Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors
Abstract
:1. Introduction
2. Selinexor in R/R MM
3. Selinexor in R/R DLBCL NOS
4. Selinexor in Other Hematologic Malignancies
5. Selinexor in Solid Tumors
6. Other SINEs
7. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fung, H.Y.; Chook, Y.M. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin. Cancer Biol. 2014, 27, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 2019, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Bono, F.; Jinek, M.; Conti, E. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 2007, 76, 647–671. [Google Scholar] [CrossRef]
- Azmi, A.S.; Uddin, M.H.; Mohammad, R.M. The nuclear export protein XPO1—From biology to targeted therapy. Nat. Rev. Clin. Oncol. 2021, 18, 152–169. [Google Scholar] [CrossRef]
- El-Tanani, M.; Dakir, E.-H.; Raynor, B.; Morgan, R. Mechanisms of Nuclear Export in Cancer and Resistance to Chemotherapy. Cancers 2016, 8, 35. [Google Scholar] [CrossRef]
- Stade, K.; Ford, C.S.; Guthrie, C.; Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997, 90, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Kang, T.; Thakurta, T.G.; Ng, C.; Rogers, A.N.; Larsen, M.R.; Lapierre, L.R. Exportin 1 modulates life span by regulating nucleolar dynamics via the autophagy protein LGG-1/GABARAP. Sci. Adv. 2022, 8, 1604. [Google Scholar] [CrossRef]
- Crochiere, M.L.; Baloglu, E.; Klebanov, B.; Donovan, S.; Del Alamo, D.; Lee, M.; Kauffman, M.; Shacham, S.; Landesman, Y. A method for quantification of exportin-1 (XPO1) occupancy by Selective Inhibitor of Nuclear Export (SINE) compounds. Oncotarget 2016, 7, 1863–1877. [Google Scholar] [CrossRef]
- Petosa, C.; Schoehn, G.; Askjaer, P.; Bauer, U.; Moulin, M.; Steuerwald, U.; Soler-López, M.; Baudin, F.; Mattaj, I.W.; Müller, C.W. Architecture of CRM1/Exportin 1 Suggests How Cooperativity Is Achieved during Formation of a Nuclear Export Complex. Mol. Cell 2004, 16, 761–775. [Google Scholar] [CrossRef]
- Turner, J.G.; Sullivan, D.M. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr. Med. Chem. 2008, 15, 2648–2655. [Google Scholar] [CrossRef]
- Santivasi, W.L.; Wang, H.; Wang, T.; Yang, Q.; Mo, X.; Brogi, E.; Haffty, B.G.; Chakravarthy, A.B.; Xia, F. Association between cytosolic expression of BRCA1 and metastatic risk in breast cancer. Br. J. Cancer 2015, 113, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Martinez, I.; Hayes, K.E.; Barr, J.A.; Harold, A.D.; Xie, M.; Bukhari, S.I.A.; Vasudevan, S.; Steitz, J.A.; DiMaio, D. An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc. Natl. Acad. Sci. USA 2017, 114, 4961–4970. [Google Scholar] [CrossRef] [PubMed]
- Kim, V.N. MicroRNA precursors in motion: Exportin-5 mediates their nuclear export. Trends Cell Biol. 2004, 14, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.; Zaidi, S.K.; Liu, C.-G.; Stein, J.L.; van Wijnen, A.J.; Croce, C.M.; Stein, G.S. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008, 68, 2773–2780. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef] [PubMed]
- Gravina, G.L.; Senapedis, W.; McCauley, D.; Baloglu, E.; Shacham, S.; Festuccia, C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J. Hematol. Oncol. 2014, 7, 85. [Google Scholar] [CrossRef]
- Kudo, N.; Matsumori, N.; Taoka, H.; Fujiwara, D.; Schreiner, E.P.; Wolff, B.; Yoshida, M.; Horinouchi, S. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 1999, 96, 9112–9117. [Google Scholar] [CrossRef]
- Newlands, E.S.; Rustin, G.J.; Brampton, M.H. Phase I trial of elactocin. Br. J. Cancer 1996, 74, 648–649. [Google Scholar] [CrossRef]
- Tanenbaum, B.; Miett, T.; Patel, S.A. The emerging therapeutic landscape of relapsed/refractory multiple myeloma. Ann. Hematol. 2023, 102, 1–11. [Google Scholar] [CrossRef]
- Callander, N.S.; Baljevic, M.; Adekola, K.; Anderson, L.D.; Campagnaro, E.; Castillo, J.J.; Costello, C.; Devarakonda, S.; Elsedawy, N.; Faiman, M.; et al. NCCN Guidelines Insights: Multiple Myeloma, Version 3.2022. J. Natl. Compr. Canc. Netw. 2022, 20, 8–19. [Google Scholar] [CrossRef]
- Goldfinger, M.; Cooper, D.L. Refractory DLBCL: Challenges and Treatment. Clin. Lymphoma Myeloma Leuk. 2022, 22, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev. 2022, 110, 102443. [Google Scholar] [CrossRef] [PubMed]
- Jiffry, M.Z.M.; Kloss, R.; Ahmed-Khan, M.; Carmona-Pires, F.; Okam, N.; Weeraddana, P.; Dharmaratna, D.; Dandwani, M.; Moin, K. A review of treatment options employed in relapsed/refractory A. ML. Hematology 2023, 28, 2196482. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, R.J.; Francis, A.; Kuchenbauer, F.; Sanford, D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 6245–6259. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Selinexor: First Global Approval. Drugs 2019, 79, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.; Noonan, K.R.; Faiman, B.; Gleason, C.; Nooka, A.K.; Costa, L.J.; Jagannath, S.; Richardson, P.G.; Siegel, D.; Chari, A.; et al. Consensus Recommendations for the Clinical Management of Patients with Multiple Myeloma Treated with Selinexor. Clin. Lymphoma Myeloma Leuk. 2020, 20, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Madduri, D.; Richard, S.; Chari, A. Selinexor in relapsed/refractory multiple myeloma. Ther. Adv. Hematol. 2020, 11, 2040620720930629. [Google Scholar] [CrossRef]
- Chari, A.; Vogl, D.T.; Gavriatopoulou, M.; Nooka, A.K.; Yee, A.J.; Huff, C.A.; Moreau, P.; Dingli, D.; Cole, C.; Lonial, S.; et al. Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 381, 727–738. [Google Scholar] [CrossRef]
- Vogl, D.T.; Dingli, D.; Cornell, R.F.; Huff, C.A.; Jagannath, S.; Bhutani, D.; Zonder, J.; Baz, R.; Nooka, A.; Richter, J.; et al. Selective Inhibition of Nuclear Export with Oral Selinexor for Treatment of Relapsed or Refractory Multiple Myeloma. J. Clin. Oncol. 2018, 36, 859–866. [Google Scholar] [CrossRef]
- Chim, C.S.; Kumar, S.K.; Orlowski, R.Z.; Cook, G.; Richardson, P.G.; Gertz, M.A.; Giralt, S.; Mateos, M.V.; Leleu, X.; Anderson, K.C. Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond. Leukemia 2018, 32, 252–262. [Google Scholar] [CrossRef]
- Delforge, M.; Raddoux, J.; Antonis, C.; Clement, C.; Kint, N.; Vanhellemont, A.; Bravetti, J.; Vandenberghe, P. Selinexor, Bortezomib and Dexamethasone: An Effective Salvage Regimen for Heavily Pretreated Myeloma Patients. Onco Targets Ther. 2022, 15, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Argueta, C.; Kashyap, T.; Klebanov, B.; Unger, T.J.; Guo, C.; Harrington, S.; Baloglu, E.; Lee, M.; Senapedis, W.; Shacham, S.; et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018, 9, 25529–25544. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Argueta, C.; Unger, T.; Klebanov, B.; Debler, S.; Senapedis, W.; Crochiere, M.L.; Lee, M.S.; Kauffman, M.; Shacham, S.; et al. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018, 9, 30773–30786. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, S.; Simonova, M.; Spicka, I.; Pour, L.; Kriachok, I.; Gavriatopoulou, M.; Pylypenko, H.; Auner, H.W.; Leleu, X.; Doronin, V.; et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet 2020, 396, 1563–1573. [Google Scholar] [CrossRef]
- Mateos, M.V.; Gavriatopoulou, M.; Facon, T.; Auner, H.W.; Leleu, X.; Hájek, R.; Dimopoulos, M.A.; Delimpasi, S.; Simonova, M.; Špička, I.; et al. Effect of prior treatments on selinexor, bortezomib, and dexamethasone in previously treated multiple myeloma. J. Hematol. Oncol. 2021, 14, 59. [Google Scholar] [CrossRef]
- Jakubowiak, A.J.; Jasielec, J.K.; Rosenbaum, C.A.; Cole, C.E.; Chari, A.; Mikhael, J.; Nam, J.; McIver, A.; Severson, E.; Stephens, L.A.; et al. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br. J. Haematol. 2019, 186, 549–560. [Google Scholar] [CrossRef]
- Derman, B.A.; Chari, A.; Zonder, J.; Major, A.; Stefka, A.T.; Jiang, K.; Karrison, T.; Jasielec, J.; Jakubowiak, A. A phase I study of selinexor combined with weekly carfilizomib and dexamethasone in relapsed/refractory multiple myeloma. Eur. J. Hematol. 2023, 110, 564–570. [Google Scholar] [CrossRef]
- Chen, C.I.; Bahlis, N.; Gasparetto, C.; Tuchman, S.A.; Lipe, B.C.; Baljevic, M.; Kotb, R.; Sutherland, H.J.; Bensinger, W.I.; Sebag, M.; et al. Selinexor, Pomalidomide, and Dexamethasone (SPd) in Patients with Relapsed or Refractory Multiple Myeloma. Blood 2019, 134, 141. [Google Scholar] [CrossRef]
- Baz, R.; Zonder, J.A.; Shain, K.H.; Alsina, M.; Brayer, J.B. Phase I/II Study of Liposomal Doxorubicin (DOX) in Combination with Selinexor (SEL) and Dexamethasone (Dex) for Relapsed and Refractory Multiple Myeloma (RRMM). Blood 2017, 130, 3095. [Google Scholar]
- Gandhi, U.H.; Senapedis, W.; Baloglu, E.; Unger, T.J.; Chari, A.; Vogl, D.; Cornell, R.F. Clinical Implications of Targeting XPO1-mediated Nuclear Export in Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 335–345. [Google Scholar] [CrossRef]
- Nguyen, N.; Chaudhry, S.; Totiger, T.M.; Diaz, R.; Roberts, E.; Montoya, S.; Pardo, G.; Pardo, A.; Afaghani, J.; Affer, M.; et al. Combination venetoclax and selinexor effective in relapsed refractory multiple myeloma with translocation t(11;14). npj Precis. Oncol. 2022, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Muz, B.; Azab, F.; de la Puente, P.; Landesman, Y.; Azab, A.K. Selinexor Overcomes Hypoxia-Induced Drug Resistance in Multiple Myeloma. Transl. Oncol. 2017, 10, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.; Hari, P.; Tang, S.; Biran, N.; Callander, N.; Chari, A.; Chhabra, S.; Fiala, M.A.; Gahvari, Z.; Gandhi, U.; et al. Overall survival of patients with triple-class refractory multiple myeloma treated with selinexor plus dexamethasone vs. standard of care in MAMMOTH. Am. J. Hematol. 2021, 96, 5–8. [Google Scholar]
- Peterson, T.J.; Orozco, J.; Buege, M. Selinexor: A First-in-Class Nuclear Export Inhibitor for Management of Multiply Relapsed Multiple Myeloma. Ann. Pharmacother. 2020, 54, 577–582. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Sutherland, H.; White, D.; Sebag, M.; Lentzsch, S.; Kotb, R.; Venner, C.P.; Gasparetto, C.; Del Col, A.; Neri, P.; et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood 2018, 132, 2546–2554. [Google Scholar] [CrossRef]
- Syed, Y.Y. Selinexor-Bortezomib-Dexamethasone: A Review in Previously Treated Multiple Myeloma. Target. Oncol. 2023, 18, 303–310. [Google Scholar] [CrossRef]
- Richard, S.; Chari, A.; Delimpasi, S.; Simonova, M.; Spicka, I.; Pour, L.; Kriachok, I.; Dimopoulos, M.A.; Pylypenko, H.; Auner, H.W.; et al. Selinexor, bortezomib, and dexamethasone versus bortezomib and dexamethasone in previously treated multiple myeloma: Outcomes by cytogenetic risk. Am. J. Hematol. 2021, 96, 1120–1130. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.-Q.; Li, X.-P.; Lu, Y.-X.; Chen, S.-L.; Wang, D.-W.; Liang, Y.; Dai, Y.-J. Drug resistance biomarker ABCC4 of selinexor and immune feature in multiple myeloma. Int. Immunopharmacol. 2022, 108, 108722. [Google Scholar] [CrossRef]
- Al-Zubidi, N.; Gombos, D.S.; Hong, D.S.; Subbiah, V.; Fu, S.; Ahnert, J.R.; Piha-Paul, S.A.; Tsimberidou, A.M.; Karp, D.D.; Bernstam, F.M.; et al. Overview of Ocular Side Effects of Selinexor. Oncologist 2021, 26, 619–623. [Google Scholar] [CrossRef]
- Kasamon, Y.L.; Price, L.S.L.; Okusanya, O.O.; Richardson, N.C.; Li, R.J.; Ma, L.; Wu, Y.-T.; Theoret, M.; Pazdur, R.; Gormley, N.J. FDA Approval Summary: Selinexor for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Oncologist 2021, 26, 879–886. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Chari, A.; Chen, C.; Bahlis, N.; Vogl, D.T.; Jakubowiak, A.; Dingli, D.; Cornell, R.F.; Hofmeister, C.C.; Siegel, D.; et al. Integrated safety profile of selinexor in multiple myeloma: Experience from 437 patients enrolled in clinical trials. Leukemia 2020, 34, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Maerevoet, M.; Zijlstra, J.M.; Follows, G.; Casasnovas, R.O.; Vermaat, J.S.P.; Kalakonda, N.; Goy, A.; Choquet, S.; Van Den Neste, E.; Hill, B.; et al. Survival among patients with relapsed/refractory diffuse large B cell lymphoma treated with single-agent selinexor in the SADAL study. J. Hematol. Oncol. 2021, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Ben-Barouch, S.; Kuruvilla, J. Selinexor (KTP-330)—A selective inhibitor of nuclear export (SINE): Anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin. Investig. Drugs 2020, 29, 15–21. [Google Scholar] [CrossRef]
- Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, J.; Savona, M.; Baz, R.; Mau-Sørensen, M.; Gabrail, N.; Garzon, R.; Stone, R.; Wang, M.; Savoie, L.; Martin, P.; et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017, 129, 3175–3183. [Google Scholar] [CrossRef]
- Casasnovas, R.-O.; Follows, G.; Zijlstra, J.M.; Vermaat, J.S.; Kalakonda, N.; Choquet, S.; Neste, E.V.D.; Hill, B.; Thieblemont, C.; Cavallo, F.; et al. Comparison of the Effectiveness and Safety of the Oral Selective Inhibitor of Nuclear Export, Selinexor, in Diffuse Large B Cell Lymphoma Subtypes. Clin. Lymphoma Myeloma Leuk. 2022, 22, 24–33. [Google Scholar] [CrossRef]
- Seymour, E.K.; Khan, H.Y.; Li, Y.; Chaker, M.; Muqbil, I.; Aboukameel, A.; Ramchandren, R.; Houde, C.; Sterbis, G.; Yang, J.; et al. Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clin. Cancer Res. 2021, 27, 3307–3316. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, M.; Xu-Monette, Z.Y.; Pham, L.V.; Tzankov, A.; Visco, C.; Fang, X.; Bhagat, G.; Zhu, F.; Dybkaer, K.; et al. XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53. J. Hematol. Oncol. 2020, 13, 148. [Google Scholar] [CrossRef]
- Shah, J.; Shacham, S.; Kauffman, M.; Daniele, P.; Tomaras, D.; Tremblay, G.; Casasnovas, R.-O.; Maerevoet, M.; Zijlstra, J.; Follows, G.; et al. Health-related quality of life and utility outcomes with selinexor in relapsed/refractory diffuse large B-cell lymphoma. Future Oncol. 2021, 17, 1295–1310. [Google Scholar] [CrossRef]
- Parikh, K.; Cang, S.; Sekhri, A.; Liu, D. Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents. J. Hematol. Oncol. 2014, 7, 78. [Google Scholar] [CrossRef]
- Abboud, R.; Chendamarai, E.; Rettig, M.P.; Trinkaus, K.M.; Riedell, P.A.; Abboud, C.N.; Ghobadi, A.; Pusic, I.; Stockerl-Goldstein, K.; Schroeder, M.A.; et al. Selinexor combined with cladribine, cytarabine, and filgrastim in relapsed or refractory acute myeloid leukemia. Haematologica 2020, 105, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, B.; Zhao, Q.; Mims, A.S.; Vasu, S.; Behbehani, G.K.; Larkin, K.; Blachly, J.S.; Blum, W.; Klisovic, R.B.; Ruppert, A.S.; et al. Selinexor in combination with decitabine in patients with acute myeloid leukemia: Results from a phase 1 study. Leuk. Lymphoma 2020, 61, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Garzon, R.; Savona, M.; Baz, R.; Andreeff, M.; Gabrail, N.; Gutierrez, M.; Savoie, L.; Mau-Sørensen, M.; Wagner-Johnston, N.; Yee, K.; et al. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood 2017, 129, 3165–3174. [Google Scholar] [CrossRef]
- Janssen, J.; Löwenberg, B.; Manz, M.; Biemond, B.; Westerweel, P. Addition of the nuclear export inhibitor selinexor to standard intensive treatment for elderly patients with AML and high risk MDS. Leukemia 2022, 36, 2189–2195. [Google Scholar] [CrossRef]
- Sweet, K.; Komrokji, R.; Padron, E.; Cubitt, C.L.; Turner, J.G.; Zhou, J.; List, A.F.; Sallman, D.A.; Dawson, J.L.; Sullivan, D.M.; et al. Phase I Clinical Trial of Selinexor in Combination with Daunorubicin and Cytarabine in Previously Untreated Poor-Risk Acute Myeloid Leukemia. Clin. Cancer Res. 2020, 26, 54–60. [Google Scholar] [CrossRef]
- Cooperrider, J.H.; Fulton, N.; Artz, A.S.; Larson, R.A.; Stock, W.; Kosuri, S.; Bishop, M.; Liu, H. Phase I trial of maintenance selinexor after allogeneic hematopoietic stem cell transplantation for patients with acute myeloid leukemia and myelodysplastic syndrome. Bone Marrow Transplant. 2020, 55, 2204–2206. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yin, X.; Si, Y.; Wang, Y.; Wang, J.; Cui, S. Efficacy and safety of selinexor in the treatment of AML: A protocol for systematic review and meta-analysis. Medicine 2021, 100, 27884. [Google Scholar] [CrossRef]
- Taylor, J.; Mi, X.; Penson, A.V.; Paffenholz, S.V.; Alvarez, K.; Sigler, A.; Chung, S.S.; Rampal, R.K.; Park, J.H.; Stein, E.M.; et al. Safety and activity of selinexor in patients with myelodysplastic syndromes or oligoblastic acute myeloid leukaemia refractory to hypomethylating agents: A single-centre, single-arm, phase 2 trial. Lancet Haematol. 2020, 7, 566–574. [Google Scholar] [CrossRef]
- Ranganathan, P.; Kashyap, T.; Yu, X.; Meng, X.; Lai, T.-H.; McNeil, B.; Bhatnagar, B.; Shacham, S.; Kauffman, M.; Dorrance, A.M.; et al. XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIα to the Nucleus. Clin. Cancer Res. 2016, 22, 6142–6152. [Google Scholar] [CrossRef]
- Long, H.; Hou, Y.; Li, J.; Song, C.; Ge, Z. Azacitidine Is Synergistically Lethal with XPO1 Inhibitor Selinexor in Acute Myeloid Leukemia by Targeting XPO1/eIF4E/c-Myc Signaling. Int. J. Mol. Sci. 2023, 24, 6816. [Google Scholar] [CrossRef]
- Tang, T.; Martin, P.; Somasundaram, N.; Lim, C.; Tao, M.; Poon, E.; Yunon, M.J.; Toh, S.Q.; Yan, S.X.; Farid, M.; et al. Phase I study of selinexor in combination with dexamethasone, ifosfamide, carboplatin, etoposide chemotherapy in patients with relapsed or refractory peripheral T-cell or natural-killer/T-cell lymphoma. Haematologica 2021, 106, 3170–3175. [Google Scholar] [CrossRef]
- Broccoli, A.; Argnani, L.; Zinzani, P.L. Peripheral T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease. Cancer Treat. Rev. 2017, 60, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Hing, Z.A.; Mantel, R.; Beckwith, K.A.; Guinn, D.; Williams, E.; Smith, L.L.; Williams, K.; Johnson, A.J.; Lehman, A.M.; Byrd, J.C.; et al. Selinexor is effective in acquired resistance to ibrutinib and synergizes with ibrutinib in chronic lymphocytic leukemia. Blood 2015, 125, 3128–3132. [Google Scholar] [CrossRef]
- Xu, Z.; Pan, B.; Miao, Y.; Li, Y.; Qin, S.; Liang, J.; Kong, Y.; Zhang, X.; Tang, J.; Xia, Y.; et al. Prognostic value and therapeutic targeting of XPO1 in chronic lymphocytic leukemia. Clin. Exp. Med. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Than, H.; Pomicter, A.D.; Yan, D.; Beaver, L.P.; Eiring, A.M.; Heaton, W.L.; Senina, A.; Clair, P.M.; Shacham, S.; Mason, C.C.; et al. Coordinated inhibition of nuclear export and Bcr-Abl1 selectively targets chronic myeloid leukemia stem cells. Leukemia 2020, 34, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.S.; Garzon, R.; Lapalombella, R. Selinexor for advanced hematologic malignancies. Leuk. Lymphoma 2020, 61, 2335–2350. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.M.; Grisham, R.N.; Cadoo, K.; Kyi, C.; Tew, W.P.; Friedman, C.F.; O’Cearbhaill, R.E.; Zamarin, D.; Zhou, Q.; Iasonos, A.; et al. A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecol. Oncol. 2021, 160, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Lund, B.; Peen, U.; Umajuridze, Z.; Mau-Sorensen, M.; Kranich, A.; Van Nieuwenhuysen, E.; Haslund, C.; Nottrup, T.; Han, S.; et al. Phase 2 study of the Exportin 1 inhibitor selinexor in patients with recurrent gynecological malignancies. Gynecol. Oncol. 2020, 156, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Gravina, G.L.; Tortoreto, M.; Mancini, A.; Addis, A.; Di Cesare, E.; Lenzi, A.; Landesman, Y.; McCauley, D.; Kauffman, M.; Shacham, S.; et al. XPO1/CRM1-selective inhibitors of nuclear export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa). J. Hematol. Oncol. 2014, 7, 46. [Google Scholar] [CrossRef]
- Wei, X.X.; Siegel, A.P.; Aggarwal, R.; Lin, A.M.; Friedlander, T.W.; Fong, L.; Kim, W.; Louttit, M.; Chang, E.; Zhang, L.; et al. A Phase II Trial of Selinexor, an Oral Selective Inhibitor of Nuclear Export Compound, in Abiraterone- and/or Enzalutamide-Refractory Metastatic Castration-Resistant Prostate Cancer. Oncologist 2018, 23, 656–664. [Google Scholar] [CrossRef]
- Marretta, A.L.; Di Lorenzo, G.; Ribera, D.; Cannella, L.; von Arx, C.; Bracigliano, A.; Clemente, O.; Tafuto, R.; Pizzolorusso, A.; Tafuto, S. Selinexor and the Selective Inhibition of Nuclear Export: A New Perspective on the Treatment of Sarcomas and Other Solid and Non-Solid Tumors. Pharmaceutics 2021, 13, 1522. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, R.; Zhang, Y.-X.; Czaplinski, J.T.; Anatone, A.J.; Sicinska, E.T.; Fletcher, J.A.; Demetri, G.D.; Wagner, A.J. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget 2016, 7, 16581–16592. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Kanojia, D.; Mayakonda, A.; Said, J.W.; Doan, N.B.; Chien, W.; Ganesan, T.S.; Chuang, L.S.H.; Venkatachalam, N.; Baloglu, E.; et al. Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma. Oncotarget 2017, 8, 7521–7532. [Google Scholar] [CrossRef] [PubMed]
- Thirasastr, P.; Somaiah, N. Overview of systemic therapy options in liposarcoma, with a focus on the activity of selinexor, a selective inhibitor of nuclear export in dedifferentiated liposarcoma. Ther. Adv. Med. Oncol. 2022, 14, 17588359221081073. [Google Scholar] [CrossRef]
- Gounder, M.M.; Zer, A.; Tap, W.D.; Salah, S.; Dickson, M.A.; Gupta, A.A.; Keohan, M.L.; Loong, H.; D’angelo, S.P.; Baker, S.; et al. Phase IB Study of Selinexor, a First-in-Class Inhibitor of Nuclear Export, in Patients with Advanced Refractory Bone or Soft Tissue Sarcoma. J. Clin. Oncol. 2016, 34, 3166–3174. [Google Scholar] [CrossRef]
- Hernando-Calvo, A.; Malone, E.; Day, D.; Prawira, A.; Weinreb, I. Selinexor for the treatment of recurrent or metastatic salivary gland tumors: Results from the GEMS-001 clinical trial. J. Exp. Clin. Cancer Res. 2022. preprint NCT02069730. [Google Scholar] [CrossRef]
- Garg, M.; Kanojia, D.; Mayakonda, A.; Ganesan, T.S.; Sadhanandhan, B.; Suresh, S.; Sneha, S.; Nagare, R.P.; Said, J.W.; Doan, N.B.; et al. Selinexor (KPT-330) has antitumor activity against anaplastic thyroid carcinoma in vitro and in vivo and enhances sensitivity to doxorubicin. Sci. Rep. 2017, 7, 9749. [Google Scholar] [CrossRef]
- Baek, H.B.; Lombard, A.P.; Libertini, S.J.; Fernandez-Rubio, A.; Vinall, R.; Gandour-Edwards, R.; Nakagawa, R.; Vidallo, K.; Nishida, K.; Siddiqui, S.; et al. XPO1 inhibition by selinexor induces potent cytotoxicity against high grade bladder malignancies. Oncotarget 2018, 9, 34567–34581. [Google Scholar] [CrossRef]
- Arango, N.P.; Yuca, E.; Zhao, M.; Evans, K.W.; Scott, S.; Kim, C.; Gonzalez-Angulo, A.M.; Janku, F.; Ueno, N.T.; Tripathy, D.; et al. Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer. Breast Cancer Res. 2017, 19, 93. [Google Scholar] [CrossRef]
- Marijon, H.; Gery, S.; Chang, H.; Landesman, Y.; Shacham, S.; Lee, D.H.; de Gramont, A.; Koeffler, H.P. Selinexor, a selective inhibitor of nuclear export, enhances the anti-tumor activity of olaparib in triple negative breast cancer regardless of BRCA1 mutation status. Oncotarget 2021, 12, 1749–1762. [Google Scholar] [CrossRef]
- Walker, C.J.; Chang, H.; Henegar, L.; Kashyap, T.; Shacham, S.; Sommer, J.; Wick, M.J.; Levy, J.; Landesman, Y. Selinexor inhibits growth of patient derived chordomas in vivo as a single agent and in combination with abemaciclib through diverse mechanisms. Front. Oncol. 2022, 12, 808021. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, W.; Zhong, Y.; Hou, X.; Fang, S.; Liu, C.-Y.; Wang, G.; Yu, T.; Huang, Y.-Y.; Ouyang, X.; et al. Nuclear Export of Ubiquitinated Proteins Determines the Sensitivity of Colorectal Cancer to Proteasome Inhibitor. Mol. Cancer Ther. 2017, 16, 717–728. [Google Scholar] [CrossRef]
- Ferreiro-Neira, I.; Torres, N.E.; Liesenfeld, L.F.; Chan, C.H.; Penson, T.; Landesman, Y.; Senapedis, W.; Shacham, S.; Hong, T.S.; Cusack, J.C. XPO1 Inhibition Enhances Radiation Response in Preclinical Models of Rectal Cancer. Clin. Cancer Res. 2016, 22, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Subhash, V.V.; Yeo, M.S.; Wang, L.; Tan, S.H.; Wong, F.Y.; Thuya, W.L.; Tan, W.L.; Peethala, P.C.; Soe, M.Y.; Tan, D.S.P.; et al. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci. Rep. 2018, 8, 12248. [Google Scholar] [CrossRef] [PubMed]
- Green, A.L.; Ramkissoon, S.H.; McCauley, D.; Jones, K.; Perry, J.A.; Hsu, J.H.-R.; Ramkissoon, L.A.; Maire, C.L.; Hubbell-Engler, B.; Knoff, D.S.; et al. Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma. Neuro Oncol. 2015, 17, 697–707. [Google Scholar] [CrossRef]
- Wahba, A.; Rath, B.H.; O’Neill, J.W.; Camphausen, K.; Tofilon, P.J. The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and In Vivo. Mol. Cancer Ther. 2018, 17, 1717–1726. [Google Scholar] [CrossRef]
- Saenz-Ponce, N.; Pillay, R.; de Long, L.M.; Kashyap, T.; Argueta, C.; Landesman, Y.; Hazar-Rethinam, M.; Boros, S.; Panizza, B.; Jacquemyn, M.; et al. Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas. Sci. Transl. Med. 2018, 10, 7223. [Google Scholar] [CrossRef]
- Von Fallois, M.; Kosyna, F.K.; Mandl, M.; Landesman, Y.; Dunst, J.; Depping, R. Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J. Cancer Res. Clin. Oncol. 2021, 147, 2025–2033. [Google Scholar] [CrossRef]
- Rosen, J.C.; Weiss, J.; Pham, N.-A.; Li, Q.; Martins-Filho, S.N.; Wang, Y.; Tsao, M.-S.; Moghal, N. Antitumor efficacy of XPO1 inhibitor Selinexor in KRAS-mutant lung adenocarcinoma patient-derived xenografts. Transl. Oncol. 2021, 14, 101179. [Google Scholar] [CrossRef]
- Galinski, B.; Luxemburg, M.; Landesman, Y.; Pawel, B.; Johnson, K.J.; Master, S.R.; Freeman, K.W.; Loeb, D.M.; Hébert, J.M.; Weiser, D.A. XPO1 inhibition with selinexor synergizes with proteasome inhibition in neuroblastoma by targeting nuclear export of IkB. Transl. Oncol. 2021, 14, 101114. [Google Scholar] [CrossRef]
- Wettersten, H.I.; Landesman, Y.; Friedlander, S.; Shacham, S.; Kauffman, M.; Weiss, R.H. Specific inhibition of the nuclear exporter exportin-1 attenuates kidney cancer growth. PLoS ONE 2014, 9, 113867. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.A.; Friedlander, S.Y.; Arrate, M.P.; Chang, H.; Gorska, A.E.; Fuller, L.D.; Ramsey, H.E.; Kashyap, T.; Argueta, C.; Debler, S.; et al. Venetoclax response is enhanced by selective inhibitor of nuclear export compounds in hematologic malignancies. Blood Adv. 2020, 4, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, T.; De Bie, J.; Neggers, J.E.; Jacquemyn, M.; Vanstreels, E.; Schmid-Burgk, J.L.; Hornung, V.; Baloglu, E.; Landesman, Y.; Senapedis, W.; et al. The Second-Generation Exportin-1 Inhibitor KPT-8602 Demonstrates Potent Activity against Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2017, 23, 2528–2541. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, D.; Demeyer, S.; Prieto, C.; de Bock, C.E.; De Bie, J.; Gielen, O.; Jacobs, K.; Mentens, N.; Verhoeven, B.M.; Uyttebroeck, A.; et al. The XPO1 Inhibitor KPT-8602 Synergizes with Dexamethasone in Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2020, 26, 5747–5758. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.F.; Baz, R.; Richter, J.R.; Rossi, A.; Vogl, D.T.; Chen, C.; Shustik, C.; Alvarez, M.J.; Shen, Y.; Unger, T.J.; et al. A phase 1 clinical trial of oral eltanexor in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 2022, 97, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mohan, S.; Knupp, J.; Chamoun, K.; de Jonge, A.; Yang, F.; Baloglu, E.; Shah, J.; Kauffman, M.G.; Shacham, S.; et al. Oral eltanexor treatment of patients with higher-risk myelodysplastic syndrome refractory to hypomethylating agents. J. Hematol. Oncol. 2022, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Otte, K.; Zhao, K.; Braun, M.; Neubauer, A.; Raifer, H.; Helmprobst, F.; Barrera, F.O.; Nimsky, C.; Bartsch, J.W.; Rusch, T. Eltanexor Effectively Reduces Viability of Glioblastoma and Glioblastoma Stem-Like Cells at Nano-Molar Concentrations and Sensitizes to Radiotherapy and Temozolomide. Biomedicines 2022, 10, 2145. [Google Scholar] [CrossRef]
- Uddin, H.; Li, Y.; Khan, H.Y.; Muqbil, I.; Aboukameel, A.; Sexton, R.E.; Reddy, S.; Landesman, Y.; Kashyap, T.; Azmi, A.S.; et al. Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. Int. J. Mol. Sci. 2021, 22, 6676. [Google Scholar] [CrossRef]
- Tabe, Y.; Kojima, K.; Jin, L.; Miida, T.; Shacham, S.; Kauffman, M.; Andreeff, M. Molecular Mechanisms of Antitumor Activity of the Selective Inhibitor of Nuclear Export (SINE) CRM1 Antagonist KPT-185 in Mantle Cell Lymphoma. Blood 2012, 120, 2438. [Google Scholar] [CrossRef]
- Kong, S.-Y.; Landesman, Y.; Jakubikova, J.; Sellitto, M.A.; Cagnetta, A.; Cea, M.; Chen, M.C.; Cottini, F.; McMillin, U.W.; Acharya, C.; et al. Blockade of Nuclear Export Protein CRM1 (chromosomal region maintenance 1, XPO1) by a Novel, Potent and Selective CRM1 Inhibitor KPT-185 Induces Significant Antitumor Activity Against Human Multiple Myeloma. Blood 2011, 118, 2913. [Google Scholar] [CrossRef]
- Yoshimura, M.; Ishizawa, J.; Ruvolo, V.; Dilip, A.; Quintás-Cardama, A.; McDonnell, T.J.; Neelapu, S.S.; Kwak, L.W.; Shacham, S.; Kauffman, M.; et al. Induction of p53-mediated transcription and apoptosis by exportin-1 (XPO1) inhibition in mantle cell lymphoma. Cancer Sci. 2014, 105, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Yu, X.; Na, C.; Santhanam, R.; Shacham, S.; Kauffman, M.; Walker, A.; Klisovic, R.; Blum, W.; Caligiuri, M.; et al. Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood. 2012, 120, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Han, X.; Wang, J.; Yao, J.; Shi, Y. Antitumor effects of a novel chromosome region maintenance 1 (CRM1) inhibitor on non-small cell lung cancer cells in vitro and in mouse tumor xenografts. PLoS ONE 2014, 9, 89848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, M.; Tamayo, A.T.; Shacham, S.; Kauffman, M.; Lee, J.; Zhang, L.; Ou, Z.; Li, C.; Sun, L.; et al. Novel selective inhibitors of nuclear export CRM1 antagonists for therapy in mantle cell lymphoma. Exp. Hematol. 2013, 41, 67–78. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Shen, Y.; Zhang, N.; Wang, S.; Yao, J.; Shi, Y. CRM1 as a new therapeutic target for non-Hodgkin lymphoma. Leuk. Res. 2015, 39, 38–46. [Google Scholar] [CrossRef]
- Schmidt, J.; Braggio, E.; Kortuem, K.M.; Egan, J.B.; Zhu, Y.X.; Xin, C.S.; Tiedemann, R.E.; Palmer, S.E.; Garbitt, V.M.; McCauley, D.; et al. Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia 2013, 27, 2357–2365. [Google Scholar] [CrossRef]
- Ou, L.; Wang, X.; Cheng, S.; Zhang, M.; Cui, R.; Hu, C.; Liu, S.; Tang, Q.; Peng, Y.; Chai, R.; et al. Verdinexor, a Selective Inhibitor of Nuclear Exportin 1, Inhibits the Proliferation and Migration of Esophageal Cancer via XPO1/c-Myc/FOSL1 Axis. Int. J. Biol. Sci. 2022, 18, 276–291. [Google Scholar] [CrossRef]
- Pan, L.; Cheng, C.; Duan, P.; Chen, K.; Wu, Y.; Wu, Z. XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. J. Exp. Clin. Cancer Res. 2021, 40, 255. [Google Scholar] [CrossRef]
- Perwitasari, O.; Johnson, S.; Yan, X.; Howerth, E.; Shacham, S.; Landesman, Y.; Baloglu, E.; McCauley, D.; Tamir, S.; Tompkins, S.M.; et al. Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J. Virol. 2014, 88, 10228–10243. [Google Scholar] [CrossRef]
- Pickens, J.A.; Tripp, R.A. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018, 10, 48. [Google Scholar] [CrossRef]
- Landes, J.R.; Bartley, B.R.; A Moore, S.; He, Q.; Simonette, R.; Rady, P.L.; Doan, H.Q.; Tyring, S.K. Effect of selinexor on lipogenesis in virus-positive Merkel cell carcinoma cell lines. Clin. Exp. Dermatol. 2023, llad081. [Google Scholar] [CrossRef] [PubMed]
- Bartley, B.R.; Simonette, R.A.; Rady, P.L.; Doan, H.Q.; Tyring, S.K. Molecular evidence for selinexor as a treatment for Merkel cell polyomavirus (MCPyV)-positive Merkel cell carcinoma. Int. J. Dermatol. 2023, 62, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Gionco, J.; Chen, J.; Lindsay, R.; Macri, V.; Brooks, C.L. SL-401, a Targeted Therapy Directed to the Interleukin-3 Receptor (CD123), and SL-801, a Reversible Inhibitor of Exportin-1 (XPO1), Display Synergistic Anti-Tumor Activity against Hematologic Malignancies In Vitro. Blood 2016, 128, 4724. [Google Scholar] [CrossRef]
- Etchin, J.; Sun, Q.; Kentsis, A.; Farmer, A.; Zhang, Z.C.; Sanda, T.; Mansour, M.; Barceló, C.; McCauley, D.; Kauffman, M.; et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 2013, 27, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, K.; Saito, N.; Sato, T.; Suzuki, A.; Hasegawa, Y.; Friedman, J.; Kufe, D.W.; Vonhoff, D.D.; Iwami, T.; Kawabe, T. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 2011, 118, 3922–3931. [Google Scholar] [CrossRef]
- Allegra, A.; Innao, V.; Allegra, A.G.; Leanza, R.; Musolino, C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. Clin. Lymphoma Myeloma Leuk. 2019, 19, 689–698. [Google Scholar] [CrossRef]
- Trkulja, K.L.; Manji, F.; Kuruvilla, J.; Laister, R.C. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules 2023, 13, 111. [Google Scholar] [CrossRef]
- Ranieri, R.; Pianigiani, G.; Sciabolacci, S.; Perriello, V.M.; Marra, A.; Cardinali, V.; Pierangeli, S.; Milano, F.; Gionfriddo, I.; Brunetti, L.; et al. Current status and future perspectives in targeted therapy of NPM1-mutated A.ML. Luekemia 2022, 36, 2351–2367. [Google Scholar] [CrossRef]
- Abramson, H.N. Recent Advances in the Application of Small Molecules in the Treatment of Multiple Myeloma. Int. J. Mol. Sci. 2023, 24, 2645. [Google Scholar] [CrossRef]
- Ullman, K.S.; Powers, M.A.; Forbes, D.J. Nuclear export receptors: From importin to exportin. Cell 1997, 90, 967–970. [Google Scholar] [CrossRef]
- Kosyna, F.K.; Depping, R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018, 7, 221. [Google Scholar] [CrossRef] [PubMed]
Number of Reference | Type of Malignancy | Type of Study | Year of Publication | Outcomes/ Conclusions |
---|---|---|---|---|
[61] | AML | phase I clinical study | 2020 | CR = 45% in combination with cladribine, cytarabine and filgrastim |
[62] | AML | phase I clinical study | 2020 | CR = 25%, PFS = 5.9 months in combination with decitabine |
[63] | AML | phase I clinical study | 2017 | ORR = 14% and safe profile in monotherapy |
[64] | AML (previously untreated) | phase II clinical study | 2022 | significantly higher CR rate in combination with standard therapy ‘3+7’ than ‘3+7’ alone |
[65] | AML (previously untreated) | phase I clinical study | 2019 | OS = 10.6 months and safe profile in combination with ‘3+7’ |
[68] | AML (+MDS) | phase II clinical study | 2020 | ORR = 26% in monotherapy |
[50] | DLBCL | phase II clinical study | 2021 | ORR = 29% in monotherapy |
[54] | DLBCL | phase II clinical study | 2020 | ORR = 28%, PFS = 3.6 months in monotherapy |
[55] | DLBCL (and other NHL) | phase I clinical study | 2017 | ORR = 31% and safe profile in monotherapy |
[57] | DLBCL (and other NHL) | phase I clinical study | 2021 | synergistic effect with R-CHOP therapy, safe profile |
[28] | MM | phase I clinical study | 2019 | ORR = 26%, OS = 8.6 months in combination with dexametasone |
[36] | MM | phase I clinical study | 2019 | ORR = 38%, OS = 22.7 months in combination with dexamethasone and carfilizomib |
[45] | MM | phase I clinical study | 2018 | ORR = 63% in combination with dexamethasone and bortezomib |
[34] | MM | phase III clinical study | 2020 | significantly higher ORR rate and PFS in combination with dexamethasone and bortezomib vs. dexamethasone and bortezomib alone |
[39] | MM | phase I/II clinical study | 2017 | ORR = 15% in combination with dexamethasone and doxorubicin |
[38] | MM | phase I clinical study | 2019 | ORR = 31% and PFS = 12.2 months in combination with dexamethasone and pomalidomide |
[71] | T-cell lymphomas | phase I clinical study | 2021 | ORR = 82% and 1-year survival of 67% in combination with DICE |
Number of Reference | Type of Solid Tumor | Type of Study | Year of Publication | Outcomes/Conclusions |
---|---|---|---|---|
[87] | anaplastic thyroid carcinoma | in vitro/in vivo preclinical study | 2017 | synergistic effect with daunorubicin |
[88] | bladder malignancies | in vitro preclinical study | 2018 | decreased tumor growth |
[89] | breast cancer (triple negative) | in vitro preclinical study | 2017 | antitumor activity in monotherapy |
[90] | breast cancer (triple negative) | in vitro preclinical study | 2021 | antitumor activity in combination with olaparib |
[91] | chordoma | in vivo preclinical study | 2022 | tumor growth inhibition in 78–92% in combination with abemaciclib |
[92] | colorectal cancer | in vitro/in vivo preclinical study | 2017 | synergistic effect with bortezomib |
[93] | colorectal cancer | in vitro/in vivo preclinical study | 2016 | increased efficacy of anticancer radiation |
[94] | gastric cancer | in vitro preclinical study | 2018 | synergistic effect with irinotekan |
[95] | glioblastoma | in vitro/in vivo preclinical study | 2015 | decreased tumor growth, increased OS |
[96] | glioblastoma | in vitro/in vivo preclinical study | 2018 | increased efficacy of anticancer radiation |
[97] | head and neck squamous cell carcinoma | in vitro preclinical study | 2018 | reversion of anthracycline resistance |
[98] | hepatoma, osteosarcoma | in vitro preclinical study | 2021 | reversion of radioresistance |
[83] | liposarcoma | in vitro/in vivo preclinical study | 2017 | decreased tumor growth |
[84] | liposarcoma | review article | 2022 | - |
[99] | lung adenocarcinoma | in vitro preclinical study | 2021 | decreased tumor growth |
[100] | neuroblastoma | in vitro preclinical study | 2021 | synergistic effect with bortezomib |
[77] | ovarian cancer, endometrial cancer | phase I clinical study | 2020 | safety and good tolerance of selinexor + carboplatin therapy |
[78] | ovarian cancer, endometrial cancer, cervical cancer | phase II clinical study | 2019 | CR rates of 30%, 35% and 24% respectively, median OS of 7.3 months, 7.0 months and 5.0 months respectively |
[79] | prostate cancer | in vitro/in vivo preclinical study | 2014 | decreased tumor growth, increased OS |
[80] | prostate cancer | phase II clinical study | 2018 | anticancer activity, yet poor tolerability in combination with abiraterone and enzalutamide |
[101] | renal cell carcinoma | in vitro/in vivo preclinical study | 2014 | anticancer activity similar to sunitinib |
[86] | salivary gland tumor | phase II clinical study | 2022 | tumor reduction in 61%, median PFS of 4.9 months |
[85] | sarcoma | phase I clinical study | 2016 | partial responses, no CRs, safety and good tolerability in monotherapy |
[82] | sarcoma | in vitro/in vivo preclinical study | 2016 | anticancer activity in different sarcoma subtypes |
[81] | sarcoma | review article | 2021 | - |
Number of Reference | Selective Inhibitor of Nuclear Export | Type of Study | Year of Publication | Outcomes/Conclusions |
---|---|---|---|---|
[125] | CBS9106 | in vitro preclinical study | 2011 | decreased proliferation of MM cells |
[102] | eltanexor | in vitro/in vivo preclinical study | 2020 | synergistic effect with venetoclax in AML and DLBCL models |
[103] | eltanexor | in vitro/in vivo preclinical study | 2017 | decreased proliferation of ALL cells |
[104] | eltanexor | in vitro/in vivo preclinical study | 2020 | synergistic effect with dexamethasone in ALL models |
[105] | eltanexor | phase I clinical study | 2021 | OS = 17.8 months, ORR = 40% in combination with dexamethason in MM |
[106] | eltanexor | phase I clinical study | 2022 | ORR = 53% in high-risk myelodysplastic syndrome |
[107] | eltanexor | in vitro preclinical study | 2022 | anticancer effect in glioblastoma cells |
[108] | eltanexor | in vitro preclinical study | 2021 | synergistic effect with PARP inhibitors in prostate cancer cells |
[123] | felezonexor (SL-401) | in vitro preclinical study | 2016 | anticancer effect in numerous hematologic malignancies |
[109] | KPT-185 | in vitro preclinical study | 2012 | anticancer effect in MCL |
[110] | KPT-185 | in vitro preclinical study | 2011 | anticancer effect in MM |
[111] | KPT-185 | in vitro preclinical study | 2014 | anticancer effect via p53-dependent mechanism in MCL |
[112] | KPT-185 | in vitro/in vivo preclinical study | 2012 | decreased proliferation of AML cells, increased OS |
[113] | KPT-185 | in vitro/in vivo preclinical study | 2014 | anticancer effect in NSCLC |
[124] | KPT-251 | in vitro/in vivo preclinical study | 2013 | anticancer effect in AML |
[114] | KPT-276 (+ KPT-185) | in vitro/in vivo preclinical study | 2013 | anticancer effect in MCL |
[115] | KPT-276 (+ KPT-185) | in vitro/in vivo preclinical study | 2014 | decreased proliferation of NHL |
[116] | KPT-276 | in vitro preclinical study | 2013 | decreased proliferation of MM |
[117] | verdinexor | in vitro/in vivo preclinical study | 2022 | decreased proliferation and migration of esophageal cancer |
[118] | verdinexor | in vitro/in vivo preclinical study | 2021 | anticancer effect in neuroblastoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaszewski, K.; Jędrzejczak, W.W. Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors. Drugs Drug Candidates 2023, 2, 459-476. https://doi.org/10.3390/ddc2020023
Karaszewski K, Jędrzejczak WW. Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors. Drugs and Drug Candidates. 2023; 2(2):459-476. https://doi.org/10.3390/ddc2020023
Chicago/Turabian StyleKaraszewski, Kajetan, and Wiesław Wiktor Jędrzejczak. 2023. "Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors" Drugs and Drug Candidates 2, no. 2: 459-476. https://doi.org/10.3390/ddc2020023
APA StyleKaraszewski, K., & Jędrzejczak, W. W. (2023). Selinexor and Other Selective Inhibitors of Nuclear Export (SINEs)—A Novel Approach to Target Hematologic Malignancies and Solid Tumors. Drugs and Drug Candidates, 2(2), 459-476. https://doi.org/10.3390/ddc2020023