A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment
Abstract
:1. Introduction
1.1. Diagnosis, Signs, and Symptoms of Liver Cancer
1.2. Treatment of Liver Cancer
1.2.1. Chemotherapy for Treating Liver Cancer
1.2.2. Immunotherapy for Liver Cancer
1.2.3. Common Risk Factors
1.3. Drug Repurposing
Drug Repurposing Approaches
- Identifying a promising chemical for a certain indication (hypothesis generation);
- Conducting a mechanistic examination of the drug’s impact in preclinical models; and
- Evaluating the efficacy of a Phase II clinical research.
2. Results and Discussion
2.1. Pravastatin
2.2. Simvastatin
2.3. Fluvastatin
2.4. Metformin
2.5. Canagliflozin
2.6. Pimozide
2.7. Valproate
2.8. Bexarotene
2.9. Chloroquine
2.10. Linagliptin
2.11. Lidocaine
2.12. Raloxifene
2.13. Itraconazole
2.14. Clofazimine
2.15. Target Prediction
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef] [PubMed]
- Herszényi, L.; Tulassay, Z. Epidemiology of gastrointestinal and liver tumors. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 249–258. [Google Scholar] [PubMed]
- Wege, H.; Schulze, K.; von Felden, J.; Calderaro, J.; Reig, M. Rare variants of primary liver cancer: Fibrolamellar, combined, and sarcomatoid hepatocellular carcinomas. Eur. J. Med. Genet. 2021, 64, 104313. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Pan, Y.; Kong, R.; Shu, S. Therapy of Primary Liver Cancer. Innovation 2020, 1, 100032. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M. Hepatocellular Carcinoma. Nature 2021, 7, 6. [Google Scholar]
- Liu, Z.; Jiang, Y.; Yuan, H.; Fang, Q.; Cai, N.; Suo, C.; Jin, L.; Zhang, T.; Chen, X. The trends in incidence of primary liver cancer caused by specific etiologies: Results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J. Hepatol. 2019, 70, 674–683. [Google Scholar] [CrossRef]
- Shi, J.; Cao, M.; Wang, Y.; Bai, F.; Lei, L.; Peng, J.; Feletto, E.; Canfell, K.; Qu, C.; Chen, W. Is it possible to halve the incidence of liver cancer in China by 2050? Int. J. Cancer 2020, 148, 1051–1065. [Google Scholar] [CrossRef]
- Yang, W.-S.; Zeng, X.-F.; Liu, Z.-N.; Zhao, Q.-H.; Tan, Y.-T.; Gao, J.; Li, H.-L.; Xiang, Y.-B. Diet and liver cancer risk: A narrative review of epidemiological evidence. Br. J. Nutr. 2020, 124, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S.; Gores, G.J. Cholangiocarcinoma. Nat. Rev. Dis. Prim. 2021, 7, 65. [Google Scholar] [CrossRef]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Robinson, L.; Lee, N.L.; Welles, S.; Evans, A.A. No contribution of lifestyle and environmental exposures to gender discrepancy of liver disease severity in chronic hepatitis b infection: Observations from the Haimen City cohort. PLoS ONE 2017, 12, e0175482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.J.H.; Setiawan, V.W.; Ng, C.H.; Lim, W.H.; Muthiah, M.D.; Tan, E.X.; Dan, Y.Y.; Roberts, L.R.; Loomba, R.; Huang, D.Q. Global burden of liver cancer in males and females: Changing etiological basis and the growing contribution of NASH. Hepatology 2022, 77, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Shim, S.; Cho, J.; Lim, H.K. Systematic Review of Studies Assessing the Health-Related Quality of Life of Hepatocellular Carcinoma Patients from 2009 to 2018. Korean J. Radiol. 2020, 21, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Maher, J.; Lie, X.; Gwaltney, C.; Barzi, A.; Karwal, M.; Macarulla, T.; Sun, H.-C.; Trojan, J.; Meyers, O.; et al. Understanding the patient experience in hepatocellular carcinoma: A qualitative patient interview study. Qual. Life Res. 2022, 31, 473–485. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, C.; Lim, C.S.; Sirlin, C.B.; McGrath, T.A.; Salameh, J.-P.; Bashir, M.R.; Tang, A.; Singal, A.G.; Costa, A.F.; Fowler, K.; et al. Accuracy of the Liver Imaging Reporting and Data System in Computed Tomography and Magnetic Resonance Image Analysis of Hepatocellular Carcinoma or Overall Malignancy—A Systematic Review. Gastroenterology 2019, 156, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.D.; Heimbach, J.K. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ 2020, 371, m3544. [Google Scholar] [CrossRef]
- Man, S.; Luo, C.; Yan, M.; Zhao, G.; Ma, L.; Gao, W. Treatment for liver cancer: From sorafenib to natural products. Eur. J. Med. Chem. 2021, 224, 113690. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (Ed.) Sorafenib; National Center for Biotechnology Information: Bethesda, MD, USA, 2018.
- Jelic, S.; Sotiropoulos, G.C. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010, 21, v59–v64. [Google Scholar] [CrossRef]
- Kane, R.C.; Farrell, A.T.; Madabushi, R.; Booth, B.; Chattopadhyay, S.; Sridhara, R.; Justice, R.; Pazdur, R. Sorafenib for the Treatment of Unresectable Hepatocellular Carcinoma. Oncologist 2009, 14, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K.; Kitamura, S.; Maeda, T.; Yanagi, T. Sorafenib-Related Basal Cell Carcinoma. Dermatol. Surg. 2021, 47, 1269–1270. [Google Scholar] [CrossRef]
- Abbas, M.N.; Tan, W.S.; Kichenadasse, G. Sorafenib-related generalized eruptive keratoacanthomas (Grzybowski syndrome): A case report. J. Med. Case Rep. 2021, 15, 481. [Google Scholar] [CrossRef]
- Song, J.; Zhao, W.; Lu, C.; Shao, X. RETRACTED ARTICLE: LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK–Mfn2 signaling pathway. Cancer Cell Int. 2019, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Richly, H.; Schultheis, B.; Adamietz, I.A.; Kupsch, P.; Grubert, M.; Hilger, R.A.; Ludwig, M.; Brendel, E.; Christensen, O.; Strumberg, D. Combination of sorafenib and doxorubicin in patients Journal Pre-proof Journal Pre-proof with advanced hepatocellular carcinoma: Results from a phase I extension trial. Eur. J. Cancer 2009, 45, 579–587. [Google Scholar] [CrossRef]
- Wang, C.; Vegna, S.; Jin, H.; Benedict, B.; Lieftink, C.; Ramirez, C.; De Oliveira, R.L.; Morris, B.; Gadiot, J.; Wang, W.; et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 2019, 574, 268–272. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases (US). LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Hsieh, C.-B.; Chou, S.-J.; Shih, M.-L.; Chu, H.-C.; Chu, C.-H.; Yu, J.-C.; Yao, N.-S. Preliminary experience with gemcitabine and cisplatin adjuvant chemotherapy after liver transplantation for hepatocellular carcinoma. Eur. J. Surg. Oncol. (EJSO) 2008, 34, 906–910. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Breakthrough of the year 2013. Cancer Immunother. Sci. 2013, 342, 1432–1433. [Google Scholar]
- Shen, Y.; Wang, X.; Lu, J.; Salfenmoser, M.; Wirsik, N.M.; Schleussner, N.; Imle, A.; Valls, A.F.; Radhakrishnan, P.; Liang, J.; et al. Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 2020, 37, 800–817.e7. [Google Scholar] [CrossRef] [PubMed]
- Farlow, S.; Potz, D.; Zi, T.; Sun, X.; Lin, J.; Chiu, M.I.; Robinson, M.O.; Heyer, J.; Zhou, Y. Abstract A12: Variation in response to triple VEGFR inhibitor tivozanib in mouse models of hepatocellular carcinoma. Mol. Cancer Ther. 2009, 8, A12. [Google Scholar] [CrossRef]
- Bruix, J.; Raoul, J.-L.; Sherman, M.; Mazzaferro, V.; Bolondi, L.; Craxi, A.; Galle, P.R.; Santoro, A.; Beaugrand, M.; Sangiovanni, A.; et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: Subanalyses of a phase III trial. J. Hepatol. 2012, 57, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greten, T.F.; Sangro, B. Targets for immunotherapy of liver cancer. J. Hepatol. 2017, 68, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cainap, C.; Qin, S.; Huang, W.T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y.K.; Chen, P.J.; Toh, H.C.; et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2015, 33, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Nguyen, H.; Chambers, C.; Kang, J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc. Natl. Acad. Sci. USA 2010, 107, 1524–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprinzl, M.F.; Galle, P.R. Current progress in immunotherapy of hepatocellular carcinoma. J. Hepatol. 2017, 66, 482–484. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Shi, M.; Zeng, Z.; Qi, R.-Z.; Liu, Z.-W.; Zhang, J.-Y.; Yang, Y.-P.; Tien, P.; Wang, F.-S. PD-1 and PD-L1 upregulation promotes CD8+ T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer 2011, 128, 887–896. [Google Scholar] [CrossRef]
- Greten, T.F.; Manns, M.P.; Korangy, F. Immunotherapy of hepatocellular carcinoma. J. Hepatol. 2006, 45, 868–878. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [Green Version]
- Syed, Y.Y. Ramucirumab: A Review in Hepatocellular Carcinoma. Drugs 2020, 80, 315–322. [Google Scholar] [CrossRef]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin. Cancer Res. 2019, 25, 912–920. [Google Scholar] [CrossRef] [Green Version]
- El-Serag, H.B.; Kanwal, F.; Feng, Z.; Marrero, J.A.; Khaderi, S.; Singal, A.G. Risk Factors for Cirrhosis in Contemporary Hepatology Practices—Findings From the Texas Hepatocellular Carcinoma Consortium Cohort. Gastroenterology 2020, 159, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [CrossRef]
- Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; et al. Predicting new molecular targets for known drugs. Nature 2009, 462, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, H.; Chen, M.; Wang, S.; Qian, R.; Zhang, L.; Huang, X.; Wang, J.; Liu, Z.; Qin, W.; et al. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. eLlife 2022, 11, e71880. [Google Scholar] [CrossRef]
- Riaño, I.; Martín, L.; Varela, M.; Serrano, T.; Núñez, O.; Mínguez, B.; Rodrigues, P.M.; Perugorria, M.J.; Banales, J.M.; Arenas, J.I. Efficacy and Safety of the Combination of Pravastatin and Sorafenib for the Treatment of Advanced Hepatocellular Carcinoma (ESTAHEP Clinical Trial). Cancers 2020, 12, 1900. [Google Scholar] [CrossRef]
- Menter, D.G.; Ramsauer, V.P.; Harirforoosh, S.; Chakraborty, K.; Yang, P.; Hsi, L.; Newman, R.A.; Krishnan, K. Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites. PLoS ONE 2011, 6, e28813. [Google Scholar] [CrossRef] [Green Version]
- Sławińska-Brych, A.; Zdzisińska, B.; Kandefer-Szerszeń, M. Fluvastatin inhibits growth and alters the malignant phenotype of the C6 glioma cell line. Pharmacol. Rep. 2014, 66, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Sun, P.; Zhang, X.; Lin, G.; Xin, Q.; Niu, Y.; Chen, Y.; Xu, N.; Zhang, Y.; Xie, W. Canagliflozin Modulates Hypoxia-Induced Metastasis, Angiogenesis and Glycolysis by Decreasing HIF-1α Protein Synthesis via AKT/mTOR Pathway. Int. J. Mol. Sci. 2021, 22, 13336. [Google Scholar] [CrossRef]
- Kongsamut, S.; Kang, J.; Chen, X.; Roehr, J.; Rampe, D. A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur. J. Pharmacol. 2002, 450, 37–41. [Google Scholar] [CrossRef]
- Rithanya, P.; Ezhilarasan, D. Sodium Valproate, a Histone Deacetylase Inhibitor, Provokes Reactive Oxygen Species–Mediated Cytotoxicity in Human Hepatocellular Carcinoma Cells. J. Gastrointest. Cancer 2021, 52, 138–144. [Google Scholar] [CrossRef]
- Qu, L.; Tang, X. Bexarotene: A promising anticancer agent. Cancer Chemother. Pharmacol. 2009, 65, 201–205. [Google Scholar] [CrossRef]
- Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 2009, 625, 220–233. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, D.; Li, K.; Quan, Z.; Wang, Z.; Sun, Z. Repositioning of Hypoglycemic Drug Linagliptin for Cancer Treatment. Front. Pharmacol. 2020, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wang, L.; Cui, Q.; Iftikhar, R.; Xia, Y.; Xu, P. Repositioning Lidocaine as an Anticancer Drug: The Role Beyond Anesthesia. Front. Cell Dev. Biol. 2020, 8, 565. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Chang, J.; Jeong, K.; Lee, W. Raloxifene as a treatment option for viral infections. J. Microbiol. 2021, 59, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, X.; Liu, Y.; Ni, B.; Sai, N.; You, L.; Sun, M.; Yao, Y.; Qu, C.; Yin, X.; et al. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways. Biomed. Pharmacother. 2020, 131, 110661. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Koval, A.; Katanaev, V.L. Beyond TNBC: Repositioning of Clofazimine Against a Broad Range of Wnt-Dependent Cancers. Front. Oncol. 2020, 10, 602817. [Google Scholar] [CrossRef] [PubMed]
- Csomó, K.; Belik, A.; Hrabák, A.; Kovács, B.; Fábián, O.; Valent, S.; Varga, G.; Kukor, Z. Effect of Pravastatin and Simvastatin on the Reduction of Cytochrome C. J. Pers. Med. 2022, 12, 1121. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Zhou, L.; Xie, H.-Y.; Zheng, S.-S. Fluvastatin, a lipophilic statin, induces apoptosis in human hepatocellular carcinoma cells through mitochondria-operated pathway. Experiment 2010, 48, 1167–1174. [Google Scholar]
- Kim, J.H.; Lee, J.M.; Kim, J.H.; Kim, K.R. Fluvastatin activates sirtuin 6 to regulate sterol regulatory element-binding proteins and AMP-activated protein kinase in HepG2 cells. Biochem. Biophys. Res. Commun. 2018, 503, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Argaud, D.; Roth, H.; Wiernsperger, N.; Leverve, X.M. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur. J. Biochem. 1993, 213, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Zheng, Z.J.; Shi, R.; Su, Q.; Jiang, Q.; Kip, K.E. Metformin for liver cancer prevention in patients with type 2 diabetes: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2012, 97, 2347–2353. [Google Scholar] [CrossRef] [Green Version]
- Yuen, V.W.-H.; Wong, C.C.-L. Hypoxia-inducible factors and innate immunity in liver cancer. J. Clin. Investig. 2020, 130, 5052–5062. [Google Scholar] [CrossRef]
- Seko, Y.; Nishikawa, T.; Umemura, A.; Yamaguchi, K.; Moriguchi, M.; Yasui, K.; Kimura, M.; Iijima, H.; Hashimoto, T.; Sumida, Y.; et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsy-proven nonalcoholic steatohepatitis classified as stage 1–3 fibrosis. Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Papadopoli, D.; Uchenunu, O.; Palia, R.; Chekkal, N.; Hulea, L.; Topisirovic, I.; Pollak, M.; St-Pierre, J. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia 2021, 23, 391–399. [Google Scholar] [CrossRef]
- Kaji, K.; Nishimura, N.; Seki, K.; Sato, S.; Saikawa, S.; Nakanishi, K.; Furukawa, M.; Kawaratani, H.; Kitade, M.; Moriya, K.; et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int. J. Cancer 2017, 142, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
- Pharmaceuticals, G. Leaflet, ORAP® (Pimozide) Tablets. I21594. 2008; pp. 1–15. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/017473s041lbl.pdf (accessed on 27 January 2023).
- Chen, J.; Cai, N.; Chen, G.; Jia, C. The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma. Oncotarget 2015, 8, 17593. [Google Scholar] [CrossRef] [Green Version]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef] [Green Version]
- Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001, 20, 6969–6978. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.I.; Gopal, J.; Haugen, B.R.; Chiu, A.C.; Whaley, K.; Nowlakha, P.; Duvic, M. Central Hypothyroidism Associated with Retinoid X Receptor-selective Ligands. N. Engl. J. Med. 1999, 340, 1075–1079. [Google Scholar] [CrossRef]
- Szanto, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.A.; Nagy, L. Retinoid X receptors: X-ploring their (Patho)physiological Functions. Cell Death Diff. 2004, 11, S126–S143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanasaki, K.; Qu, S.; Yamamoto, F.; Schepers, C.; Simões, R.S.; Yabe, D.; Ji, L. Safety and tolerability of linagliptin in Asians with type 2 diabetes: A pooled analysis of 4457 patients from 21 randomized, double-blind, placebo-controlled clinical trials. Expert Opin. Drug Saf. 2021, 21, 425–434. [Google Scholar] [CrossRef]
- Watanabe, J.; Ikegami, Y.; Tsuda, A.; Kakehi, E.; Kanno, T.; Ishikawa, S.; Kataoka, Y. Lidocaine spray versus viscous lidocaine solution for pharyngeal local anesthesia in upper gastrointestinal endoscopy: Systematic review and meta-analysis. Dig. Endosc. 2020, 33, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Tabnak, P.; Masrouri, S.; Geraylow, K.R.; Zarei, M.; Esmailpoor, Z.H. Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed. Pharmacother. 2021, 144, 112309. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Liu, Y.; Wang, L.; Wang, G. Lidocaine exerts anticancer activity in bladder cancer by targeting isoprenylcysteine carboxylmethyltransferase (ICMT). Transl. Androl. Urol. 2021, 10, 4219–4230. [Google Scholar] [CrossRef]
- Yang, N.N.; Venugopalan, M.; Hardikar, S.; Glasebrook, A. Identification of an estrogen response activated by metabolites of 17b-estradiol and raloxifene. Science 1996, 273, 1222–1225. [Google Scholar] [CrossRef]
- Darnell, J.E., Jr. STATs and Gene Regulation. Science 1997, 225, 1630–1635. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kim, S.Y.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 39, 26–42. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Zhao, C.; Liu, T.; Yan, D.; Jou, D.; Li, H.; Zhang, C.; Lü, J.; Li, C.; et al. Growth-suppressive activity of raloxifene on liver cancer cells by targeting IL-6/GP130 signaling. Oncotarget 2017, 8, 33683–33693. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Fang, D.; Xiong, Z.; Luo, R. Inhibition of the hedgehog pathway for the treatment of cancer using Itraconazole. OncoTargets Ther. 2019, 12, 6875–6886. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Liu, W.; Wang, J.Q.; Tang, Z. “Hedgehog pathway”: A potential target of itraconazole in the treatment of cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Mackey, J.; Barnes, J. Clofazimine in the treatment of discoid lupus erythematosus. Br. J. Dermatol. 1974, 91, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Gopal, M.; Padayatchi, N.; Metcalfe, J.Z.; O’Donnell, M.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2013, 17, 1001–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bopape, M.C.; Steel, H.C.; Cockeran, R.; Matlola, N.M.; Fourie, P.B.; Anderson, R. Antimicrobial activity of clofazimine is not dependent on mycobacterial C-type phospholipases. J. Antimicrob. Chemother. 2004, 53, 971–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechartier, B.; Cole, S.T. Mode of Action of Clofazimine and Combination Therapy with Benzothiazinones against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 4457–4463. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, N.; Hossain, U.; Mandal, A.; Sil, P.C. The Wnt signaling pathway: A potential therapeutic target against cancer. Ann. N. Y. Acad. Sci. 2019, 1443, 54–74. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Indication | Mechanism of Action | Reference | Method of Prediction |
---|---|---|---|---|
Pravastatin | Lipid Lowering Drug | Inhibitor of HMG-CoA Reductase | Riaño et al. (2020) [48] | Target Prediction using Swiss Target tool and Protein Interaction Network analysis using STRING |
Simvastatin | Lipid Lowering Drug | Inhibitor of HMG-CoA Reductase | Menter et al. (2011) [49] | |
Fluvastatin | Lipid Lowering Drug | Inhibitor of HMG-CoA Reductase | Sławińska-Brych et al. (2014) [50] | |
Metformin | Treat Type 2 Diabetes | Suppresses The Production of Gluconeogenic Enzymes | Rena et al. (2017) [51] | |
Canagliflozin | Treat Type 2 Diabetes | SGLT2 Inhibitors | Luo et al. (2021) [52] | |
Pimozide | Antipsychotic Drug | Inhibiting Dopaminergic, Serotonergic, And Unknown Central Nervous System Receptors | Kongsamut et al. (2002) [53] | |
Valproate | Anticonvulsive Drug | Blockade of Voltage-Gated Sodium Channels And Increased Brain Levels of (GABA) | Rithanya and Ezhilarasan (2021) [54] | |
Bexarotene | Treat Cutaneous Manifestations of T Cell Lymphomas | Targets And Activates Retinoid X Receptors (RXRs) | Qu and Tang (2010) [55] | |
Chloroquine | Treat Malaria | Inhibition of Autophagic Flux | Solomon and Lee (2009)[56] | |
Linagliptin | Treat Type 2 Diabetes | Inhibitor of DPP-4 | Li et al. (2020) [57] | |
Lidocaine | Local Anaesthetics | Variety of Pathways, Including Sodium Channel Inhibitors And The Control of G Protein-Coupled Receptors | Zhou et al. (2020) [58] | |
Raloxifene | To Treat Postmenopausal Osteoporosis | Benzothiophene Selective Estrogen Receptor Modulator | Hong et al. (2021) [59] | |
Itraconazole | Antifungal Medicine | Inhibits Cytochrome P-450-Dependent Enzymes | Wang et al. (2020) [60] | |
Clofazimine | Antimycobacterial And Anti-Inflammatory Agent | Increases The Activity of Bacterial Phospholipase A2 | Xu et al. (2020) [61] |
Drug Name | Target | Common Name | Receptor Target Class |
---|---|---|---|
Pravastatin | HMG-CoA reductase | HMGCR | Oxidoreductase |
Neurokinin 2 receptor | TACR2 | Family A G protein-coupled receptor | |
Norepinephrine transporter | SLC6A2 | Electrochemical transporter | |
Dopamine transporter | SLC6A3 | Electrochemical transporter | |
Vitamin D receptor | VDR | Nuclear receptor | |
Thromboxane A2 receptor | TBXA2R | Family A G protein-coupled receptor | |
Inosine-5’-monophosphate dehydrogenase 1 | IMPDH1 | Oxidoreductase | |
Inosine-5’-monophosphate dehydrogenase 2 | IMPDH2 | Oxidoreductase | |
Matrix metalloproteinase 1 | MMP1 | Protease | |
Matrix metalloproteinase 8 | MMP8 | Protease | |
Atorvastatin | Cytochrome P450 3A4 | CYP3A4 | Cytochrome P450 |
HMG-CoA reductase | HMGCR | Oxidoreductase | |
Histone deacetylase 6 | HDAC6 | Eraser | |
Histone deacetylase 2 | HDAC2 | Eraser | |
Histone deacetylase 1 | HDAC1 | Eraser | |
Phosphodiesterase 6D | PDE6D | Phosphodiesterase | |
Squalene synthetase | FDFT1 | Enzyme | |
Glucocorticoid receptor | NR3C1 | Nuclear receptor | |
Prostanoid EP4 receptor (by homology) | PTGER4 | Family A G protein-coupled receptor | |
Phosphodiesterase 5A | PDE5A | Phosphodiesterase | |
Simvastatin | HMG-CoA reductase | HMGCR | Oxidoreductase |
Norepinephrine transporter | SLC6A2 | Electrochemical transporter | |
Neurokinin 2 receptor | TACR2 | Family A G protein-coupled receptor | |
Dopamine transporter | SLC6A3 | Electrochemical transporter | |
Histone deacetylase 6 | HDAC6 | Eraser | |
Corticotropin releasing factor receptor 1 (by homology) | CRHR1 | Family B G protein-coupled receptor | |
Histone deacetylase 1 | HDAC1 | Eraser | |
Beta amyloid A4 protein | APP | Membrane receptor | |
Bile acid receptor FXR | NR1H4 | Nuclear receptor | |
11-beta-hydroxysteroid dehydrogenase 1 | HSD11B1 | Enzyme | |
Fluvastatin | Cytochrome P450 2C9 | CYP2C9 | Cytochrome P450 |
HMG-CoA reductase | HMGCR | Oxidoreductase | |
Inosine-5’-monophosphate dehydrogenase 1 | IMPDH1 | Oxidoreductase | |
P2X purinoceptor 3 | P2RX3 | Ligand-gated ion channel | |
Prostanoid EP4 receptor | PTGER4 | Family A G protein-coupled receptor | |
Inosine-5’-monophosphate dehydrogenase 2 | IMPDH2 | Oxidoreductase | |
Prostanoid EP2 receptor (by homology) | PTGER2 | Family A G protein-coupled receptor | |
p53-binding protein Mdm-2 | MDM2 | Other nuclear protein | |
Type-1 angiotensin II receptor (by homology) | AGTR1 | Family A G protein-coupled receptor | |
Peroxisome proliferator-activated receptor gamma | PPARG | Nuclear receptor | |
Metformin | Thrombin | F2 | Protease |
Urokinase-type plasminogen activator | PLAU | Protease | |
Histamine H4 receptor | HRH4 | Family A G protein-coupled receptor | |
D-amino-acid oxidase | DAO | Enzyme | |
Histamine H3 receptor | HRH3 | Family A G protein-coupled receptor | |
Xanthine dehydrogenase | XDH | Oxidoreductase | |
Dihydrofolate reductase (by homology) | DHFR | Oxidoreductase | |
Integrin alpha-V/beta-3 | ITGAV ITGB3 | Membrane receptor | |
Coagulation factor IX | F9 | Protease | |
Neuronal acetylcholine receptor; alpha4/beta2 | CHRNA4 CHRNB2 | Ligand-gated ion channel | |
Canagliflozin | Sodium/glucose cotransporter 2 | SLC5A2 | Electrochemical transporter |
Sodium/glucose cotransporter 1 | SLC5A1 | Electrochemical transporter | |
Glucose transporter (by homology) | SLC2A1 | Electrochemical transporter | |
Phosphodiesterase 5A | PDE5A | Phosphodiesterase | |
Adenosine A1 receptor (by homology) | ADORA1 | Family A G protein-coupled receptor | |
Adenosine A2a receptor | ADORA2A | Family A G protein-coupled receptor | |
Adenosine A3 receptor | ADORA3 | Family A G protein-coupled receptor | |
Equilibrative nucleoside transporter 1 | SLC29A1 | Electrochemical transporter | |
Adenosine kinase | ADK | Enzyme | |
Coagulation factor VII/tissue factor | F3 | Surface antigen | |
Pimozide | Ubiquitin carboxyl-terminal hydrolase 1 | USP1 | Enzyme |
Dopamine D2 receptor | DRD2 | Family A G protein-coupled receptor | |
Potassium channel subfamily K member 2 | KCNK2 | Voltage-gated ion channel | |
Mu opioid receptor | OPRM1 | Family A G protein-coupled receptor | |
Delta opioid receptor | OPRD1 | Family A G protein-coupled receptor | |
Kappa Opioid receptor | OPRK1 | Family A G protein-coupled receptor | |
HERG | KCNH2 | Voltage-gated ion channel | |
Serotonin 6 (5-HT6) receptor | HTR6 | Family A G protein-coupled receptor | |
Voltage-gated T-type calcium channel alpha-1G subunit | CACNA1G | Voltage-gated ion channel | |
Glycine receptor subunit alpha-1 | GLRA1 | Ligand-gated ion channel | |
Valproate | Peroxisome proliferator-activated receptor delta | PPARD | Nuclear receptor |
Free fatty acid receptor 1 | FFAR1 | Family A G protein-coupled receptor | |
Fatty acid binding protein intestinal | FABP2 | Fatty acid binding protein family | |
11-beta-hydroxysteroid dehydrogenase 1 | HSD11B1 | Enzyme | |
Fatty acid binding protein adipocyte | FABP4 | Fatty acid binding protein family | |
Fatty acid binding protein muscle | FABP3 | Fatty acid binding protein family | |
Aldo-keto reductase family 1 member B10 | AKR1B10 | Enzyme | |
Peroxisome proliferator-activated receptor alpha | PPARA | Nuclear receptor | |
Androgen Receptor | AR | Nuclear receptor | |
Vitamin D receptor | VDR | Nuclear receptor | |
Bexarotene | Retinoid X receptor beta | RXRB | Nuclear receptor |
Retinoic acid receptor gamma | RARG | Nuclear receptor | |
Retinoid X receptor gamma | RXRG | Nuclear receptor | |
Retinoic acid receptor beta | RARB | Nuclear receptor | |
Retinoic acid receptor alpha | RARA | Nuclear receptor | |
Retinoid X receptor alpha | RXRA | Nuclear receptor | |
Cytochrome P450 26B1 | CYP26B1 | Cytochrome P450 | |
Cytochrome P450 26A1 | CYP26A1 | Cytochrome P450 | |
Nuclear receptor ROR-gamma | RORC | Nuclear receptor | |
Prostanoid EP4 receptor | PTGER4 | Family A G protein-coupled receptor | |
Chloroquine | Histamine H3 receptor | HRH3 | Family A G protein-coupled receptor |
HERG | KCNH2 | Voltage-gated ion channel | |
Histamine N-methyltransferase (by homology) | HNMT | Enzyme | |
Quinone reductase 2 | NQO2 | Enzyme | |
Prion protein | PRNP | Surface antigen | |
Muscarinic acetylcholine receptor M2 | CHRM2 | Family A G protein-coupled receptor | |
Alpha-1d adrenergic receptor | ADRA1D | Family A G protein-coupled receptor | |
Norepinephrine transporter | SLC6A2 | Electrochemical transporter | |
Serotonin 2a (5-HT2a) receptor | HTR2A | Family A G protein-coupled receptor | |
Dopamine D3 receptor | DRD3 | Family A G protein-coupled receptor | |
Linagliptin | Muscarinic acetylcholine receptor M1 | CHRM1 | Family A G protein-coupled receptor |
Dipeptidyl peptidase IV | DPP4 | Protease | |
Fibroblast activation protein alpha | FAP | Protease | |
Cyclin-dependent kinase 4 | CDK4 | Kinase | |
Dipeptidyl peptidase IX | DPP9 | Protease | |
MAP kinase p38 alpha | MAPK14 | Kinase | |
C-C chemokine receptor type 8 | CCR8 | Family A G protein-coupled receptor | |
Tyrosine-protein kinase ABL | ABL1 | Kinase | |
Platelet-derived growth factor receptor beta | PDGFRB | Kinase | |
Thrombin and coagulation factor X | F10 | Protease | |
Lidocaine | Sodium channel protein type IV alpha subunit | SCN4A | Voltage-gated ion channel |
Serotonin 1b (5-HT1b) receptor (by homology) | HTR1B | Family A G protein-coupled receptor | |
Dopamine D4 receptor | DRD4 | Family A G protein-coupled receptor | |
Muscarinic acetylcholine receptor M5 | CHRM5 | Family A G protein-coupled receptor | |
Dopamine D2 receptor | DRD2 | Family A G protein-coupled receptor | |
Muscarinic acetylcholine receptor M4 | CHRM4 | Family A G protein-coupled receptor | |
Cytochrome P450 2D6 | CYP2D6 | Cytochrome P450 | |
Dopamine D1 receptor | DRD1 | Family A G protein-coupled receptor | |
Alpha-2b adrenergic receptor | ADRA2B | Family A G protein-coupled receptor | |
Serotonin 1e (5-HT1e) receptor | HTR1E | Family A G protein-coupled receptor | |
Raloxifene | Serotonin 2b (5-HT2b) receptor | HTR2B | Family A G protein-coupled receptor |
Tyrosine-protein kinase FYN | FYN | Kinase | |
Alpha-2a adrenergic receptor | ADRA2A | Family A G protein-coupled receptor | |
Serotonin 1b (5-HT1b) receptor (by homology) | HTR1B | Family A G protein-coupled receptor | |
Adrenergic receptor alpha-2 | ADRA2C | Family A G protein-coupled receptor | |
Alpha-2b adrenergic receptor | ADRA2B | Family A G protein-coupled receptor | |
Dopamine D1 receptor | DRD1 | Family A G protein-coupled receptor | |
Estrogen receptor alpha | ESR1 | Nuclear receptor | |
Dopamine D2 receptor | DRD2 | Family A G protein-coupled receptor | |
Acetylcholinesterase | ACHE | Hydrolase | |
Itraconazole | Vasopressin V2 receptor | AVPR2 | Family A G protein-coupled receptor |
Tyrosine-protein kinase FYN | FYN | Kinase | |
C-C chemokine receptor type 4 | CCR4 | Family A G protein-coupled receptor | |
Cytochrome P450 3A4 | CYP3A4 | Cytochrome P450 | |
Cytochrome P450 51 | CYP51A1 | Cytochrome P450 | |
Interleukin-8 receptor A | CXCR1 | Family A G protein-coupled receptor | |
Muscarinic acetylcholine receptor M4 | CHRM4 | Family A G protein-coupled receptor | |
Muscarinic acetylcholine receptor M5 | CHRM5 | Family A G protein-coupled receptor | |
Sigma opioid receptor | SIGMAR1 | Membrane receptor | |
Dopamine D3 receptor | DRD3 | Family A G protein-coupled receptor | |
Clofazimine | Cyclophilin A (by homology) | PPIA | Isomerase |
Cannabinoid receptor 1 (by homology) | CNR1 | Family A G protein-coupled receptor | |
Progesterone receptor | PGR | Nuclear receptor | |
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 | PFKFB3 | Enzyme | |
MAP kinase p38 alpha (by homology) | MAPK14 | Kinase | |
Corticotropin releasing factor receptor 1 | CRHR1 | Family B G protein-coupled receptor | |
Hepatocyte growth factor receptor | MET | Kinase | |
Glucagon receptor | GCGR | Family B G protein-coupled receptor | |
Translocator protein (by homology) | TSPO | Membrane receptor | |
G protein-coupled receptor 39 | GPR39 | Family A G protein-coupled receptor |
Drug Name | Molecular Function (Gene Ontology) |
---|---|
Pravastatin | Bile acid receptor activity |
Bradykinin receptor binding | |
IMP dehydrogenase activity | |
Dopamine:sodium symporter activity liver cancer | |
JUN kinase activity | |
Atorvastatin | Bile acid receptor activity |
Lysophosphatidic acid receptor activity | |
Prostaglandin receptor activity | |
3,5-cyclic-AMP phosphodiesterase activity | |
Cysteine-type endopeptidase activity | |
Simvastatin | Orexin receptor activity |
Macrophage colony-stimulating factor receptor activity | |
Prostaglandin-endoperoxide synthase activity | |
Neurotrophin receptor activity | |
PTB domain binding | |
Fluvastatin | AMP deaminase activity |
Bradykinin receptor binding | |
Endothelin receptor activity | |
IMP dehydrogenase activity | |
Prostaglandin receptor activity | |
Metformin | Nitric-oxide synthase activity |
Histamine receptor activity | |
Arginine binding | |
G protein-coupled acetylcholine receptor activity | |
Folic acid binding | |
Canagliflozin | JUN kinase activity |
Glucosylceramidase activity | |
Ubiquitin activating enzyme activity | |
MAP kinase activity | |
MAP activity | |
Pimozide | Tachykinin receptor activity |
alpha2-adrenergic receptor activity | |
alpha1-adrenergic receptor activity | |
Histone kinase activity | |
Nitric-oxide synthase activity | |
Valproate | Bile acid receptor activity |
Geranylgeranyl reductase activity | |
Prostaglandin f receptor activity | |
Prostaglandin j receptor activity | |
Prostaglandin receptor activity | |
Bexarotene | Bradykinin receptor binding |
Prostaglandin d receptor activity | |
Prostaglandin receptor activity | |
Arachidonate 15-lipoxygenase activity | |
DNA binding domain binding | |
Chloroquine | Alpha-adrenergic receptor activity |
Tachykinin receptor activity | |
alpha1-adrenergic receptor activity | |
G protein-coupled acetylcholine receptor activity | |
Adrenergic receptor activity | |
Linagliptin | FBXO family protein binding |
Bradykinin receptor activity | |
Insulin-activated receptor activity | |
Platelet activating factor receptor activity | |
Somatostatin receptor activity | |
Licodaine | Dopamine neurotransmitter receptor activity |
Serotonin binding | |
Dopamine binding | |
Adrenergic receptor activity | |
Catecholamine binding | |
Raloxifene | Rho-dependent protein serine/threonine kinase activity |
Acetylcholinesterase activity | |
Alpha-adrenergic receptor activity | |
Serotonin binding | |
Dopamine neurotransmitter receptor activity | |
Itraconazole | Alpha-adrenergic receptor activity |
G protein-coupled acetylcholine receptor activity | |
JUN kinase activity | |
Serotonin binding | |
MAP kinase activity | |
Clofazimine | JUN kinase activity |
Cannabinoid receptor activity | |
Orexin receptor activity | |
Somatostatin receptor activity | |
G protein-coupled acetylcholine receptor activity |
Name of the Drug | Chemical Name | Mechanism of Action | Side Effect |
---|---|---|---|
Pravastatin | (3R,5R)-3,5-dihydroxy-7-((1R,2S,6S,8R,8aR)-6-hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-1,2,6,7,8,8a-hexahydronaphthalen-1-yl)-heptanoic acid | Competitive inhibition of HMG-CoA reductase to reduce cholesterol metabolism | Headache, nausea, muscle pain, rashes |
Simvastatin | [(1S,3R,7S,8S,8aR)-8-[2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] 2,2-dimethylbutanoate | Competitive inhibition of HMG-CoA reductase to reduce cholesterol metabolism | Nausea, headache, memory loss, stomach pain |
Fluvastatin | (E,3R,5S)-7-[3-(4-fluorophenyl)-1-propan-2-ylindol-2-yl]-3,5-dihydroxyhept-6-enoic acid | Competitive inhibition of HMG-CoA reductase, effect on SREBP1 pathway to reduce cholesterol metabolism | Chills, loss of appetite, muscle ache, joint pain |
Disulfiram | N,N-diethyl[(diethylcarbamothioyl)disulfanyl]carbothioamide | Combination with Copper has cytotoxic events | Blurred vision, chest pain, confusion, nausea |
Metformin | 3-(diaminomethylidene)-1,1-dimethylguanidine | Blocks mitochondrial respiratory chain, reducing ATP concentration | Nausea, stomach ache, loss of appetite, metallic taste in mouth |
Canagliflozin | (2S,3R,4R,5S,6R)-2-[3-[[5-(4-fluorophenyl)thiophen-2-yl]methyl]-4-methylphenyl]-6-(hydroxymethyl)oxane-3,4,5-triol | Suppression of intracellular glucose uptake by HCC cells by interfering with SGLT2 and GLUT1 pathway | Indigestion, nausea, loss of appetite, trouble in breathing |
Pimozide | 3-[1-[4,4-bis(4-fluorophenyl)butyl]piperidin-4-yl]-1H-benzimidazol-2-one | Inhibits stem-like cells and carcinogenesis in HCC cells | Weakness, constipation, changes in posture, dry mouth |
Valproate | 2-propylpentanoic acid | Reduces the activity of the HDAC (histone deacetylases) gene and tumor cell differentiation | Stomach ache, tremors, headache, weight gain |
Bexarotene | 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid | Selective inhibition of RXR that reduces angiogenesis and metastasis | Weakness, chills, weight gain, skin rash |
Chloroquine | 4-N-(7-chloroquinolin-4-yl)-1-N,1-N-diethylpentane-1,4-diamine | Inhibition of receptor tyrosine kinases and mTORC1 pathway | Bleeding gums, difficulty in breathing, paralysis, nausea |
Linagliptin | 8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]purine-2,6-dione | Causes cell cycle arrest at G2/M and S phase | Trembling, sweating, confusion, difficulty concentrating |
Lidocaine | 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide | Chemosensitizing effect with 5-fluorouracil increases its anticancer potency and apoptosis inducing effects | Headache, drowsiness, feeling fear, blistering at site of application |
Raloxifene | [6-hydroxy-2-(4-hydroxyphenyl)-1-benzothiophen-3-yl]-[4-(2-piperidin-1-ylethoxy)phenyl]methanone | Inhibition of IL-6 and GP130 binding, and STAT3 genes | Hot flashes, trouble in sleeping, swollen joints, depression |
Itraconazole | 2-butan-2-yl-4-[4-[4-[4-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one | Inhibition of Wnt/β-catenin signaling pathway, causing cell cycle arrest | Trouble breathing, mood changes, irregular heartbeat, increased thirst |
Clofazimine | N,5-bis(4-chlorophenyl)-3-propan-2-yliminophenazin-2-amine | Blocks menaquinone, leading to reduction in ATP production | Decreased vision, bone pain, irregular heartbeat, depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, R.J.; Anand, M.; Agarwal, K.; Tiwari, A.; Amanur Rahman Hashmi, Q.; Vikram Singh, T.; Nongdam, P.; Katare, D.P.; Potshangabam, A.M. A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment. Drugs Drug Candidates 2023, 2, 210-231. https://doi.org/10.3390/ddc2020013
Mani RJ, Anand M, Agarwal K, Tiwari A, Amanur Rahman Hashmi Q, Vikram Singh T, Nongdam P, Katare DP, Potshangabam AM. A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment. Drugs and Drug Candidates. 2023; 2(2):210-231. https://doi.org/10.3390/ddc2020013
Chicago/Turabian StyleMani, Ruchi Jakhmola, Mridul Anand, Kritie Agarwal, Avi Tiwari, Qazi Amanur Rahman Hashmi, Tumul Vikram Singh, Potshangbam Nongdam, Deepshikha Pande Katare, and Angamba Meetei Potshangabam. 2023. "A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment" Drugs and Drug Candidates 2, no. 2: 210-231. https://doi.org/10.3390/ddc2020013
APA StyleMani, R. J., Anand, M., Agarwal, K., Tiwari, A., Amanur Rahman Hashmi, Q., Vikram Singh, T., Nongdam, P., Katare, D. P., & Potshangabam, A. M. (2023). A Systematic Review of Molecular Pathway Analysis of Drugs for Potential Use in Liver Cancer Treatment. Drugs and Drug Candidates, 2(2), 210-231. https://doi.org/10.3390/ddc2020013