Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Journal = Biomimetics
Section = Biological Optimisation and Management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7802 KiB  
Article
A Hybrid Ensemble Equilibrium Optimizer Gene Selection Algorithm for Microarray Data
by Peng Su, Yuxin Zhao, Xiaobo Li, Zhendi Ma and Hui Wang
Biomimetics 2025, 10(8), 523; https://doi.org/10.3390/biomimetics10080523 - 10 Aug 2025
Abstract
As modern medical technology advances, the utilization of gene expression data has proliferated across diverse domains, particularly in cancer diagnosis and prognosis monitoring. However, gene expression data is often characterized by high dimensionality and a prevalence of redundant and noisy information, prompting the [...] Read more.
As modern medical technology advances, the utilization of gene expression data has proliferated across diverse domains, particularly in cancer diagnosis and prognosis monitoring. However, gene expression data is often characterized by high dimensionality and a prevalence of redundant and noisy information, prompting the need for effective strategies to mitigate issues like the curse of dimensionality and overfitting. This study introduces a novel hybrid ensemble equilibrium optimizer gene selection algorithm in response. In the first stage, a hybrid approach, combining multiple filters and gene correlation-based methods, is used to select an optimal subset of genes, which is achieved by evaluating the redundancy and complementary relationships among genes to obtain a subset with maximal information content. In the second stage, an equilibrium optimizer algorithm incorporating Gaussian Barebone and a novel gene pruning strategy is employed to further search for the optimal gene subset within the candidate gene space selected in the first stage. To demonstrate the superiority of the proposed method, it was compared with nine feature selection techniques on 15 datasets. The results indicate that the ensemble filtering method in the first stage exhibits strong stability and effectively reduces the search space of the gene selection algorithms. The improved equilibrium optimizer algorithm enhances the prediction accuracy while significantly reducing the number of selected features. These findings highlight the effectiveness of the proposed method as a valuable approach for gene selection. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

20 pages, 3022 KiB  
Article
Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures
by Milica Milic Jankovic, Jelena Svorcan and Ivana Atanasovska
Biomimetics 2025, 10(8), 520; https://doi.org/10.3390/biomimetics10080520 - 8 Aug 2025
Viewed by 153
Abstract
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, [...] Read more.
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, demanding significant computational resources. This paper presents a bio-inspired machine learning approach, based on human reasoning, to accelerate predictions and reduce dependence on computationally intensive Finite Element Analysis (FEA). An artificial neural network model was developed to rapidly estimate key parameters—laminate thickness, total weight, maximum stress, displacement, deformation, and failure criteria—based on stacking sequence and geometry for a desired load case. Although validated using a specific composite beam, the methodology demonstrates potential for broader use in rapid structural assessment, with prediction deviations under 15% compared to FEA results. The time savings are particularly significant—while conventional FEA can take several hours or even days, the ANN model delivers accurate predictions within seconds. The approach significantly reduces computational time while maintaining precision. Moreover, with further refinement, this logic-driven model could be effectively applied to aircraft maintenance, enabling faster decision-making and improved structural reliability assessment. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

22 pages, 7229 KiB  
Review
Evolution and Trends of the Exploration–Exploitation Balance in Bio-Inspired Optimization Algorithms: A Bibliometric Analysis of Metaheuristics
by Yoslandy Lazo, Broderick Crawford, Felipe Cisternas-Caneo, José Barrera-Garcia, Ricardo Soto and Giovanni Giachetti
Biomimetics 2025, 10(8), 517; https://doi.org/10.3390/biomimetics10080517 - 7 Aug 2025
Viewed by 256
Abstract
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study [...] Read more.
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study performs an exhaustive analysis of the scientific production on the balance between exploration and exploitation using records extracted from the Web of Science (WoS) database. The processing and analysis of the data were carried out through the combined use of Bibliometrix (R package) and VOSviewer, tools that made it possible to quantify productivity, map collaborative networks, and visualize emerging thematic trends. The results show a sustained growth in the volume of publications over the last decade, as well as the consolidation of academic collaboration networks and the emergence of new thematic lines in the field. In particular, metaheuristic algorithms have demonstrated a significant and growing impact, constituting a fundamental pillar in the advancement and methodological diversification of the exploration–exploitation balance. This work provides a quantitative framework and a structured view of the evolution of research, identifies the main actors and trends, and raises opportunities for future lines of research in the field of optimization using metaheuristics, the most prominent instantiation of bio-inspired optimization algorithms. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

47 pages, 10020 KiB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Viewed by 151
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Auto Deep Spiking Neural Network Design Based on an Evolutionary Membrane Algorithm
by Chuang Liu and Haojie Wang
Biomimetics 2025, 10(8), 514; https://doi.org/10.3390/biomimetics10080514 - 6 Aug 2025
Viewed by 212
Abstract
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the [...] Read more.
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the DSNN’s performance, resulting in significant consumption of human and hardware resources. To address these challenges, this paper proposes an innovative evolutionary membrane algorithm for optimizing DSNN architectures. This algorithm automates the construction and design of promising network models, thereby reducing reliance on manual tuning. More specifically, the architecture of DSNN is transformed into the search space of the proposed evolutionary membrane algorithm. The proposed algorithm thoroughly explores the impact of hyperparameters, such as the candidate operation blocks of DSNN, to identify optimal configurations. Additionally, an early stopping strategy is adopted in the performance evaluation phase to mitigate the time loss caused by objective evaluations, further enhancing efficiency. The optimal models identified by the proposed algorithm were evaluated on the CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, showing significant improvements in accuracy compared to the existing state-of-the-art methods. This work highlights the potential of evolutionary membrane algorithms to streamline the design and optimization of DSNN architectures, offering a novel and efficient approach to address the challenges in the applications of automated parameter optimization for DSNN. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

23 pages, 3153 KiB  
Article
Research on Path Planning Method for Mobile Platforms Based on Hybrid Swarm Intelligence Algorithms in Multi-Dimensional Environments
by Shuai Wang, Yifan Zhu, Yuhong Du and Ming Yang
Biomimetics 2025, 10(8), 503; https://doi.org/10.3390/biomimetics10080503 - 1 Aug 2025
Viewed by 261
Abstract
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence [...] Read more.
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence algorithms possess strong data processing and search capabilities, enabling them to efficiently solve path planning problems in different environments and generate approximately optimal paths. However, swarm intelligence algorithms suffer from issues like premature convergence and a tendency to fall into local optima during the search process. Thus, an improved Artificial Bee Colony-Beetle Antennae Search (IABCBAS) algorithm is proposed. Firstly, Tent chaos and non-uniform variation are introduced into the bee algorithm to enhance population diversity and spatial searchability. Secondly, the stochastic reverse learning mechanism and greedy strategy are incorporated into the beetle antennae search algorithm to improve direction-finding ability and the capacity to escape local optima, respectively. Finally, the weights of the two algorithms are adaptively adjusted to balance global search and local refinement. Results of experiments using nine benchmark functions and four comparative algorithms show that the improved algorithm exhibits superior path point search performance and high stability in both high- and low-dimensional environments, as well as in unimodal and multimodal environments. Ablation experiment results indicate that the optimization strategies introduced in the algorithm effectively improve convergence accuracy and speed during path planning. Results of the path planning experiments show that compared with the comparison algorithms, the average path planning distance of the improved algorithm is reduced by 23.83% in the 2D multi-obstacle environment, and the average planning time is shortened by 27.97% in the 3D surface environment. The improvement in path planning efficiency makes this algorithm of certain value in engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

49 pages, 24339 KiB  
Article
An Enhanced Slime Mould Algorithm Based on Best–Worst Management for Numerical Optimization Problems
by Tongzheng Li, Hongchi Meng, Dong Wang, Bin Fu, Yuanyuan Shao and Zhenzhong Liu
Biomimetics 2025, 10(8), 504; https://doi.org/10.3390/biomimetics10080504 - 1 Aug 2025
Viewed by 395
Abstract
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement [...] Read more.
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement mechanisms are integrated. The adaptive greedy mechanism is used to accelerate the convergence of the algorithm and avoid ineffective updates. The best–worst management strategy improves the quality of the population and increases its search capability. The stagnant replacement mechanism prevents the algorithm from falling into a local optimum by replacing stalled individuals. In order to verify the effectiveness of the proposed method, this paper conducts a full range of experiments on the CEC2018 test suite and the CEC2022 test suite and compares BWSMA with three derived algorithms, eight SMA variants, and eight other improved algorithms. The experimental results are analyzed using the Wilcoxon rank-sum test, the Friedman test, and the Nemenyi test. The results indicate that the BWSMA significantly outperforms these compared algorithms. In the comparison with the SMA variants, the BWSMA obtained average rankings of 1.414, 1.138, 1.069, and 1.414. In comparison with other improved algorithms, the BWSMA obtained average rankings of 2.583 and 1.833. Finally, the applicability of the BWSMA is further validated through two structural optimization problems. In conclusion, the proposed BWSMA is a promising algorithm with excellent search accuracy and robustness. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

29 pages, 6397 KiB  
Article
Task Travel Time Prediction Method Based on IMA-SURBF for Task Dispatching of Heterogeneous AGV System
by Jingjing Zhai, Xing Wu, Qiang Fu, Ya Hu, Peihuang Lou and Haining Xiao
Biomimetics 2025, 10(8), 500; https://doi.org/10.3390/biomimetics10080500 - 1 Aug 2025
Viewed by 253
Abstract
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, [...] Read more.
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, T3P remains a challenging problem due to individual task correlations and dynamic changes in model input/output dimensions. To address these challenges, a biomimetics-inspired learning framework based on a radial basis function (RBF) neural network with an improved mayfly algorithm and a selective update strategy (IMA-SURBF) is proposed. Firstly, a T3P model is constructed by using travel-influencing factors as input and task travel time as output of the RBF neural network, where the input/output dimension is determined dynamically. Secondly, the improved mayfly algorithm (IMA), a biomimetic metaheuristic method, is adopted to optimize the initial parameters of the RBF neural network, while a selective update strategy is designed for parameter updates. Finally, simulation experiments on model design, parameter initialization, and comparison with deep learning-based models are conducted in a complex assembly line scenario to validate the accuracy and efficiency of the proposed method. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

26 pages, 14849 KiB  
Article
EAB-BES: A Global Optimization Approach for Efficient UAV Path Planning in High-Density Urban Environments
by Yunhui Zhang, Wenhong Xiao and Shihong Yin
Biomimetics 2025, 10(8), 499; https://doi.org/10.3390/biomimetics10080499 - 31 Jul 2025
Viewed by 319
Abstract
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex [...] Read more.
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex urban scenarios. The algorithm enhances solution space exploration through elite opposition-based learning, balances global search and local exploitation via an adaptive weight mechanism, and refines local search directions using block-based elite-guided differential mutation. These innovations significantly improve BES’s convergence speed, path accuracy, and adaptability to urban constraints. To validate its effectiveness, six high-density urban environments with varied obstacles were used for comparative experiments against nine advanced algorithms. The results demonstrate that EAB-BES achieves the fastest convergence speed and lowest stable fitness values and generates the shortest, smoothest collision-free 3D paths. Statistical tests and box plot analysis further confirm its superior performance in multiple performance metrics. EAB-BES has greater competitiveness compared with the comparative algorithms and can provide an efficient, reliable and robust solution for UAV autonomous navigation in complex urban environments. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

23 pages, 5330 KiB  
Article
Explainable Reinforcement Learning for the Initial Design Optimization of Compressors Inspired by the Black-Winged Kite
by Mingming Zhang, Zhuang Miao, Xi Nan, Ning Ma and Ruoyang Liu
Biomimetics 2025, 10(8), 497; https://doi.org/10.3390/biomimetics10080497 - 29 Jul 2025
Viewed by 441
Abstract
Although artificial intelligence methods such as reinforcement learning (RL) show potential in optimizing the design of compressors, there are still two major challenges remaining: limited design variables and insufficient model explainability. For the initial design of compressors, this paper proposes a technical approach [...] Read more.
Although artificial intelligence methods such as reinforcement learning (RL) show potential in optimizing the design of compressors, there are still two major challenges remaining: limited design variables and insufficient model explainability. For the initial design of compressors, this paper proposes a technical approach that incorporates deep reinforcement learning and decision tree distillation to enhance both the optimization capability and explainability. First, a pre-selection platform for the initial design scheme of the compressors is constructed based on the Deep Deterministic Policy Gradient (DDPG) algorithm. The optimization space is significantly enlarged by expanding the co-design of 25 key variables (e.g., the inlet airflow angle, the reaction, the load coefficient, etc.). Then, the initial design of six-stage axial compressors is successfully completed, with the axial efficiency increasing to 84.65% at the design speed and the surge margin extending to 10.75%. The design scheme is closer to the actual needs of engineering. Secondly, Shapley Additive Explanations (SHAP) analysis is utilized to reveal the influence of the mechanism of the key design parameters on the performance of the compressors in order to enhance the model explainability. Finally, the decision tree inspired by the black-winged kite (BKA) algorithm takes the interpretable design rules and transforms the data-driven intelligent optimization into explicit engineering experience. Through experimental validation, this method significantly improves the transparency of the design process while maintaining the high performance of the DDPG algorithm. The extracted design rules not only have clear physical meanings but also can effectively guide the initial design of the compressors, providing a new idea with both optimization capability and explainability for its intelligent design. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

39 pages, 10816 KiB  
Article
A Novel Adaptive Superb Fairy-Wren (Malurus cyaneus) Optimization Algorithm for Solving Numerical Optimization Problems
by Tianzuo Yuan, Huanzun Zhang, Jie Jin, Zhebo Chen and Shanshan Cai
Biomimetics 2025, 10(8), 496; https://doi.org/10.3390/biomimetics10080496 - 27 Jul 2025
Viewed by 495
Abstract
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and [...] Read more.
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and it faces a weakening of population diversity in the late stage of optimization, leading to a higher possibility of falling into local optima. In addition, its global search ability needs to be improved. To address the above deficiencies, this paper proposes an Adaptive Superb Fairy-wren Optimization Algorithm (ASFOA). To assess the ability of the proposed ASFOA, three groups of experiments are conducted in this paper. Firstly, the effectiveness of the proposed improved strategies is checked on the CEC2018 test set. Second, the ASFOA is compared with eight classical/highly cited/newly proposed metaheuristics on the CEC2018 test set, in which the ASFOA performed the best overall, with average rankings of 1.621, 1.138, 1.483, and 1.966 in the four-dimensional cases, respectively. Then the convergence and robustness of ASFOA is verified on the CEC2022 test set. The experimental results indicate that the proposed ASFOA is a competitive metaheuristic algorithm variant with excellent performance in terms of convergence and distribution of solutions. In addition, we further validate the ability of ASFOA to solve real optimization problems. The average ranking of the proposed ASFOA on 10 engineering constrained optimization problems is 1.500. In summary, ASFOA is a promising variant of metaheuristic algorithms. Full article
Show Figures

Figure 1

22 pages, 2974 KiB  
Article
An Enhanced Grasshopper Optimization Algorithm with Outpost and Multi-Population Mechanisms for Dolomite Lithology Prediction
by Xinya Yu and Parhat Zunu
Biomimetics 2025, 10(8), 494; https://doi.org/10.3390/biomimetics10080494 - 25 Jul 2025
Viewed by 341
Abstract
The Grasshopper Optimization Algorithm (GOA) has attracted significant attention due to its simplicity and effective search capabilities. However, its performance deteriorates when dealing with high-dimensional or complex optimization tasks. To address these limitations, this study proposes an improved variant of GOA, named Outpost [...] Read more.
The Grasshopper Optimization Algorithm (GOA) has attracted significant attention due to its simplicity and effective search capabilities. However, its performance deteriorates when dealing with high-dimensional or complex optimization tasks. To address these limitations, this study proposes an improved variant of GOA, named Outpost Multi-population GOA (OMGOA). OMGOA integrates two novel mechanisms: the Outpost mechanism, which enhances local exploitation by guiding agents towards high-potential regions, and the multi-population enhanced mechanism, which promotes global exploration and maintains population diversity through parallel evolution and controlled information exchange. Comprehensive experiments were conducted to evaluate the effectiveness of OMGOA. Ablation studies were performed to assess the individual contributions of each mechanism, while multi-dimensional testing was used to verify robustness and scalability. Comparative experiments show that OMGOA has better optimization performance compared to other similar algorithms. In addition, OMGOA was successfully applied to a real-world engineering problem—lithology prediction from petrophysical logs—where it achieved competitive classification performance. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

25 pages, 51196 KiB  
Article
Research on Robot Obstacle Avoidance and Generalization Methods Based on Fusion Policy Transfer Learning
by Suyu Wang, Zhenlei Xu, Peihong Qiao, Quan Yue, Ya Ke and Feng Gao
Biomimetics 2025, 10(8), 493; https://doi.org/10.3390/biomimetics10080493 - 25 Jul 2025
Viewed by 481
Abstract
In nature, organisms often rely on the integration of local sensory information and prior experience to flexibly adapt to complex and dynamic environments, enabling efficient path selection. This bio-inspired mechanism of perception and behavioral adjustment provides important insights for path planning in mobile [...] Read more.
In nature, organisms often rely on the integration of local sensory information and prior experience to flexibly adapt to complex and dynamic environments, enabling efficient path selection. This bio-inspired mechanism of perception and behavioral adjustment provides important insights for path planning in mobile robots operating under uncertainty. In recent years, the introduction of deep reinforcement learning (DRL) has empowered mobile robots to autonomously learn navigation strategies through interaction with the environment, allowing them to identify obstacle distributions and perform path planning even in unknown scenarios. To further enhance the adaptability and path planning performance of robots in complex environments, this paper develops a deep reinforcement learning framework based on the Soft Actor–Critic (SAC) algorithm. First, to address the limited adaptability of existing transfer learning methods, we propose an action-level fusion mechanism that dynamically integrates prior and current policies during inference, enabling more flexible knowledge transfer. Second, a bio-inspired radar perception optimization method is introduced, which mimics the biological mechanism of focusing on key regions while ignoring redundant information, thereby enhancing the expressiveness of sensory inputs. Finally, a reward function based on ineffective behavior recognition is designed to reduce unnecessary exploration during training. The proposed method is validated in both the Gazebo simulation environment and real-world scenarios. Experimental results demonstrate that the approach achieves faster convergence and superior obstacle avoidance performance in path planning tasks, exhibiting strong transferability and generalization across various obstacle configurations. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

28 pages, 1547 KiB  
Review
Brain–Computer Interfaces in Parkinson’s Disease Rehabilitation
by Emmanuel Ortega-Robles, Ruben I. Carino-Escobar, Jessica Cantillo-Negrete and Oscar Arias-Carrión
Biomimetics 2025, 10(8), 488; https://doi.org/10.3390/biomimetics10080488 - 23 Jul 2025
Viewed by 797
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder with motor and non-motor symptoms that are inadequately addressed by current pharmacological and surgical therapies. Brain–computer interfaces (BCIs), particularly those based on electroencephalography (eBCIs), provide a promising, non-invasive approach to personalized neurorehabilitation. This narrative review [...] Read more.
Parkinson’s disease (PD) is a progressive neurological disorder with motor and non-motor symptoms that are inadequately addressed by current pharmacological and surgical therapies. Brain–computer interfaces (BCIs), particularly those based on electroencephalography (eBCIs), provide a promising, non-invasive approach to personalized neurorehabilitation. This narrative review explores the clinical potential of BCIs in PD, discussing signal acquisition, processing, and control paradigms. eBCIs are well-suited for PD due to their portability, safety, and real-time feedback capabilities. Emerging neurophysiological biomarkers—such as beta-band synchrony, phase–amplitude coupling, and altered alpha-band activity—may support adaptive therapies, including adaptive deep brain stimulation (aDBS), as well as motor and cognitive interventions. BCIs may also aid in diagnosis and personalized treatment by detecting these cortical and subcortical patterns associated with motor and cognitive dysfunction in PD. A structured search identified 11 studies involving 64 patients with PD who used BCIs for aDBS, neurofeedback, and cognitive rehabilitation, showing improvements in motor function, cognition, and engagement. Clinical translation requires attention to electrode design and user-centered interfaces. Ethical issues, including data privacy and equitable access, remain critical challenges. As wearable technologies and artificial intelligence evolve, BCIs could shift PD care from intermittent interventions to continuous, brain-responsive therapy, potentially improving patients’ quality of life and autonomy. This review highlights BCIs as a transformative tool in PD management, although more robust clinical evidence is needed. Full article
Show Figures

Graphical abstract

27 pages, 5788 KiB  
Article
A Novel Artificial Eagle-Inspired Optimization Algorithm for Trade Hub Location and Allocation Method
by Shuhan Hu, Gang Hu, Bo Du and Abdelazim G. Hussien
Biomimetics 2025, 10(8), 481; https://doi.org/10.3390/biomimetics10080481 - 22 Jul 2025
Viewed by 316
Abstract
Aiming for convenience and the low cost of goods transfer between towns, this paper proposes a trade hub location and allocation method based on a novel artificial eagle-inspired optimization algorithm. Firstly, the trade hub location and allocation model is established, taking the total [...] Read more.
Aiming for convenience and the low cost of goods transfer between towns, this paper proposes a trade hub location and allocation method based on a novel artificial eagle-inspired optimization algorithm. Firstly, the trade hub location and allocation model is established, taking the total cost consisting of construction and transportation costs as the objective function. Then, to solve the nonlinear model, a novel artificial eagle optimization algorithm (AEOA) is proposed by simulating the collective migration behaviors of artificial eagles when facing a severe living environment. Three main strategies are designed to help the algorithm effectively explore the decision space: the situational awareness and analysis stage, the free exploration stage, and the flight formation integration stage. In the first stage, artificial eagles are endowed with intelligent thinking, thus generating new positions closer to the optimum by perceiving the current situation and updating their positions. In the free exploration stage, artificial eagles update their positions by drawing on the current optimal position, ensuring more suitable habitats can be found. Meanwhile, inspired by the consciousness of teamwork, a formation flying method based on distance information is introduced in the last stage to improve stability and success rate. Test results from the CEC2022 suite indicate that the AEOA can obtain better solutions for 11 functions out of all 12 functions compared with 8 other popular algorithms. Faster convergence speed and stronger stability of the AEOA are also proved by quantitative analysis. Finally, the trade hub location and allocation method is proposed by combining the optimization model and the AEOA. By solving two typical simulated cases, this method can select suitable hubs with lower construction costs and achieve reasonable allocation between hubs and the rest of the towns to reduce transportation costs. Thus, it is used to solve the trade hub location and allocation problem of Henan province in China to help the government make sound decisions. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

Back to TopTop