Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,837,150)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 942 KB  
Review
Climate Change, Fish and Shellfish, and Parasite Dynamics: A Comprehensive Review
by Fernando Atroch, Luis Filipe Rangel, Camilo Ayra-Pardo and Maria João Santos
J. Mar. Sci. Eng. 2026, 14(2), 167; https://doi.org/10.3390/jmse14020167 (registering DOI) - 13 Jan 2026
Abstract
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite [...] Read more.
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite relationship. The systematic literature review was conducted across a high-impact database (Web of Science), focusing on the extraction and qualitative analysis of data concerning infection dynamics and both host and parasite interactions. The findings demonstrate that thermal stress imposes a dual penalty on host–parasite systems: (1) it confers a critical thermal advantage to direct-life cycle parasites, significantly accelerating their virulence, reproduction, and infective capacity; (2) simultaneously, it severely compromises the immunocompetence and physiological resilience of piscine hosts, often through immunometabolic trade-offs and inflammatory dysfunction. This toxic synergy is the root cause of the exponential disease prevalence/intensity of parasites and fish mass mortality events, directly impacting biodiversity and global aquaculture sustainability. In contrast, it may also cause the disruption of the transmission chains to threaten complex life cycle parasites with localised extinction. We conclude that climate mitigation must be urgently recognised and implemented as a primary strategy for biological risk management to secure aquatic health and global food safety. Full article
(This article belongs to the Special Issue Parasitology of Marine Animals)
Show Figures

Figure 1

10 pages, 2302 KB  
Article
Impact of a Virtual Three-Dimensional Thyroid Model on Patient Communication in Thyroid Surgery: A Randomized Controlled Trial
by Zhen Cao, Qiyao Zhang, Shangcheng Yan, Zhihong Qian, Xiequn Xu and Ziwen Liu
Cancers 2026, 18(2), 241; https://doi.org/10.3390/cancers18020241 (registering DOI) - 13 Jan 2026
Abstract
Background: Effective preoperative patient counseling is essential to shared decision-making. In thyroid surgery, patient communication can be complicated by the complex anatomy and variable surgical approaches, which may not be fully conveyed through conventional verbal explanations or schematic drawings. Virtual three-dimensional (3D) thyroid [...] Read more.
Background: Effective preoperative patient counseling is essential to shared decision-making. In thyroid surgery, patient communication can be complicated by the complex anatomy and variable surgical approaches, which may not be fully conveyed through conventional verbal explanations or schematic drawings. Virtual three-dimensional (3D) thyroid models may provide an intuitive tool to enhance patient comprehension. Methods: We conducted a randomized controlled trial at Peking Union Medical College Hospital with 94 newly-diagnosed thyroid cancer patients scheduled for thyroidectomy. Participants were assigned to either the control group (n = 47), which received preoperative drawing-based counseling, or the intervention group (n = 47), which utilized a virtual 3D model for communication. The Thyroid Navigator app, developed by Kuma Hospital, was used to provide dynamic 3D representation of the thyroid gland, surrounding structures, and potential surgical procedures. After standardized preoperative consultations, patients were surveyed to assess their understanding in pertinent anatomy and postoperative complications. Results: Patients in the 3D model group demonstrated similar correct response rates in lesion localization (p = 0.536) or parathyroid gland recognition (p = 0.071), but significantly higher accuracy in identifying the recurrent laryngeal nerve and the extent of lymph node dissection compared with the control group (p < 0.05). Moreover, comprehension of the causes of major postoperative complications—including hoarseness (recurrent laryngeal nerve injury, p = 0.004), hypocalcemia (parathyroid gland impairment, p = 0.015), and bleeding (inadequate hemostasis, p = 0.008)—was significantly improved in the 3D model group. Conclusions: Use of a virtual 3D thyroid model significantly improves patient comprehension of thyroid anatomy, surgical procedures, and potential complications, thereby enhancing clinician–patient communication. Virtual 3D models represent a practical and cost-effective supplement to conventional counseling in thyroid surgery, offering clear benefits in patient education and shared decision-making. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

24 pages, 1516 KB  
Article
Prediction Models for Non-Destructive Identification of Compacted Soil Layers Based on Electrical Conductivity and Moisture Content
by Hasan Mirzakhaninafchi, Ahmet Çelik, Roaf Parray and Abir Mohammad Hadi
Agriculture 2026, 16(2), 197; https://doi.org/10.3390/agriculture16020197 (registering DOI) - 13 Jan 2026
Abstract
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential [...] Read more.
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential for site-specific tillage and sustainable root-zone management. A sensing approach that can support future real-time identification of compacted layers after soil-specific calibration, which would enable variable-depth tillage, reducing mechanical impedance and improving energy-use efficiency while maintaining crop yields. This study aimed to develop and evaluate prediction models that can support future real-time identification of compacted soil layers using soil electrical conductivity (EC) and moisture content as non-destructive indicators. A sandy clay soil (48.6% sand, 29.3% clay, 22.1% silt) was tested in a soil-bin laboratory under controlled conditions at three moisture levels (13, 18, and 22% db.) and six depth layers (C1–C6, 0–30 cm) identified from the penetration-resistance profile to measure penetration resistance, shear resistance, and EC. Penetration and shear resistance increased toward the most resistant depth layer and decreased with increasing moisture content, whereas EC generally increased with both depth layer and moisture content. Linear regression models relating penetration resistance (R2=0.893) and shear resistance (R2=0.782) to EC and moisture content were developed and evaluated. Field validation in a paddy field of similar texture showed that predicted penetration resistance differed from measured values by 3–6% across the three compaction treatments evaluated. Root length density and root volume decreased with increasing machine-induced compaction, confirming the agronomic relevance of the modeled patterns and supporting the suitability of the proposed indicators. Together, these results demonstrate that EC and moisture content can potentially be used as non-destructive proxies for compacted-layer identification and provide a calibration basis for future on-the-go sensing systems to support site-specific, variable-depth tillage in agricultural fields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

26 pages, 11216 KB  
Article
Comparative Study on the Performance of a Conventional Two-Blade and a Three-Blade Toroidal Propeller for UAVs
by Daniel Mariuta, Claudiu Ignat and Grigore Cican
Eng 2026, 7(1), 42; https://doi.org/10.3390/eng7010042 (registering DOI) - 13 Jan 2026
Abstract
This paper presents an integrated study on the design, simulation, manufacturing, and experimental testing of a three-blade tritoroidal propeller compared to a conventional two-blade configuration for small UAVs. The aerodynamic analysis was performed in ANSYS Fluent 2022 R1 using the k–ω SST turbulence [...] Read more.
This paper presents an integrated study on the design, simulation, manufacturing, and experimental testing of a three-blade tritoroidal propeller compared to a conventional two-blade configuration for small UAVs. The aerodynamic analysis was performed in ANSYS Fluent 2022 R1 using the k–ω SST turbulence model at 6000 rpm, while structural integrity was assessed through FEM simulations in ANSYS Mechanical 2022 R1. Both propellers were fabricated via SLA additive manufacturing using Rigid 4000 resin and evaluated on an RCbenchmark 1585 test stand. The CFD results revealed smoother flow attachment and reduced tip vortex intensity for the tritoroidal geometry, while FEM analyses confirmed lower deformation and a more uniform stress distribution. Experimental tests showed that the tritoroidal propeller produces thrust comparable to the conventional one (within 1%) but at a 58% higher torque, resulting in slightly lower efficiency. However, vibration amplitude decreased by up to 70%, and the SPL was reduced by 0.1–6.2 dB at low and moderate speeds. These results validate the tritoroidal concept as a structurally robust and acoustically efficient alternative, with strong potential for optimization in low-noise UAV propulsion systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

16 pages, 4721 KB  
Article
A Substrate-Integrated Waveguide Filtering Power Divider with Broadside-Coupled Inner-Meander-Slot Complementary Split-Ring Resonator
by Jinjia Hu, Chen Wang, Yongmao Huang, Shuai Ding and Maurizio Bozzi
Micromachines 2026, 17(1), 103; https://doi.org/10.3390/mi17010103 (registering DOI) - 13 Jan 2026
Abstract
In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot [...] Read more.
In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot and increase the width of the split, thus enhancing the equivalent capacitance and inductance. In this way, the fundamental resonant frequency of the IMSCSRR can be effectively decreased without enlarging the circuit size, which can generally help to reduce the physical size by over 35%. Subsequently, to further reduce the circuit size, two IMSCSRRs are separately loaded on the top and bottom metal covers to constitute a broadside-coupled IMSCSRR, which is combined with the SIW. To verify the efficacy of the proposed SIW-IMSCSRR unit cell, a two-way filtering power divider is implemented. It combines the band-selection function of a filter and the power-distribution property of a power divider, thereby enhancing system integration and realizing size compactness. Experimental results show that the proposed filtering power divider achieves a center frequency of 3.53 GHz, a bandwidth of about 320 MHz, an in-band insertion loss of (3 + 1.3) dB, an in-band isolation of over 21 dB, and a size reduction of about 30% compared with the design without broadside-coupling, as well as good magnitude and phase variations. All the results indicate that the proposed filtering power divider achieves a good balance between low loss, high isolation, and compact size, which is suitable for system integration applications in microwave scenarios. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

20 pages, 3283 KB  
Article
Small-Target Pest Detection Model Based on Dynamic Multi-Scale Feature Extraction and Dimensionally Selected Feature Fusion
by Junjie Li, Wu Le, Zhenhong Jia, Gang Zhou, Jiajia Wang, Guohong Chen, Yang Wang and Yani Guo
Appl. Sci. 2026, 16(2), 793; https://doi.org/10.3390/app16020793 (registering DOI) - 13 Jan 2026
Abstract
Pest detection in the field is crucial for realizing smart agriculture. Deep learning-based target detection algorithms have become an important pest identification method due to their high detection accuracy, but the existing methods still suffer from misdetection and omission when detecting small-targeted pests [...] Read more.
Pest detection in the field is crucial for realizing smart agriculture. Deep learning-based target detection algorithms have become an important pest identification method due to their high detection accuracy, but the existing methods still suffer from misdetection and omission when detecting small-targeted pests and small-targeted pests in more complex backgrounds. For this reason, this study improves on YOLO11 and proposes a new model called MSDS-YOLO for enhanced detection of small-target pests. First, a new dynamic multi-scale feature extraction module (C3k2_DMSFE) is introduced, which can be adaptively adjusted according to different input features and thus effectively capture multi-scale and diverse feature information. Next, a novel Dimensional Selective Feature Pyramid Network (DSFPN) is proposed, which employs adaptive feature selection and multi-dimensional fusion mechanisms to enhance small-target saliency. Finally, the ability to fit small targets was enhanced by adding 160 × 160 detection heads removing 20 × 20 detection heads and using Normalized Gaussian Wasserstein Distance (NWD) combined with CIoU as a position loss function to measure the prediction error. In addition, a real small-target pest dataset, Cottonpest2, is constructed for validating the proposed model. The experimental results showed that a mAP50 of 86.7% was achieved on the self-constructed dataset Cottonpest2, which was improved by 3.0% compared to the baseline. At the same time, MSDS-YOLO has achieved better detection accuracy than other YOLO models on public datasets. Model evaluation on these three datasets shows that the MSDS-YOLO model has excellent robustness and model generalization ability. Full article
Show Figures

Figure 1

14 pages, 965 KB  
Article
A Procedure for Fast Circuit Cross Section Estimation
by Clayton R. Farias, Tiago R. Balen and Paulo F. Butzen
Chips 2026, 5(1), 2; https://doi.org/10.3390/chips5010002 (registering DOI) - 13 Jan 2026
Abstract
Semiconductor technologies are susceptible to radiation effects. The particle incidence in susceptible areas of an integrated circuit (IC) can generate physical interactions capable of producing errors. This paper predicts the IC cross sections for Single Event Effects. The cross section is a metric [...] Read more.
Semiconductor technologies are susceptible to radiation effects. The particle incidence in susceptible areas of an integrated circuit (IC) can generate physical interactions capable of producing errors. This paper predicts the IC cross sections for Single Event Effects. The cross section is a metric that provides an IC’s susceptibility to radiation. It deals with particle source interaction and physical design volumes. This work evaluates the IC cross section, exploring the physical design characteristics of susceptible regions in logic gates. It explores particles with low LET, identifying the charge collection areas. Also, the heavy ions are used to evaluate the critical cross section range. Distinct benchmark circuits were simulated to characterize sensitivity trends. The influence of circuit input conditions along with cells’ susceptibility reveals significant findings. The results indicate a difference up to ten times between low- and high-energy particles. Consequently, predicting the IC cross section at an early stage of the design flow is essential, especially for electronics devices used in radiation environments. Full article
(This article belongs to the Special Issue New Research in Microelectronics and Electronics)
Show Figures

Figure 1

18 pages, 758 KB  
Article
Effects of Sodium Butyrate and Organic Zinc Supplementation on Performance, Mineral Metabolism, and Intestinal Health of Dairy Calves
by Mellory M. Martins, Larissa S. Gheller, Bruna L. de Noronha, Gabrielly A. Cassiano, Mariana B. Figueiredo, Caroline M. Meira, Flávia F. Simili, Márcia S. V. Salles and Arlindo Saran Netto
Animals 2026, 16(2), 230; https://doi.org/10.3390/ani16020230 (registering DOI) - 13 Jan 2026
Abstract
The objective of this study was to evaluate the effects of sodium butyrate and organic zinc supplementation, alone or combined, on performance, zinc metabolism, blood parameters, and gut health in Holstein calves highly challenged by heat and diarrhea during the pre-weaning and weaning [...] Read more.
The objective of this study was to evaluate the effects of sodium butyrate and organic zinc supplementation, alone or combined, on performance, zinc metabolism, blood parameters, and gut health in Holstein calves highly challenged by heat and diarrhea during the pre-weaning and weaning periods. Forty-eight male calves were assigned to one of four treatments: control (CON), SB (3 g/kg of sodium butyrate in dry matter [DM]), OZn (262 mg/kg of organic zinc in DM), or SBOZn (3 g/kg of sodium butyrate and 262 mg/kg of organic zinc in DM). Calves were monitored from days 7 to 63 for feed intake, weight gain, body morphometry, fecal score, and blood parameters. Zinc balance was evaluated from days 45 to 49, and 24 calves were slaughtered on day 64 for jejunal sampling to assess tight junction gene expression. Diarrhea incidence was high (>90%) across groups. Fecal scores varied over time but did not differ between treatments. The OZn and SBOZn groups had higher Zn intake, with greater absorption and retention of the mineral compared to the CON and SB groups. Additionally, the OZn group tended to have higher serum Zn concentrations. SB and OZn, separately or combined, had limited effects and did not consistently improve the performance or health of calves highly challenged during pre-weaning and weaning. Full article
Show Figures

Figure 1

28 pages, 1031 KB  
Review
Grasses of Campos Rupestres: Diversity, Functions and Perspectives for Seedling Production and Ecological Restoration
by Alessandra Rodrigues Kozovits, Maurílio Assis Figueiredo and Maria Cristina Teixeira Braga Messias
Grasses 2026, 5(1), 4; https://doi.org/10.3390/grasses5010004 (registering DOI) - 13 Jan 2026
Abstract
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They [...] Read more.
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They provide critical ecological services, including soil stabilization, enhancing carbon storage and nutrient cycling, regulating water availability, and resilience to disturbances. This review synthesizes current knowledge on the diversity, functions, and propagation of Campos Rupestres grasses, with emphasis on their potential in ecological restoration. Despite their ecological importance, large-scale use of native grasses remains incipient, constrained by limited knowledge of reproductive biology, low seed viability, and scarce commercial seed availability. Advances in propagation include seedling and plug production, vegetative propagation, and rescue/reintroduction strategies, which have shown promising results in post-mining restoration. However, reliance on seed collection from natural populations risks depleting already limited genetic resources, highlighting the need for ex situ production systems. Expanding research on taxonomy, ecology, and cost-effective propagation methods, alongside supportive policy and market development, is crucial for integrating native grasses as cornerstone species in restoration programs. Bridging these gaps will enhance biodiversity conservation and restoration in one of the world’s most threatened megadiverse systems. Full article
(This article belongs to the Special Issue Feature Papers in Grasses)
Show Figures

Figure 1

25 pages, 5615 KB  
Article
The Difference in the Mechanisms of the TCA Cycle, Organic Acid Metabolism and Secretion of Rapeseed Roots Responding to Saline and Alkaline Stresses
by Chenhao Zhang, Lupeng Sun, Dianjun Chen, Xiaowei Zhu and Fenghua Zhang
Agronomy 2026, 16(2), 189; https://doi.org/10.3390/agronomy16020189 (registering DOI) - 13 Jan 2026
Abstract
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) [...] Read more.
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) and 40 (HA) mmol/L Na2CO3) treatments were applied to rapeseed. Then, targeted metabolomics was used to quantitatively analyze the changes in organic acid metabolism in the root system. The results showed that compared with the control group without stress (CK), 21, 18, 27, and 20 differentially accumulated organic acid metabolites were detected in the rapeseed roots under LS, HS, LA, and HA, respectively. In addition, 26, 6, 34, and 14 differentially accumulated organic acids were detected in the rapeseed root exudates under LS, HS, LA, and HA, respectively. Based on the activities of key enzymes related to the tricarboxylic acid cycle (TCA), antioxidant enzyme activities, organic acid metabolism, and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis in rapeseed roots, rapeseed mainly resisted saline and alkaline stresses by increasing organic acid synthesis and scavenging reactive oxygen species. Specifically, rapeseed resisted saline stress mainly by increasing the secretion of TCA cycle-related organic acids such as succinic acid, L-malic acid, fumaric acid, and cis-aconitic acid. In addition to secreting organic acids, rapeseed also resisted alkaline stress by increasing the secretion of phenolic acids such as 4-hydroxybenzoic acid, ferulic acid, and 4-coumaric acid. Notably, the number of secreted organic acid types and the increase in organic acid content under alkaline stress were higher than those under saline stress. The results of this study provide an important basis for the breeding of saline and alkaline stress-tolerant rapeseed varieties. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 262 KB  
Article
Encountering Generative AI: Narrative Self-Formation and Technologies of the Self Among Young Adults
by Dana Kvietkute and Ingunn Johanne Ness
Societies 2026, 16(1), 26; https://doi.org/10.3390/soc16010026 (registering DOI) - 13 Jan 2026
Abstract
This paper examines how young adults integrate generative artificial intelligence chatbots into everyday life and the implications of these engagements for the constitution of selfhood. Whilst existing research on AI-mediated subjectivity has predominantly employed identity frameworks centered on social positioning and role enactment, [...] Read more.
This paper examines how young adults integrate generative artificial intelligence chatbots into everyday life and the implications of these engagements for the constitution of selfhood. Whilst existing research on AI-mediated subjectivity has predominantly employed identity frameworks centered on social positioning and role enactment, this study foregrounds selfhood—understood as the organization of subjective experience through narrative coherence, interpretive authority, and practices of self-governance. Drawing upon Paul Ricœur’s theory of narrative self and Michel Foucault’s concept of technologies of the self, the analysis proceeds through in-depth qualitative interviews with sixteen young adults in Norway to investigate how algorithmic systems participate in autobiographical reasoning and self-formative practices. The findings reveal four dialectical tensions structuring participants’ engagements with ChatGPT: between instrumental efficiency and existential unease; between algorithmic scaffolding and relational displacement; between narrative depth and epistemic superficiality; and between agency and deliberative outsourcing. The analysis demonstrates that AI-mediated practices extend beyond instrumental utility to reconfigure fundamental dimensions of subjectivity, raising questions about interpretive authority, narrative authorship, and the conditions under which selfhood is negotiated in algorithmic environments. These findings contribute to debates on digital subjectivity, algorithmic governance, and the societal implications of AI systems that increasingly function as interlocutors in meaning-making processes. Full article
(This article belongs to the Special Issue Algorithm Awareness: Opportunities, Challenges and Impacts on Society)
4 pages, 160 KB  
Editorial
Clinical Impact of Ketogenic Diet
by Valentina Guarnotta
Nutrients 2026, 18(2), 245; https://doi.org/10.3390/nu18020245 (registering DOI) - 13 Jan 2026
Abstract
During the last century, the ketogenic diet (KD) has gradually shifted from a specialized dietary therapy used almost exclusively in pediatric epilepsy to a metabolic intervention explored across several areas of clinical medicine [...] Full article
(This article belongs to the Special Issue Clinical Impact of Ketogenic Diet)
13 pages, 535 KB  
Review
From Lung Cancer Predictive Models to MULTIPREVENTion
by Zuzanna Budzińska, Zofia Budzisz, Marta Bednarek and Joanna Bidzińska
J. Clin. Med. 2026, 15(2), 629; https://doi.org/10.3390/jcm15020629 (registering DOI) - 13 Jan 2026
Abstract
The early diagnosis and treatment of civilizational diseases remain a significant challenge worldwide. Although advances in medical technology have led to the introduction of more screening options over time, these measures are still insufficient to effectively reduce mortality from deadly diseases such as [...] Read more.
The early diagnosis and treatment of civilizational diseases remain a significant challenge worldwide. Although advances in medical technology have led to the introduction of more screening options over time, these measures are still insufficient to effectively reduce mortality from deadly diseases such as lung cancer (LC), cardiovascular diseases (CVD), diabetes, and chronic obstructive pulmonary disease (COPD). These conditions pose a major public health burden, underlying the urgent need for more comprehensive and efficient prevention strategies. Recently, the concept of ‘multiscreening’ has emerged as a promising approach. Multiscreening involves the simultaneous screening for multiple diseases using integrated diagnostic methods, potentially improving early detection rates and optimizing resource utilization. In 2024, Rzyman W. et al. launched the MULTIPREVENT epidemiological study, which aims to develop and validate a low-dose computed tomography (LDCT)-based screening test for civilizational diseases. This study represents a step forward in the pursuit of more effective, minimally invasive diagnostic tools that could facilitate earlier intervention and improve patient outcomes. To better understand the potential of multiscreening approaches and their clinical utility, it is essential to evaluate the existing predictive models used for identifying individuals at high risk for these diseases. This narrative review focuses primarily on lung cancer risk prediction models used in LDCT screening while situating these approaches within the broader conceptual framework of the MULTIPREVENT project, aimed at future integration of multi-disease prevention strategies. With this analysis, we aim to provide insights that will guide the development of more accurate, integrative screening tools that could reduce the global burden of these diseases. Full article
Show Figures

Figure 1

28 pages, 1862 KB  
Review
The Role of Malting and Brewer’s Spent Grain in Sustainable Cereal Utilization
by Szintia Jevcsák, Gerda Diósi, Gréta Törős, Ádám Fülep and Endre Máthé
Foods 2026, 15(2), 287; https://doi.org/10.3390/foods15020287 (registering DOI) - 13 Jan 2026
Abstract
Malting is a sustainable, low-cost, and adaptable technique that enhances the nutritional and functional value of cereals while contributing to waste reduction, improved food safety, and the valorization of brewing by-products such as brewers’ spent grain. It was originally developed for barley but [...] Read more.
Malting is a sustainable, low-cost, and adaptable technique that enhances the nutritional and functional value of cereals while contributing to waste reduction, improved food safety, and the valorization of brewing by-products such as brewers’ spent grain. It was originally developed for barley but is now used with a wide range of cereals. Malting, in its simplest form, involves controlled germination and drying, which enhance enzyme activity and improve grain nutritional quality. Our review introduces a broader perspective by addressing how malting can enhance health benefits through malted forms of both common and less prominent cereals such as sorghum, teff, millet, triticale, quinoa, and buckwheat. Nutritional enhancement takes place by increasing nutrient bioavailability, changing chemical composition, and reducing antinutrients, while inducing the production of bioactive compounds with antioxidant, anti-inflammatory, and antidiabetic activities. This review examines brewers’ spent grain (BSG), a nutrient-dense brewing by-product that is widely recognized as a sustainable ingredient for food and nutrition applications. Full article
(This article belongs to the Special Issue The Processing of Cereal and Its By-Products)
Show Figures

Figure 1

16 pages, 4319 KB  
Article
Metol Electrochemical Sensing over LASIS Gold Nanoparticle-Modified Screen-Printed Carbon Electrodes in Adsorption Studies with Waste Biomass-Derived Highly Porous Carbon Material
by Marina Radenković, Ana Lazić, Marija Kovačević, Miloš Ognjanović, Dalibor Stanković, Dubravka Relić, Ana Kalijadis, Aleksandra Dimitrijević and Sanja Živković
Sustain. Chem. 2026, 7(1), 5; https://doi.org/10.3390/suschem7010005 (registering DOI) - 13 Jan 2026
Abstract
This work used activated carbon material obtained by chemical activation of abundantly available agricultural sunflower waste residues to remove metol (4-(methylamino) phenol sulfate, MTL) from aqueous solutions. The adsorbent structure was characterized using SEM-EDS and FT-IR spectroscopy. A modified screen-printed carbon electrode (SPCE) [...] Read more.
This work used activated carbon material obtained by chemical activation of abundantly available agricultural sunflower waste residues to remove metol (4-(methylamino) phenol sulfate, MTL) from aqueous solutions. The adsorbent structure was characterized using SEM-EDS and FT-IR spectroscopy. A modified screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized using the Laser Ablation Synthesis in Solution (LASIS) method was used to detect MTL. The successful LASIS formation of gold nanoparticles was confirmed by the specific dark burgundy–red color. TEM measurements showed uniform pseudo-spherical particles with an average diameter of 7.9 ± 0.2 nm. The modified electrode showed improved electrochemical activity, which was confirmed by comparing it with an unmodified electrode using cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode was subsequently used to optimize the MTL detection conditions. UV–Vis spectroscopy was used to optimize the adsorption conditions, with the optimal values for pH and contact time found to be 8 and 120 min, respectively. The electrochemical detection of MTL was performed using differential pulse voltammetry, and the linear calibration range was established for concentrations ranging from 0.73–49.35 µM. The obtained limits of detection (LOD) and quantification (LOQ) were 0.06 µM and 0.2 µM, respectively. The efficiency of MTL removal was 100% after a contact time of 1 min and remained at 100% after 120 min. Full article
Show Figures

Figure 1

Back to TopTop