOT), and globus pallidus (GP). Source: 
Huei-Ying Chen. 
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Figure 2. CB1R is widely distributed in the brain. With the notable exception of the thalamus (TH),
the cannabinoid receptor type 1 (CB1) is seen in most regions of the mouse brain including cortex
(CX), hippocampus (H), striatum (ST), and cerebellum (CB). Other brain regions shown: piriform
cortex (PIR), olfactory tubercle (Tu), lateral olfactory tract (LOT), and globus pallidus (GP). Source:
Huei-Ying Chen.
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Figure 3. Canonical CB1 receptor signaling pathways. In neurons, the cannabinoid receptor type 1
(CB1R) acts via G proteins α (alpha), β (beta) and γ (gamma), to inhibit calcium (Ca2+) channels (and
consequently neurotransmitter release) and also inhibits adenylyl cyclase (AdCyc), thus reducing
production of the intracellular messenger cyclic adenosine monophosphate (cAMP). The CB1 receptor
also activates the rat sarcoma virus (Ras)–rapidly accelerating fibrosarcoma (Raf)–mitogen activated
protein kinase kinase (MEK) (commonly denoted as Raf-Ras-MEK) signaling pathway. Additional
non-canonical pathways such as arrestin signaling also likely contribute to CB1R effects.
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2. Targeting CB1 Receptors with Pharmacological Tools

Once cannabinoid receptors were identified, researchers set about developing pharma-
cological tools such as synthetic receptor agonists and antagonists as well as blockers for
metabolic enzymes. With these tools in hand, the list of potential therapeutic applications
for cannabinoids grew rapidly. Beyond appetite and nausea, cannabinoids were inves-
tigated for roles in pain, inflammation, anxiety, addiction, neurodegenerative disorders,
glaucoma, and more. The cannabinoid regulation of pain has been one of the most promis-
ing areas of research, with several drugs in clinical trials targeting enzymes such as FAAH.
The reasoning is that by preventing the breakdown of anandamide, one could harness
the endogenous cannabinoid signaling system. Though broadly encouraging, the research
suffered a setback when a proposed FAAH blocker BIA-10-2474 resulted in a fatality in one
subject and serious neurological complications in others in Stage I clinical trials. However,
this appears to have been a consequence of the off-target effects of the drug rather than
blocking FAAH [26,27]. A cannabinoid role in epilepsy was also explored, partly because
CB1 receptor knockout mice were more prone to seizures [28]. But the challenge of using
an agonist that has complex effects on both excitatory and inhibitory synapses is that the
net effect is difficult to predict. But intriguingly, the phytocannabinoid CBD was approved
in 2018 as a treatment for a form of childhood epilepsy [29] and shows promise for other
seizure disorders. The mechanism of action is still unclear but will be discussed below.

3. Rise and Fall of Rimonabant
3.1. The Prelude

One major dilemma for the development of cannabinoid therapeutics—the elephant in
the room—is the psychoactivity of cannabinoids. Though the legal landscape is changing,
back in the 1990s, at the outset of receptor-based cannabinoid pharmacology, the possibility
that patients might experience cannabis-associated intoxication as a side-effect of therapy
was considered a no-go for most potential cannabinoid-based therapies. This is part of the
reason why much research has targeted enzymes such as FAAH to put endocannabinoids
to work: these approaches are not intoxicating. An attractive early prospect therefore
was to focus not on activating CB1 receptors but on CB1 antagonists that would avert the
issue of intoxication altogether. A commercially attractive target presented itself since
it was established that cannabinoids enhance appetite [30]. Companies such as Sanofi
Recherche recognized the potential for profit from a drug that produced the opposite of
“the munchies”: weight loss. Sanofi developed its flagship compound SR141716, dubbed
rimonabant (Figure 1) and marketed as Accomplia, as well as several follow-on compounds.

When researchers at Sanofi pondered what they might do with their flagship CB1
antagonist rimonabant, they encountered a clear commercial choice. When activated, CB1
receptors stimulate appetite and motivate eating behavior by acting on orexin melanin,
concentrating hormone signaling in the hypothalamus [31,32]. They also enhance the
sensitivity to sweet taste [33,34]. Opposing this system promised a novel tool to reduce
appetite and promote weight loss. And indeed, early studies were encouraging; in clinical
trials, patients reliably lost weight. The amount lost varied from individual to individual,
but averaged 8–10 lbs [35]. Attractive from a commercial standpoint, the effects required
continued treatment; if patients stopped taking the compound, the weight returned.

Sanofi, based in France, considered the potential market to be enormous, particularly
in the US where obesity was, and continues to be, a major health concern. With 160 million
Americans overweight or obese [36], the potential market for an effective weight-control
drug is, by any standard, considerable. Rimonabant was approved in Europe in 2006 as
a treatment for weight loss and was actively considered for approval by the FDA (but
rejected based on concerns about aversive psychoactive side-effects).

3.2. The Clinical Trials

After a series of preclinical studies, four clinical trials assessed rimonabant’s efficacy
in reducing weight, as well as several cardiovascular and metabolic conditions associated
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with obesity. Rimonabant in obesity (RIO)-Europe and RIO-North America, tested for
weight loss in overweight and obese participants over a 2-year period [37–39]. RIO-Lipids
and RIO-Diabetes expanded these goals to include cardiovascular risk in high-risk patients
with dyslipidemia, metabolic syndrome, and type 2 diabetes [35,40]. The one-year follow-
up saw significant reductions in weight with rimonabant. But those taking rimonabant
also saw positive changes in their levels of plasma C-reactive protein, HDL cholesterol,
triglyceride, adiponectin, HbA1c, fasting glucose and insulin, as well as a measure of insulin
resistance (Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)) [35,37–40].
The 20 mg/kg dose also reduced LDL cholesterol and the prevalence of those meeting
the criteria for hypertension and metabolic syndrome at the one-year mark [35,40]. The
observations for weight loss and improvements in lipogenic and glycemic profiles remained
consistent at the second follow-up one year later for the RIO-Europe and RIO-North
America studies [38,39]. Rimonabant was therefore poised to enter the stage as a first-in-
class effective treatment to reduce weight and, on the strength of these findings, it received
approval in Europe. But, the clinical trials also revealed a dysphoric side-effect profile. This
would be the undoing of rimonabant and, in 2008, it was withdrawn worldwide [41].

3.3. The Fall

Besides the truly striking metabolic efficacy of rimonabant, reports appeared of a
darker side to the weight-loss treatment: was it possible that the drug was producing
not only the opposite of ‘the munchies’, but also the opposite of euphoria? Clinical trials
reported nausea and dizziness, but also increased depression, anxiety and the specter of
suicides sounded the death-knell for rimonabant as a weight-loss therapy and several
other indications. Approval in Europe was withdrawn in 2008 based on postmarketing
surveillance, and the requests for approval were withdrawn in the US and elsewhere. Other
companies with ‘me-too’ CB1 antagonists such as Merck’s taranabant [42] and Pfizer’s
CP945598 [43] quietly terminated or shelved their clinical trials. Clinical trials underway for
rimonabant to help smokers quit, though promising, were also terminated. Pharmaceutical
companies are generally conservative, reluctant to introduce drugs for an unproven target
for fear of unexpected side-effects. The experience with first-in-class rimonabant had
proven to be a worst-case scenario.

4. A Search for Alternatives

Nearly fifteen years have passed since the end of this chapter. The experience with
rimonabant represented an enormous setback and even today there are no clinical trials
underway in the US with the specific goal of using a conventional CB1 antagonist for
therapeutic ends. Most active cannabinoid-related clinical trials involve the use of enzyme
blockers, agonists or, more recently, minor phytocannabinoids. But the story of CB1 receptor
antagonists as therapeutics did not end here. If anything, obesity has worsened. And so,
researchers have pursued alternative pharmacological strategies, ones that might avoid the
aversive side effects. Moreover, the clinical trials for rimonabant and related compounds
have revealed other cardiac and metabolic benefits [39]. And a few additional potential
uses for a CB1 antagonist have surfaced. We will briefly review potential therapeutic
applications for CB1 antagonists, then some novel pharmacological strategies that are being
pursued.

4.1. A Peripheral Interest

Rimonabant was clearly effective for moderate weight loss in human subjects and
had attractive metabolic effects. Was there any hope for a cannabinoid antagonist or
was the entire class of compounds doomed? Might a CB1R antagonist be developed that
somehow avoided the dysphoria? Several potential strategies were considered but the most
compelling arose from the observation that not all of the effects of rimonabant were due to
actions in the CNS. The metabolic effects along with CB1R expression in peripheral tissues
such as adipocytes, the liver, and components of the GI tract already pointed to CB1R
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roles in the periphery [44,45]. Moreover, when CB1Rs were antagonized in the periphery
but not the CNS, energy consumption was ‘normalized’ and the ensuing weight loss was
independent of food intake [46]. The changes in the metabolic profiles of RIO-study subjects
were twice those expected from the weight loss alone, suggesting that rimonabant had a
peripheral effect on glucose, lipid and insulin metabolism [35,39,40].

These observations suggested that a CB1R antagonist that either did not penetrate into
the CNS or that did not act as an inverse agonist might therefore still prove useful. In the
15 years since rimonabant’s fall from grace, researchers have pressed on to understand how
cannabinoids interact with various peripheral players in the metabolic process. The subject
is complex as CB1Rs turned out to play a multifaceted role in the development of many
pathologies associated with metabolic syndrome (see, e.g., [47] for review). While our
understanding is incomplete, several areas are of particular interest, particularly relating to
lipogenesis. Adipocytes express CB1R, especially in mature adipose tissue, and their levels
increase with obesity [48,49]. Blocking CB1 receptors reduces fat synthesis and storage,
lipoprotein lipase activity, and hepatic fatty acid synthesis [44,46,50], suggesting that the
endocannabinoid system regulates the cellular machinery of fat cells [49,51]. Furthermore,
the blockade of adipocyte CB1Rs by rimonabant was reported to increase the secretion
of adiponectin, a hormone that is significantly curtailed in models of human and murine
obesity [35,40,52], and which promotes free fatty acid oxidation, body weight reduction,
improves hyperglycemia and hyperinsulinemia, and reverses insulin resistance in obese
animals [53]. The importance of adipocyte CB1Rs is also corroborated by the finding that
selective ablation of CB1Rs in fat cells is sufficient to normalize body weight in obese
mice [54].

CB1R also plays a role in the liver. Hepatocytes, key players in the metabolic process,
appear to produce 2-AG [55] and CB1R activation in the liver, elicited by, for example,
a high-fat diet, stimulates the expression of genes involved in fatty acid synthesis such
as transcription factor SREBP-1C, acetyl CoA carboxylase-1, and fatty acid synthase [56].
This lipogenic response can be blunted by CB1R antagonists, with positive implications
for treating not only obesity, but also fatty-liver disease. Moreover, CB1Rs in the liver
bring about hepatic insulin resistance in a diet-dependent manner [57] and promote leptin
resistance [58], thus providing yet another therapeutic rationale for blocking hepatic CB1Rs.

Such reports of peripheral metabolic effects notwithstanding, the greatest challenge
for a new cannabinoid-based therapeutic for weight loss may simply be that the landscape
has changed. At the time of approval, rimonabant faced little serious competition for
weight loss, but this would not hold true today. The GLP1 receptor agonist semaglutide
was recently approved as a therapy for weight loss and several other classes of drugs are in
clinical trials (reviewed in [59,60]). If the results reported thus far hold true, overweight
patients can hope to lose ~12% of their weight, or more than twice what was reported for
rimonabant. If GLP1 agonists prove safe and effective, then they will be the bar against
which a successor to rimonabant will be judged, though it may prove attractive as part of a
combination therapy, since peripheral CB1R agonists appear to provide beneficial metabolic
effects that are independent of weight loss or glycemic control [47]. If one were to identify
a mechanistic basis for why some patients experienced prodigious weight loss over others,
this might also serve as an attractive direction of research.

The potential use of a CB1R antagonist in the cardiovascular system was also explored
as a therapeutic target, with mixed results that are surveyed in several excellent reviews
(e.g., [61]).

4.2. A Therapy for Substance Abuse

The first report of CB1R knockout mice noted that CB1R deletion impacted opiate toler-
ance [62]. Might the cannabinoid signaling system, with its own abuse liability, be helpful for
opiate abuse and might this apply to other drugs of abuse (reviewed in [63])? CB1R deletion
or blocking by rimonabant was found to be helpful not only for quitting opiates, but for a
spectrum of drugs of abuse, including cocaine [64], alcohol [65], and nicotine [66]. We will
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focus on smoking cessation since the development of rimonabant as a therapeutic for smoking
addition was actively pursued in clinical trials by Sanofi. The need was—and remains—clear:
smoking tobacco is still one of the most prevalent, avoidable causes of death [67]. It is also
highly addictive: 80% of smokers who attempt to quit relapse within the first month of absti-
nence [68]. To understand how CB1 receptors might help smokers quit, we need to understand
the underpinnings of dependence in smoking. Nicotine is a potent agonist at the eponymous
nicotinic acetylcholine receptors (nAChR) [69]. In the brain, these receptors excite neurons
and elicit the release of multiple neurotransmitters; importantly here, this includes the release
of dopamine which mediates the mild sense of pleasure experienced by smokers by activating
the mesocorticolimbic reward pathway [70] (Figure 4). This reward pathway is a critical
neuronal underpinning of drug addiction, and its relationship with nicotine has been studied
intensely for decades (reviewed in [71]). Nicotine-stimulated dopamine release in the ventral
tegmental area leads to dopamine release in the nucleus accumbens (NAc) and nucleus of the
stria terminalis [72,73]. How might CB1 receptors help? They are found presynaptically at key
synapses in the mesocorticolimbic system, including both GABAergic and glutamatergic affer-
ent neurons that regulate dopamine release (Figure 4B, [74,75]). CB1 receptors on GABAergic
inputs inhibit the release of GABA, relieving their inhibition and enhancing dopamine release
(Figure 4). Rimonabant would be expected to oppose this, reducing the ability of nicotine to
produce a pleasurable effect [76]. A study of nicotine-induced dopamine release in the NAc
found this effect for rimonabant vs. nicotine [66] and ethanol [66] but a separate study did
not see a comparable result for heroin [77] even though it found that rimonabant reduced
self-administration.

Reward is central to the initiation of drug use, but drug dependence is about more than
reward. Withdrawal symptoms in the wake of abstinence can be a powerful inducement to
relapse. Rimonabant did not induce withdrawal in nicotine-dependent mice, though the
same study found that CB1R activation ameliorated withdrawal symptoms [78]. Learned
environmental cues can also contribute to dependence and are linked to dopamine re-
lease [79]. This has been demonstrated for nicotine and is countered by rimonabant, which
reduced cue-associated relapse in nicotine-dependent rats [80–82]. There is evidence that
cue-associated relapse occurs through the modulation of the impact of reward-related
memories [83]. CB1 receptors mediate long-term plasticity in several brain regions central
to the formation and evaluation of memories (i.e., hippocampus, amygdala, prefrontal
cortex [23]) and CB1R inhibition improves some aspects of memory [84] but the mechanism
by which rimonabant reduced cue-associated relapse remains uncertain.

Lastly, cannabinoids also impact the motivation to seek out opioids and psychos-
timulants through a mechanism that is independent of dopamine release in the nucleus
accumbens. This has less relevance for nicotine, but may apply for other important drugs
of abuse, and potentially for food craving. The basis for this is still a matter of speculation
but may involve CB1 receptors in the prefrontal cortex that integrate and bind sensory,
emotional and hedonic inputs (discussed in [63]).

These findings led to consideration of rimonabant as a potential therapy to help smok-
ers quit. Experiments in animal models of addiction and withdrawal proved promising:
rimonabant reduced dopamine release in the nucleus accumbens and animals were less
likely to self-administer nicotine even when presented with associated cues (e.g., [66]). Thus
encouraged, researchers initiated a series of five clinical trials collectively named STRATUS
(Studies with Rimonabant and Tobacco Use) for treating nicotine dependence in those
motivated to quit. Pooled analysis of these studies found that those who took rimonabant
(20 mg) had a 50% higher chance of maintaining abstinence [85]. A CIRRUS study, not
affiliated with STRATUS, saw even better outcomes (39% vs. 21%, a ~2-fold improvement)
when rimonabant was used in combination with nicotine replacement therapy [86]. Most
participants (>60%) were resistant to the treatment, which included weekly counseling, but
it had the side-benefit of averting the weight gain that is frequently associated with quitting
smoking. At the time, smokers had few options aside from nicotine replacement therapies
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and anti-depressants [87] but varenicline, a nicotinic receptor agonist developed for this
purpose, has since been reported to yield superior outcomes (2.9-fold improvement) [88].
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Figure 4. CB1R in reward circuitry. (A) The nucleus accumbens (NAc) receives excitatory input from
the prefrontal cortex (PFC). The NAc also sends inhibitory projections to the dopaminergic ventral
tegmental area (VTA), reducing release of dopamine (DA). (B) In the NAc, cannabinoid receptor
type 1 (CB1) on PFC inputs reduce the stimulation of GABAergic NAc neurons. By reducing GABA
release onto dopaminergic (DAergic) VTA neurons, CB1Rs increase DA release. CB1 receptors are also
present in the VTA on GABAergic inputs. Here too, CB1R activation relieves inhibition of DAergic
neurons, increasing DA release.

A post hoc evaluation of three unpublished trials found that the side effect profile was
not as pronounced as those reported for studies of the drug for the purpose of weight loss
but did include anxiety, nausea, diarrhea and vomiting [85]. One favorable consideration
is likely duration of treatment. Rimonabant treatment for weight loss would ultimately
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be life-long (since weight returned after patients stopped using rimonabant), while treat-
ment for smokers might not be needed after patients had passed through a window of
vulnerability. In 2006, the FDA gave Sanofi a non-approvable letter for its use in smokers
(but an approvable letter for weight loss). The clock ran out on rimonabant before it could
address FDA concerns. After the European Medicines Agency withdrew approval, Sanofi
retracted its NDA [89] and did not pursue the research further. Research on the use of CB1
antagonists for dependency on nicotine and other drugs of abuse drastically declined over
the following decade. Interest in the approach has not evaporated and some studies are
exploring pharmacological alternatives to rimonabant [90] that may avoid the psychiatric
side-effects, as will be discussed in the last section. For instance, the peripheral CB1R
antagonist JD5037 was found to reduce ethanol drinking in wild type, but not in CB1R,
ghrelin or ghrelin receptor knock-out mice [91], thus revealing a hitherto unrecognized
gut-brain axis in alcohol abuse.

4.3. Cannabis Toxicity

When emergency providers encounter a victim of opiate overdose, they turn to nalox-
one, a competitive antagonist at the mu opioid receptor that has served as an antidote to
opiate toxicity for 50 years. There is no comparable treatment for cannabis overdose even
though the need is there. Emergency rooms are seeing a spike in cannabis-related visits.
This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that
can cause serious neurological and cardiovascular complications, and roughly a dozen
deaths per year in the US. But the bulk of these visits—nearly half a million per year in the
US—are due to overdose of cannabis, especially in regions that have legalized recreational
cannabis [92]. Absent an antidote, treatment options are mostly limited to sedatives, with
their own risks, to ‘wait out’ the overdose. For acute single-use reversal of toxicity in an
emergency setting, the benefits of using a compound such as rimonabant may outweigh
the risks. The real question is whether rimonabant has the properties of a good antidote:
simple administration suitable to an emergency setting and rapid action. The preferred
route would be intramuscular injection or nasal spray and the effect onset should ideally be
under five minutes. The lack of any published data on this subject may be an indication that
rimonabant does not meet these criteria or—less likely—that no one has tested rimonabant
for this purpose. It will be interesting to see whether the biased CB1R inhibitor AEF0117,
which proved to be efficient in treating cannabis-use disorder in Phase 2a trials [93], will
emerge as potential treatment for cannabis intoxication.

At the time that rimonabant was in clinical trials, there were limited applications for a
CB1 antagonist beyond weight loss and drug addiction. This has changed somewhat as we
have developed a more thorough understanding of the many roles played by cannabinoid
receptors in the body. Cannabinoid effects on metabolism are a potentially rich vein that
will spur new lines of clinically motivated research. Doubtless, other applications for
cannabinoid antagonists will become apparent in time. At that time, new pharmacological
tools will be available, as discussed in the next section.

5. Novel Pharmacological Strategies
5.1. Peripherally Restricted Inverse Agonists

As mentioned earlier, there is evidence that at least some weight-loss and metabolic
benefits are to be had by blocking CB1 receptors outside of the CNS. Researchers seized on
this to focus on the development of peripherally restricted CB1 receptor antagonists, i.e.,
those that do not cross the blood–brain barrier. Often chemists face the opposite challenge,
of modifying compounds to facilitate their entry into the brain, the portals of which are
guarded jealously by the various channels and pumps that make up the blood–brain
barrier. Endocannabinoids and phytocannabinoids are as a rule lipophilic, and readily
cross through this barrier. Determined, chemists soon developed compounds, generally
variants of rimonabant and other known antagonists that they were modified to be less
lipid-soluble. Results with peripherally restricted CB1R antagonists have proved promising
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as they do not induce withdrawal (e.g., [94]), but compounds such as JD5037 reduce food
intake and body weight in mice with diet-induced obesity through the normalization
of hyperleptinemia and restoration of central leptin sensitivity [45,95,96]. Moreover, a
peripheral CB1 blockade has the potential to significantly delay the progression of β-cell
loss [97] and diabetic nephropathy [98] independently of food intake and body weight
reduction.

5.2. Neutral Antagonists

Another proposed strategy was the development of neutral, or ‘silent’, antagonists.
The premise was that rimonabant was not merely an antagonist but an inverse agonist.
There is evidence that in some settings, CB1R is inactive under baseline conditions but in
others there is a ‘tonic’ activity that is independent of ligand binding. For instance, CB1R
inverse agonists alone will increase gastrointestinal motility [99], thus implying tonic CB1R
activity on vagal terminals. On the other hand, CB1R inverse agonists typically do not
increase core body temperature [100] while hypothermia is one of the classical effects of
pharmacological CB1R activation. This suggests that CB1Rs that mediate the hypothermic
effect of cannabinoids are not tonically active, and that different sites of the body have
a different ‘endocannabinoid tone’. Moreover, some data suggest that this ‘tone’ may
vary among individuals and under pathological conditions such as insulin resistance and
obesity [101]. In principle, such a difference might provide a mechanistic basis to explain
why some patients experienced considerable weight loss in response to rimonabant while
others did not.

Taking the example of anxiety, if the cannabinoid system is partially active to reduce
anxiety, then reversing this to zero with an inverse agonist would result in depression.
Based on this reasoning, a neutral antagonist would maintain signaling at the partial tonic
state. Several planets have to be in alignment for this to work. The circuitry controlling
appetite needs to not have ligand-independent tonic activity while the circuitry impacting
moods that were problematic for rimonabant do. Several neutral antagonists have been
described and tested in the context of weight loss and/or smoking (e.g., VCHSR [102];
AM4113 [103]). Promisingly, AM4113 reduced food intake and food-reinforced behavior
without causing nausea or increased responses to fear conditioning or anxiety [104–106].
Finally, AM6545, a CB1R antagonist that is both neutral and non-penetrant, improved
plasma and liver lipid parameters, adiposity and body weight in diet-induced obese
animals while lacking detectable behavioral side effects [95].

5.3. Biased Antagonists

In the pursuit of safer CB1R blockers, Cinar and co-workers developed a β-arrestin2
(arrestin3) biased orthosteric antagonist, named MRI-1891, that does not inhibit CB1R-
mediated Gi signaling [107]. This compound, unlike rimonabant, interacts with nonpolar
residues close to the N-terminus of the receptor that is likely the molecular underpinning
of biased antagonism. Prominently, MRI-1891 improved muscle insulin resistance and
reduced body weight in diet-induced obese mice while displaying no anxiogenic activity
even at very high doses with partial brain CB1R occupancy. Also, this compound proved
to be effective in ameliorating diabetic nephropathy [108]. Another biased compound,
the pregnenolone derivative AEF0117, which selectively blocks CB1R-mediated MAP
kinase signaling without affecting cAMP levels and is efficacious in the treatment of
cannabis use disorder, has no detectable adverse neuropsychiatric effects, despite high
brain penetrance [93]. All in all, biased antagonism may be yet another strategy to overcome
undesired neuropsychiatric side effects associated with a traditional, central CB1 blockade
while retaining some therapeutic effects of CB1R antagonism.

5.4. Turning off the Tap—Blocking Endocannabinoid Synthesis

In principle, another strategy would be to develop blockers for the synthetic enzymes
for either of the endocannabinoids. In the case of 2-AG, this would be either of two dia-
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cylglycerol lipases (DAGLa and DAGLb) [11]. DAGLa appears to have a more prominent
CNS role, while the two share roles in the rest of the body [109,110]. For anandamide, this
was long an open question, but it is likely that NAPE-phospholipase D (NAPE-PLD) is
responsible for synthesizing anandamide [12]. Pharmacological tools for these enzymes
have been limited, but some DAGLa/b-selective compounds have been reported (e.g.,
KT109 [111]) and, lately, a blocker for NAPE-PLD [112]. Targeting such an enzyme may
offer greater specificity and selectivity than a blanket blockade of all CB1 receptors, espe-
cially if the enzyme of interest has a more limited distribution. But, enzyme blockers may
come with unexpected consequences. For example, altering 2-AG metabolism has been
found to also have profound effects on the arachidonic acid cycle and on prostaglandin
synthesis [109,113]. This approach is still in its infancy.

5.5. Negative Allosteric Modulation

As previously noted, one of the main challenges in developing cannabinoid therapeu-
tics is the near ubiquity of CB1 receptors. As a result, there is a strong interest in developing
alternatives that offer more selective targeting. One strategy has been to develop allosteric
modulators of CB1Rs. The idea is that most receptors have not only their classical ‘or-
thosteric’ site, but also at least one secondary ‘allosteric’ site. In principle, a ligand that
binds the allosteric site would modulate the signaling of this receptor by the endogenous
ligand. A negative allosteric modulator (NAM) would inhibit the endogenous signaling,
while a positive allosteric modulator (PAM) would enhance that signaling. Allosteric mod-
ulators are not a new concept—benzodiazepines and barbiturates are PAMs at GABA-A
receptors—but allosteric modulators for cannabinoids were not described until 2005 [114].
Research has continued into allosterics, with particular interest in CB1 PAMs for alleviation
of pain [115]. A CB1 NAM promises the possibility of dialing down existing signaling only
at receptors that are being activated endogenously. This may be subject to the same pitfalls
as traditional competitive antagonists. But, the NAMs described thus far (e.g., [116]), have
shown considerable ‘biased antagonism’. GPCRs activate multiple intracellular signaling
pathways; biased signaling means that a given ligand differentially affects these pathways.
In some cases, they even have a mix of activating and inhibiting effects. This may prove
advantageous if it can be determined, for instance, that desirable effects occur via a particu-
lar pathway, similarly to that reported for MRI-1891 (see above). This advantage may also
apply to conventional antagonists.

5.6. Phytocannabinoids

The subject of NAMs brings us to the last group of compounds, the phytocannabinoids
that started this journey. In some sense, the cannabinoid field has come full circle. After the
initial flourish of phytocannabinoid research in the 1970s, efforts focused first on the newly
identified receptors and their endogenous ligands, and then on defining the enzymatic
players in their synthesis and metabolism. Lately, however, there has been a rebounding
interest in plant cannabinoids. This has been due in part to the changing legal status in
some countries where companies have zealously embraced all things cannabis, but also
because of the striking effects of one cannabinoid that was long ignored. Though THC
and CBD are generally present in comparable quantities in the plant, CBD long remained
in the shadows, often referred to as the inactive or at least a non-psychoactive plant
cannabinoid. This picture was based in large part on early studies that showed that CBD
did not activate CB1 cannabinoid receptors [117], studies that missed allosteric binding to
CB1R. CBD is likely a negative allosteric modulator at CB1 receptors [118] and it has been
demonstrated that CBD blocks the effects of equivalent concentrations of THC, for instance,
in the regulation of ocular pressure [119] and salivation [120]. But, the salutary effects for
the control of seizures are likely to occur through another receptor such as GPR55 [121].
CBD has been investigated in animals for potential effects on weight, with mixed results
(reviewed in [122]). The embrace of CBD by the public and its FDA approval as a treatment
for a form of epilepsy has led to a re-appraisal of the 100+ other phytocannabinoids. Several
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dozen early-stage clinical trials are underway, none of these for CB1 antagonist properties,
but it is noteworthy that the cannabinoid-focused GW Pharmaceuticals has a patent filing
that lists tetrahydrocannabivarin (THCV) as a neutral antagonist [123].

6. Conclusions

The endocannabinoid system is found throughout the CNS and the body where it
impacts many important physiological processes (summarized in Figure 5). Expectations
were high that targeting cannabinoid receptors would prove therapeutically beneficial;
pharmaceutical companies labored long to develop a therapy. Alas, the experience with
first-in-class cannabinoid type-1 receptor (CB1R) antagonist rimonabant as a therapy for
weight loss is a now-classic cautionary tale of the perils of drug development. The outcome
dealt a blow to those pursuing therapies involving CB1R antagonists. Even the most
commercially compelling application of rimonabant—weight loss—has now been partially
eclipsed by drugs with different mechanisms of action and greater effect. Still, blocking
CB1 receptors results in intriguing metabolic effects, some of which appear to occur outside
the CNS. Moreover, recent years have seen a startling change in the legal status of cannabis,
accompanied by a popular embrace of ‘all things cannabis’. These changes combined with
new pharmacological strategies and diligent medicinal chemistry may yet see the field to
some measure of fulfillment of its early promise.
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the periphery. Abbreviations: gastrointestinal tract (GI), Homeostatic Model Assessment for Insulin
resistance (HOMA-IR), high-density lipoprotein (HDL), and low-density lipoprotein (LDL).
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