Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Zaixin Song ORCID = 0000-0002-0599-3350

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 176
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 19193 KiB  
Article
Design of a Novel Nine-Phase Ferrite-Assisted Synchronous Reluctance Machine with Skewed Stator Slots
by Hongliang Guo, Tianci Wang, Hongwu Chen, Zaixin Song and Chunhua Liu
Energies 2025, 18(9), 2323; https://doi.org/10.3390/en18092323 - 2 May 2025
Viewed by 521
Abstract
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from [...] Read more.
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from increased torque ripples and harmonic distortion, while reliance on rare-earth materials raises cost and sustainability concerns. To address these issues, the proposed design incorporates low-cost ferrite magnets embedded within the rotor flux barriers to achieve a flux-concentrated effect and enhanced torque production. The nine-phase winding configuration is utilized to improve fault tolerance, reduce harmonic distortion, and enable smoother torque output compared with conventional three-phase counterparts. In addition, the skewed stator slot design further minimizes harmonic components, reducing overall distortion. The proposed machine is validated through finite element analysis (FEA), and experimental verification is obtained by measuring the inductance characteristics and back-EMF of the nine-phase winding, confirming the feasibility of the electromagnetic design. The results demonstrate significant reductions in harmonic distortion and torque ripples, verifying the potential of this design. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

17 pages, 2098 KiB  
Article
Investigation of Near-Infrared Spectroscopy for Assessing the Macroscopic Mechanical Properties of Cross-Linked Polyethylene During Thermal Aging
by Chenying Li, Xiao Tan, Liguo Liu, Wei Zhang, Qiming Yang, Jingying Cao, Enci Zhou, Mingzhen Li and Zaixin Song
Materials 2025, 18(3), 504; https://doi.org/10.3390/ma18030504 - 22 Jan 2025
Cited by 2 | Viewed by 931
Abstract
The present study investigates the relationship between the near-infrared (NIR) spectral characteristics of cross-linked polyethylene (XLPE) insulation materials and their macroscopic properties, with the aim of establishing a reference framework for non-destructive material aging analysis. Accelerated thermal aging tests were conducted on samples [...] Read more.
The present study investigates the relationship between the near-infrared (NIR) spectral characteristics of cross-linked polyethylene (XLPE) insulation materials and their macroscopic properties, with the aim of establishing a reference framework for non-destructive material aging analysis. Accelerated thermal aging tests were conducted on samples of XLPE cables. These samples underwent Fourier-transform infrared spectroscopy (FTIR), elongation at break (EAB), and tensile strength (TS) tests. The temporal variation curves of the carbonyl index (CI), EAB, and TS were obtained at aging temperatures of 105 °C, 135 °C, 155 °C, and 180 °C. Additionally, NIR spectroscopy was performed on the aged XLPE samples, producing absorbance curves corresponding to different aging times at these temperatures. The absorption peaks of ‘C-H (-CH2-)’ (1730 nm/1764 nm) were analyzed to determine their temporal variation patterns. Finally, a correlation analysis was conducted between the NIR results and those of the FTIR, EAB, and TS tests, revealing numerical relationships between NIR characteristic peaks and FTIR, EAB, and TS data. These quantified correlations demonstrate that NIR can effectively represent macroscopic mechanical properties, thereby simplifying the procedures for monitoring material aging and providing valuable results without requiring destructive testing. Results indicate that there is a certain feasibility in replacing traditional cable aging tests with NIR. Full article
Show Figures

Figure 1

21 pages, 15708 KiB  
Article
Transcriptome-Wide N6-Methyladenosine Alternations in Pulmonary Arteries of Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats and Novel Therapeutic Targets
by Yilu Feng, Zaixin Yu, Mi Tang, Jiang Li, Baohua Peng, Mukamengjiang Juaiti, Yiyang Tang, Benhui Liang, Mingqi Ouyang, Qingqing Liu and Jie Song
Biomedicines 2024, 12(2), 364; https://doi.org/10.3390/biomedicines12020364 - 4 Feb 2024
Cited by 1 | Viewed by 2384
Abstract
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of [...] Read more.
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of pulmonary arterial hypertension (PAH) remains largely unexplored. MeRIP-seq and RNA-seq were applied to explore variances in m6A and RNA expression within the pulmonary artery tissues of control and monocrotaline-induced PAH rats. Functional enrichments were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To screen candidate m6A-related genes, the STRING and Metascape databases were used to construct a protein–protein interaction network followed by a real-time PCR validation of their expression. The expression level of an m6A regulator was further investigated using immunohistochemical staining, immunofluorescence, and Western blot techniques. Additionally, proliferation assays were conducted on primary rat pulmonary artery smooth muscle cells (PASMCs). We identified forty-two differentially expressed genes that exhibited either hypermethylated or hypomethylated m6A. These genes are predominantly related to the extracellular matrix structure, MAPK, and PI3K/AKT pathways. A candidate gene, centromere protein F (CENPF), was detected with increased expression in the PAH group. Additionally, we first identified an m6A reader, leucine rich pentatricopeptide repeat containing (LRPPRC), which was downregulated in the PAH rat model. The in vitro downregulation of Lrpprc mediated by siRNA resulted in the enhanced proliferation and elevated expression of Cenpf mRNA in primary rat PASMCs. Our study revealed a modified transcriptome-wide m6A landscape and associated regulatory mechanisms in the pulmonary arteries of PAH rats, potentially offering a novel target for therapeutic strategies in the future. Full article
Show Figures

Figure 1

20 pages, 8423 KiB  
Article
Flux Weakening Controller Design for Series-Winding Three-Phase PMSM Drive Systems
by Senyi Liu, Zaixin Song, Bowen Zhang and Chunhua Liu
World Electr. Veh. J. 2023, 14(4), 107; https://doi.org/10.3390/wevj14040107 - 13 Apr 2023
Cited by 6 | Viewed by 2923
Abstract
Series-winding three-phase PMSMs have a higher bus voltage utilization than the conventional three-phase PMSMs with star connection. This topology is suitable for applications with a limited bus voltage. However, the zero-sequence current controller will reduce the bus voltage utilization of the series-winding PMSMs, [...] Read more.
Series-winding three-phase PMSMs have a higher bus voltage utilization than the conventional three-phase PMSMs with star connection. This topology is suitable for applications with a limited bus voltage. However, the zero-sequence current controller will reduce the bus voltage utilization of the series-winding PMSMs, which causes problems in the flux-weakening controller design. The conventional flux-weakening control algorithms will cause the series-winding PMSMs to enter the overmodulation region early and degrade the performance of the zero-sequence current suppression algorithm. In this paper, a new flux-weakening controller with a dynamic fundamental voltage limit (FW-DFVL) is designed for the series-winding three-phase PMSM traction system. Firstly, the space vector modulation method combines the proposed virtual zero-sequence vectors to realize both the fundamental current generation and the zero-sequence current suppression. The accurate bus voltage utilization in the fundamental current subspace can be derived from the proposed modulation method. Secondly, the gradient descent method generates the flux-weakening d-axis reference current with the dynamic fundamental voltage, which will converge faster than the conventional PI-based flux-weakening control scheme. Thirdly, the flux-weakening controller in the overmodulation region is also designed where the zero-sequence current will no longer be suppressed. The bus voltage utilization is Vdc in this operation mode. Finally, both the simulation and experimental results are utilized to verify the effectiveness of the proposed FW-DFVL, where faster dynamic performance and higher bus utilization are observed. Full article
Show Figures

Figure 1

23 pages, 3943 KiB  
Review
Overview of Integrated Electric Motor Drives: Opportunities and Challenges
by Bowen Zhang, Zaixin Song, Senyi Liu, Rundong Huang and Chunhua Liu
Energies 2022, 15(21), 8299; https://doi.org/10.3390/en15218299 - 7 Nov 2022
Cited by 30 | Viewed by 7511
Abstract
Integrated Motor Drives (IMDs) have recently received extensive attention. In electric vehicles (EVs), electric propulsion aircraft, and ship propulsion systems, integrated motors have the great potential to replace traditional motors with the distinct merits of compact size, high power density, high efficiency, and [...] Read more.
Integrated Motor Drives (IMDs) have recently received extensive attention. In electric vehicles (EVs), electric propulsion aircraft, and ship propulsion systems, integrated motors have the great potential to replace traditional motors with the distinct merits of compact size, high power density, high efficiency, and high-cost effectiveness. This paper investigates and reviews integrated motor drives’ development and critical technologies. It not only reveals the research progress of the motor structure, converter, volume optimization, heat dissipation design, and weakening electromagnetic interference of integrated motor drives but also explores in detail the applications of wide-bandgap semiconductors and the integration of LCL filters. In addition, this paper also puts forward the concept of integrated motor drive integration level and establishes a corresponding quantitative method to evaluate IMDs integration level. In the future, integrated wireless motor drives will have a broad scope of research and application. IMDs systems will play an important role in applications requiring high power density, providing solutions to motor system size and heat dissipation problems. This overview will help clarify the opportunities, challenges, and future development of IMDs. Full article
Show Figures

Figure 1

25 pages, 4261 KiB  
Article
Overview of Propulsion Systems for Unmanned Aerial Vehicles
by Bowen Zhang, Zaixin Song, Fei Zhao and Chunhua Liu
Energies 2022, 15(2), 455; https://doi.org/10.3390/en15020455 - 10 Jan 2022
Cited by 74 | Viewed by 26125
Abstract
Unmanned Aerial Vehicle (UAV) propulsion technology is significantly related to the flight performance of UAVs, which has become one of the most important development directions of aviation. It should be noted that UAVs have three types of propulsion systems, namely the fuel, hybrid [...] Read more.
Unmanned Aerial Vehicle (UAV) propulsion technology is significantly related to the flight performance of UAVs, which has become one of the most important development directions of aviation. It should be noted that UAVs have three types of propulsion systems, namely the fuel, hybrid fuel-electric, and pure electric, respectively. This paper presents and discusses the classification, working principles, characteristics, and critical technologies of these three types of propulsion systems. It is helpful to establish the development framework of the UAV propulsion system and provide the essential information on electric propulsion UAVs. Additionally, future technologies and development, including the high-power density motors, converters, power supplies, are discussed for the electric propulsion UAVs. In the near future, the electric propulsion system would be widely used in UAVs. The high-power density system would become the development trend of electric UAVs. Thus, this review article provides comprehensive views and multiple comparisons of propulsion systems for UAVs. Full article
(This article belongs to the Collection State-of-the-Art of Electrical Power and Energy System in China)
Show Figures

Figure 1

16 pages, 7737 KiB  
Article
Deadbeat Predictive Current Control for Series-Winding PMSM Drive with Half-Bridge Power Module-Based Inverter
by Zhiping Dong, Chunhua Liu, Senyi Liu and Zaixin Song
Energies 2021, 14(15), 4620; https://doi.org/10.3390/en14154620 - 30 Jul 2021
Cited by 19 | Viewed by 2499
Abstract
Series-winding topology (SWT) could improve the DC-link voltage utilization, as open-winding topology does. Meanwhile, it can greatly reduce the number of power devices. Firstly, for the half-bridge power modules (HBPMs)-based inverter, an N-phase series-winding motor only requires N + 1 HBPMs for driving. [...] Read more.
Series-winding topology (SWT) could improve the DC-link voltage utilization, as open-winding topology does. Meanwhile, it can greatly reduce the number of power devices. Firstly, for the half-bridge power modules (HBPMs)-based inverter, an N-phase series-winding motor only requires N + 1 HBPMs for driving. On the other hand, such SWT also brings new challenges to the drive system. A zero-sequence loop is introduced into the motor windings due to SWT. The generated zero-sequence current would degrade the total harmonic distortion of the phase currents and produce the additional torque ripple. Moreover, current sensors are typically integrated with the HBPMs. However, in SWT, their measured results are the leg currents of the inverter, not the phase currents of the motor, which is crucial to the motor control. Thus, this paper mainly focuses on the aforementioned problems in a three-phase series-winding permanent-magnet synchronous motor (TPSW-PMSM) drive with HBPM-based inverter. Firstly, to control the zero-sequence subspace, the voltage vector distribution of TPSW-PMSM is analyzed. In addition, two voltage vectors with zero-sequence components are selected to generate the zero-sequence voltage. Then, the phase currents are reconstructed according to the leg currents from the current sensors on HBPMs. Based on the above, the deadbeat predictive current control (DBPCC) scheme is proposed for a TPSW-PMSM drive with HBPM-based inverter. It provides the TPSW-PMSM drive with fast dynamic response and effective zero-sequence current suppression. Finally, both simulation and experimental results verify the feasibility and effectiveness of the proposed DBPCC scheme. Full article
(This article belongs to the Special Issue Power Processing Systems for Electric Vehicles)
Show Figures

Graphical abstract

17 pages, 10055 KiB  
Article
Design and Analysis of a Novel Axial-Radial Flux Permanent Magnet Machine with Halbach-Array Permanent Magnets
by Rundong Huang, Chunhua Liu, Zaixin Song and Hang Zhao
Energies 2021, 14(12), 3639; https://doi.org/10.3390/en14123639 - 18 Jun 2021
Cited by 52 | Viewed by 8310
Abstract
Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine [...] Read more.
Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple. Full article
Show Figures

Figure 1

15 pages, 2382 KiB  
Article
Hour-Ahead Energy Trading Management with Demand Forecasting in Microgrid Considering Power Flow Constraints
by Kuo Feng, Chunhua Liu and Zaixin Song
Energies 2019, 12(18), 3494; https://doi.org/10.3390/en12183494 - 11 Sep 2019
Cited by 8 | Viewed by 2691
Abstract
Multiple small-scale low-voltage distribution networks with distributed generators can be connected in a radial pattern to form a multi-bus medium voltage microgrid. Additionally, each bus has an independent operator that can manage its power supply and demand. Since the microgrid operates in the [...] Read more.
Multiple small-scale low-voltage distribution networks with distributed generators can be connected in a radial pattern to form a multi-bus medium voltage microgrid. Additionally, each bus has an independent operator that can manage its power supply and demand. Since the microgrid operates in the market-oriented mode, the bus operators aim to maximize their own benefits and expect to protect their privacy. Accordingly, in this paper, a distributed hour-ahead energy trading management is proposed. First, the benefit optimization problem of the microgrid is solved, which is decomposed into the local benefit optimization sub problems of buses. Then, the local sub problems can be solved by the negotiation of operators with their neighbors. Additionally, the reference demand before negotiation is forecasted by the neural network rather than given in advance. Furthermore, the power flow constraints are considered to guarantee the operational stability. Meanwhile, the power loss minimization is considered in the objective function. Finally, the demonstration and simulation cases are given to validate the effectiveness of the proposed hour-ahead energy trading management. Full article
Show Figures

Figure 1

25 pages, 7971 KiB  
Article
Analytical Modeling and Comparison of Two Consequent-Pole Magnetic-Geared Machines for Hybrid Electric Vehicles
by Hang Zhao, Chunhua Liu, Zaixin Song and Jincheng Yu
Energies 2019, 12(10), 1888; https://doi.org/10.3390/en12101888 - 17 May 2019
Cited by 12 | Viewed by 4059
Abstract
The exact mathematical modeling of electric machines has always been an effective tool for scholars to understand the working principles and structure requirements of novel machine topologies. This paper provides an analytical modeling method—the harmonic modeling method (HMM)—for two types of consequent-pole magnetic-geared [...] Read more.
The exact mathematical modeling of electric machines has always been an effective tool for scholars to understand the working principles and structure requirements of novel machine topologies. This paper provides an analytical modeling method—the harmonic modeling method (HMM)—for two types of consequent-pole magnetic-geared machines, namely the single consequent-pole magnetic-geared machine (SCP-MGM) and the dual consequent-pole magnetic-geared machine (DCP-MGM). By dividing the whole machine domain into different ring-like subdomains and solving the Maxwell equations, the magnetic field distribution and electromagnetic parameters of the two machines can be obtained, respectively. The two machines were applied in the propulsion systems of hybrid electric vehicles (HEVs). The electromagnetic performances of two machines under different operating conditions were also compared. It turns out that the DCP-MGM can reach a larger electromagnetic torque compared to that of the SCP-MGM under the same conditions. Finally, the predicted results were verified by the finite element analysis (FEA). A good agreement can be observed between HMM and FEA. Furthermore, HMM can also be applied to the mathematical modeling of other consequent-pole electric machines in further study. Full article
(This article belongs to the Special Issue Advances in Rotating Electric Machines)
Show Figures

Figure 1

18 pages, 30745 KiB  
Article
Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation
by Yi Li, Feng Chai, Zaixin Song and Zongyang Li
Energies 2017, 10(9), 1259; https://doi.org/10.3390/en10091259 - 24 Aug 2017
Cited by 30 | Viewed by 6928
Abstract
This paper studies the non-uniform air-gap caused by stator and rotor deformations, together with its effects on the spatial and temporal spectrum of the radial magnetic force density in an interior permanent magnet synchronous motor (IPMSM). According to the mathematical model of the [...] Read more.
This paper studies the non-uniform air-gap caused by stator and rotor deformations, together with its effects on the spatial and temporal spectrum of the radial magnetic force density in an interior permanent magnet synchronous motor (IPMSM). According to the mathematical model of the deformed air-gap length, the superposition method is adopted to derive the air-gap permeance. Then, the formulas of the magnetic flux field and radial force density of the IPMSM considering air-gap deformation are obtained. Considering the stator oval deformation and the rotor centrifugal distortion in the electromagnetic finite element models (FEMs), the finite element analysis (FEA) and experiments of the investigated IPMSM are carried out to verify the results obtained by the theoretical analysis at different operations. Finally, the mathematical correlation between air-gap deformation and electromagnetic vibration is obtained. The result is helpful in solving problems of mutual influence between electromagnetic and mechanical characteristics during the optimization design of IPMSM. Full article
(This article belongs to the Collection Electric and Hybrid Vehicles Collection)
Show Figures

Figure 1

Back to TopTop