Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Authors = Yuyu Liu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 403
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

11 pages, 1373 KiB  
Article
High-Performance Multilevel and Ambipolar Nonvolatile Organic Transistor Memory Using Small-Molecule SFDBAO and PS as Charge Trapping Elements
by Lingzhi Jin, Wenjuan Xu, Yangzhou Qian, Tao Ji, Kefan Wu, Liang Huang, Feng Chen, Nanchang Huang, Shu Xing, Zhen Shao, Wen Li, Yuyu Liu and Linghai Xie
Nanomaterials 2025, 15(14), 1072; https://doi.org/10.3390/nano15141072 - 10 Jul 2025
Viewed by 313
Abstract
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration [...] Read more.
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration and a donor–acceptor (D-A) structure as a molecular-scale charge storage element demonstrated significantly higher charge trapping ability than other small-molecule materials such as C60 and Alq3. The ONVM based on 10% SFDBAO/PS presents ambipolar memory behaviors with a wide memory window (146 V), a fast-switching speed (20 ms), an excellent retention time (over 5 × 104 s), and stable reversibility (36 cycles without any noticeable decay). By applying different gate voltages, the above ONVM shows reliable four-level data storage characteristics. The investigation demonstrates that the strategical bulk-heterojunction-like tunneling and trapping elements composed of small-molecule materials and polymers exhibit promising potential for high-performance ambipolar ONVMs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 1598 KiB  
Article
Rhenium-Induced Negative Magnetoresistance in Monolayer Graphene
by Ying Zhang, Jiali You, Weiwei Li, Zijie Huang, Yuxiang Feng, Yuyu Liu and Jing Li
Magnetochemistry 2025, 11(5), 39; https://doi.org/10.3390/magnetochemistry11050039 - 6 May 2025
Viewed by 790
Abstract
The impact of rhenium doping on the transport properties and electron localization in monolayer graphene was experimentally investigated. In this study, we report the emergence of unsaturated negative magnetoresistance in Re-doped graphene devices, which is observed exclusively at low temperatures. Moreover, angle-dependent measurements [...] Read more.
The impact of rhenium doping on the transport properties and electron localization in monolayer graphene was experimentally investigated. In this study, we report the emergence of unsaturated negative magnetoresistance in Re-doped graphene devices, which is observed exclusively at low temperatures. Moreover, angle-dependent measurements reveal a pronounced anisotropy in the negative magnetoresistance. This phenomenon is attributed to the disorder and localized magnetic moments introduced by Re doping, which lead to charge carrier localization and are accompanied by substantial magnetocrystalline anisotropy energy. Full article
Show Figures

Figure 1

21 pages, 6961 KiB  
Article
Isolation and Characterization of E8 Monoclonal Antibodies from Donors Vaccinated with Recombinant Vaccinia Vaccine with Efficient Neutralization of Authentic Monkeypox Virus
by Yutao Shi, Shuhui Wang, Yanling Hao, Xiuli Shen, Jun Zhang, Shuo Wang, Junjie Zhang, Yuyu Fu, Ran Chen, Dong Wang, Yiming Shao, Dan Li and Ying Liu
Vaccines 2025, 13(5), 471; https://doi.org/10.3390/vaccines13050471 - 27 Apr 2025
Viewed by 697
Abstract
Background/Objectives: Monkeypox, twice declared a public health emergency of international concern by the WHO, currently lacks approved targeted therapeutics. This study focused on the development of monkeypox virus (MPXV) E8-specific human monoclonal antibodies (mAbs) derived from recipients of the recombinant vaccinia vaccine (rTV), [...] Read more.
Background/Objectives: Monkeypox, twice declared a public health emergency of international concern by the WHO, currently lacks approved targeted therapeutics. This study focused on the development of monkeypox virus (MPXV) E8-specific human monoclonal antibodies (mAbs) derived from recipients of the recombinant vaccinia vaccine (rTV), with subsequent evaluation of their cross-neutralizing activity against orthopoxviruses, including the vaccinia virus (VACV) and MPXV. Methods: Three mAbs (C5, C9, and F8) were isolated from rTV vaccinees. Structural mapping characterized their binding domains on the MPXV E8 and VACV D8 proteins. Neutralization potency was assessed against the VACV TianTan strain and MPXV clade IIb. A combo was further evaluated in a VACV-infected mice model for clinical recovery and viral load reduction. Complement-dependent enhancement mechanisms were also investigated in vitro. Results: C9 targets the virion surface region of E8 and both the virion surface region and intravirion region of D8, showing cross-neutralization activity against the MPXV (IC50 = 3.0 μg/mL) and VACV (IC50 = 51.1 ng/mL) in vitro. All three antibodies demonstrated potent neutralization against the VACV in vitro: C5 (IC50 = 3.9 ng/mL), C9 (IC50 = 51.1 ng/mL), and F8 (IC50 = 101.1 ng/mL). Notably, complement enhanced neutralization against the VACV by >50-fold, although no enhancement was observed for the MPXV. In vivo administration accelerated clinical recovery by 24 h and achieved significant viral clearance (0.9-log reduction). Conclusions: E8-targeting mAbs exhibited broad-spectrum neutralization against orthopoxviruses, demonstrating therapeutic potential against both historical (VACV) and emerging (MPXV) pathogens. However, MPXV’s resistance to complement-dependent enhancement highlights the necessity for pathogen-adapted optimization. These findings establish E8 as a critical conserved target for pan-poxvirus VACV and MPXV countermeasure development. Full article
Show Figures

Figure 1

26 pages, 5515 KiB  
Article
Effect of Exogenous Melatonin on Corn Seed Germination and Seedling Salt Damage Mitigation Under NaCl Stress
by Yuyu Zhang, Yuchuang Li, He Liu, Haili Xie, Jiani Liu, Jinzhu Hua, Mingchun Xiong, Huaifei Song and Chengjian Yong
Plants 2025, 14(7), 1139; https://doi.org/10.3390/plants14071139 - 6 Apr 2025
Viewed by 677
Abstract
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism [...] Read more.
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism of salt damage in maize. Phenotypic analyses showed that 100 µmol/L MT alleviated the effects of salt stress on maize seed germination, and germination index and vigor index were increased compared with salt treatment. MT also alleviated the effects of salt stress on biomass and photosynthesis of maize seedlings, and at a concentration of 100 µmol/L, root and shoot lengths were increased, Gs and Tr were significantly elevated, and LWUEint and LWUEins were decreased. MT also scavenged ROS accumulation, reduced MDA, H2O2, and O2 production, and increased antioxidant enzyme activities and osmoregulatory substances in maize seedlings, but too high a concentration exacerbated oxidative and osmotic stresses. In addition, MT reduced Na+ content and increased K+ content in leaves and roots of maize seedlings. The principal components analysis explained 99.1% of the total variance in the first two axes (PC1 and PC2), and the differences between the treatment groups along the PC1 and PC2 axes were obvious. Correlation analysis elucidated the correlation between the indicators. Random forest analysis showed that different treatments had significant effects on germination percentage (GP), free proline (FP), CAT, and leaf intrinsic water use efficiency (LWUEint). Partial least squares analysis showed that photosynthetic parameters and pigment content played an important role in the salt tolerance of maize seedlings. In conclusion, the application of exogenous MT can effectively alleviate the negative effects of salt stress on the growth of maize seeds and seedlings, especially at a concentration of 100 µmol/L, which is the most effective. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 521 KiB  
Article
Effects of Dandelion Flavonoid Extract on the Accumulation of Flavonoids in Layer Hen Meat, Slaughter Performance and Blood Antioxidant Indicators of Spent Laying Hens
by Yuyu Wei, Jingwen Zhang, Yiming Zhang, Dingkuo Liu, Chunxue You, Wenjuan Zhang, Chaoqi Ren, Xin Zhao, Liu’an Li and Xiaoxue Yu
Animals 2025, 15(6), 886; https://doi.org/10.3390/ani15060886 - 20 Mar 2025
Cited by 2 | Viewed by 738
Abstract
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying [...] Read more.
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying hens were randomly divided into five groups. The control group was fed the basal diet, while the experimental groups were supplemented with DFE at levels of 1000, 2000, 4000, and 8000 mg/kg (as T1, T2, T3, and T4 group) in the basal diet, respectively. The variables measured included the content of dandelion flavonoids in layer hen thigh meat and breast meat, slaughter performance, blood biochemical indexes, and antioxidant capacity. Data were subjected to a one-way analysis of variance (one-way ANOVA) to assess the impact of DFE supplementation compared to the control group on study outcomes. The results showed that dietary supplementation with DFE can increase the content of dandelion flavonoids in layer hen meat. The contents of rutin in layer hen breast meat of groups T1, T2, T3, and T4 were 1.37, 4.41, 16.26, and 36.03 ng/g, respectively, and the contents of quercetin was 2.58, 1.36, 4.98, 12.48 ng/g. In layer hen thigh meat of groups T1, T2, T3, and T4, the contents of rutin were 11.48, 15.98, 44.43, 122.32 ng/g, and the contents of quercetin were 9.96, 13.14, 23.15, 38.09 ng/g, respectively. The addition of DFE increased the total phenol content of the feed and highly significantly elevated the total phenol content of layer hen meat (p < 0.01), and the total phenol content of chicken meat was strongly and positively correlated with the total phenol content of the feed. DFE supplementation significantly decreased abdominal fat percentage (p < 0.05) and increased crude fat content in chicken (p < 0.05). The addition of DFE reduced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (p < 0.05), decreased triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol (LDL-C), glucose (GLU), and malondialdehyde (MDA) contents (p < 0.05), and increased the content of albumin (ALB), total antioxidant (T-AOC) capacity and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity (p < 0.05). Dietary supplementation of DFE at different concentrations could significantly increase the content of dandelion flavonoids in the muscle of spent laying hens, reduce the abdominal fat rate in hens, effectively reduce blood lipid levels, effectively increase crude fat content in thigh muscle, and enhance the body’s antioxidant capacity and liver function. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 13049 KiB  
Article
Population Genetics, Demographic History, and Potential Distributions of the New Important Pests Monolepta signata (Coleoptera: Chrysomelidae) on Corn in China
by Yang Liu, Yacong Ge, Liming Wang, Jingao Dong, Zhenying Wang and Yuyu Wang
Insects 2025, 16(3), 323; https://doi.org/10.3390/insects16030323 - 19 Mar 2025
Viewed by 705
Abstract
Monolepta signata are polyphagous pest widely distributed in China, and the damage as well as economic losses it caused were increasing in recent years. Knowledge of species diversity, population structure and habitat suitability could enhance the efforts of pest control. Here, we sampled [...] Read more.
Monolepta signata are polyphagous pest widely distributed in China, and the damage as well as economic losses it caused were increasing in recent years. Knowledge of species diversity, population structure and habitat suitability could enhance the efforts of pest control. Here, we sampled the populations of M. signata in almost all of China’s major corn-producing regions. A total of 568 sequences were obtained from each gene. There were 48, 29, and 30 haplotypes of COI, ITS2 and EF-1α, respectively. The genetic distance between the HuangHuaiHai population and other populations was the largest. There were 61.90%, 71.43% and 61.90% of Nm values smaller than 1 in COI, ITS2 and EF-1α, respectively, which indicated that gene flow between most populations was weak. The degree of differentiation in most populations of M. signata was relatively high. The population of M. signata has also experienced rapid expansion. Population history dynamic analysis showed that the effective population size of M. signata remained relatively stable before 0.075 Ma. There was a slow contraction trend from 0.075 to 0.010 Ma. It has been rapidly and continuously expanding since 0.010 Ma. Among the investigated geographical populations, the “yellow-spot type” was only present in the populations of southern and southwestern regions, while the “two-spot type” and “four-spot type” were widely distributed in all other geographical populations. Predictions of the potential distribution areas of M. signata indicated that the northeast and north China regions will remain being the high suitability areas of M. signata in the future. Our results will not only facilitate studies on the phylogeography of M. signata but also benefit the effective monitoring and management of this agricultural pest. Full article
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula
by Sicong Shen, Ling Pan, Junhao Li, Jing Wang, Irshad Ahmad, Huhu Liu, Yuyu Bai, Bowen Kang, Juncheng Yin, Yang Gao, Yiwen Lu and Xiaoshan Wang
Plants 2025, 14(6), 929; https://doi.org/10.3390/plants14060929 - 15 Mar 2025
Cited by 1 | Viewed by 1033
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula ( [...] Read more.
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties. Full article
(This article belongs to the Special Issue Mechanism of Drought and Salinity Tolerance in Crops)
Show Figures

Figure 1

15 pages, 8207 KiB  
Article
sRNA Sequencing of Dahlia Bicolor Petals Revealed the Post-Transcriptional Regulation of Anthocyanin Biosynthetic Pathway
by Jiuchun Zou, Xiaoshuang Wu, Shuyan Li, Mengqing Liu, Yuyu Chen, Haoran Wang and Xue Tao
Agronomy 2025, 15(2), 495; https://doi.org/10.3390/agronomy15020495 - 18 Feb 2025
Viewed by 771
Abstract
Garden dahlias (Dahlia pinnata) are popular for their rich flower color variations that have produced many typical bicolor cultivars. Previous studies on the anthocyanin biosynthetic pathway (ABP) observed that the miR156-SPL9 module contributes to the formation of white tips on dahlia [...] Read more.
Garden dahlias (Dahlia pinnata) are popular for their rich flower color variations that have produced many typical bicolor cultivars. Previous studies on the anthocyanin biosynthetic pathway (ABP) observed that the miR156-SPL9 module contributes to the formation of white tips on dahlia petals by repressing the MYB-bHLH-WDR complex. In this study, we further detected the potential post-transcriptional regulation involved in the bicolor petal formation by the small RNA sequencing of red bases and white tips. Compared with red bases, 89 differentially expressed miRNAs and 6349 target genes were identified. And 78 up-regulated miRNAs with their 249 down-regulated target genes were involved in the formation process of white petal tips. The target genes of differentially expressed miRNAs significantly enriched in the ABPs and miRNAs of six conserved families (MIR 156, 164, 167, 169, 482 and 6114) targeted to four transcription factor families (ARF, HD-ZIP, SBP and NAC) were involved in the post-transcriptional gene silencing (PTGS) of the ABP. Transcription sequencing and quantitative reverse transcription PCR analysis demonstrated that the MIR167-ARF8 module and the MIR6114-ANL2 module were the candidate regulators of the inactive ABP in the white tips by depressing the transcription of multiple structure genes. The findings gave new insights into the post-transcriptional regulation of the ABP and would be valuable for further studies of the PTGS mechanisms of bicolor petal formation. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 3442 KiB  
Article
The Causal Relationships and Therapeutic Targets of Plasma Proteins in Ankylosing Spondylitis
by Pengfei Wen, Mingyi Yang, Yidian Wang, Yuyu Niu, Peng Yang, Shouye Hu, Lin Liu and Zhi Yang
Biomedicines 2025, 13(2), 306; https://doi.org/10.3390/biomedicines13020306 - 27 Jan 2025
Viewed by 1371
Abstract
Objective: The purpose of this study was to assess the causal effects of circulating plasma proteins on ankylosing spondylitis (AS) and to explore potential therapeutic targets. Methods: The study used protein quantitative trait loci (pQTLs) for thousands of plasma proteins from nine genome-wide [...] Read more.
Objective: The purpose of this study was to assess the causal effects of circulating plasma proteins on ankylosing spondylitis (AS) and to explore potential therapeutic targets. Methods: The study used protein quantitative trait loci (pQTLs) for thousands of plasma proteins from nine genome-wide association studies (GWAS) as instrumental variables. The relationship between genetically predicted plasma proteins and AS was assessed through Mendelian randomization (MR) analysis. Further analyses, including colocalization analysis, Steiger filtering analysis, protein-altering variant assessment, protein–protein interaction (PPI), and pathway enrichment analysis, were conducted to validate the robustness and causal direction of the results, as well as to investigate the protein functions and potential drug targets. Results: Nine unique proteins were found to have strong causal associations with AS. Steiger filtering analysis confirmed that all associations identified by MR analysis have a direct causal link from the proteins to AS. Colocalization analysis identified four unique proteins—Interleukin-6 receptor alpha (IL-6Rα), Interleukin-23 receptor (IL-23R), Thrombospondin-2 (THBS2), and Interleukin-1 receptor type 2 (IL-1R2)—that share the same causal variants with AS. PPI and pathway enrichment analysis revealed the potential roles of these proteins in inflammatory responses and immune regulation. Moreover, these proteins were valuable drug targets or considered druggable. Conclusions: This study has identified multiple plasma proteins associated with AS, revealing the important roles of these proteins in the pathogenesis of AS and providing potential therapeutic targets for AS. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 6556 KiB  
Article
Impacts of Human Activity and Climate Change on the Suitable Habitats for Xanthium spinosum in China
by Yabin Liu, Yuyu Li, Rui Wang, Lizhu Guo, Yu Ji, Yihao Chen, Lifen Hao and Kejian Lin
Plants 2025, 14(3), 306; https://doi.org/10.3390/plants14030306 - 21 Jan 2025
Cited by 3 | Viewed by 875
Abstract
Xanthium spinosum (X. spinosum) is a highly invasive weed native to South America and distributed in 17 provinces (municipalities) of China. It has severely negative influences on ecosystems, agriculture, and husbandry. However, few studies have reported on the impact of human [...] Read more.
Xanthium spinosum (X. spinosum) is a highly invasive weed native to South America and distributed in 17 provinces (municipalities) of China. It has severely negative influences on ecosystems, agriculture, and husbandry. However, few studies have reported on the impact of human activity and climate change on the future distribution and centroid shift of X. spinosum. This study aimed to investigate the potential geological distribution of X. spinosum in China, as well as the distribution pattern, centroid shift, and key environmental factors influencing its distribution, under four future climate scenarios (SSP1-26, SSP2-45, SSP3-70, and SSP5-85) based on the biomod2-integrated model. The results indicated that the suitable habitats for X. spinosum would expand in the future, mainly in Inner Mongolia, Northeast China, and the plateau regions (e.g., Xinjiang and Xizang). Under future climate scenarios, the centroid would shift toward the northwest or northeast part of China, with the SSP2-45-2050s scenario showing the maximum shift distance (161.990 km). Additionally, the key environmental variables influencing the distribution of X. spinosum, including human impact index, bio5, bio7, and bio12, were determined, revealing that most of them were related to human activities, temperature, and precipitation. This study enhances the understanding of the influence of human activity and climate change on the geographic range of X. spinosum. It provides references for early warning and management in the control of X. spinosum. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 4429 KiB  
Article
A Series of Novel Alleles of Ehd2 Modulating Heading and Salt Tolerance in Rice
by Peng Xu, Shulei Hao, Xiaoxia Wen, Guifang Ma, Qinqin Yang, Ling Liu, Galal Bakr Anis, Yingxin Zhang, Lianping Sun, Xihong Shen, Qunen Liu, Daibo Chen, Yongbo Hong, Yuyu Chen, Xiaodeng Zhan, Shihua Cheng, Liyong Cao and Weixun Wu
Plants 2025, 14(2), 297; https://doi.org/10.3390/plants14020297 - 20 Jan 2025
Viewed by 1100
Abstract
Rice (Oryza sativa L.) is a staple crop for nearly half of the global population and one of China’s most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties. In this study, a [...] Read more.
Rice (Oryza sativa L.) is a staple crop for nearly half of the global population and one of China’s most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties. In this study, a series of mutants (elh5 to elh12) exhibiting extremely late heading under both long-day (LD) and short-day (SD) conditions were identified from an ethyl methanesulfonate (EMS) mutant library. Using MutMap and map-based cloning, the causative gene was identified as a novel allele of Ehd2/OsID1/RID1/Ghd10. Functional validation through CRISPR/Cas9 knockout and complementation assays confirmed its role in regulating heading. The elh6 mutation was found to cause intron retention due to alternative splicing. Ehd2 encodes a Cys-2/His-2-type zinc finger transcription factor with an IDD domain and transcriptional activity in yeast. Its expression peaks in developing leaves before heading and spikes during reproductive conversion. In elh6 mutants, delayed heading resulted from downregulating the Ehd1-Hd3a pathway genes. Salinity stress significantly hampers rice growth and productivity. Transcriptomic analysis of elh10 and ZH8015 seedlings exposed to salt stress for 24 h identified 5150 differentially expressed genes (DEGs) at the seedling stage, predominantly linked to stress response pathways. Ehd2 was revealed as a modulator of salt tolerance, likely through the regulation of ion transport, enzyme activity, and antioxidant systems. This study establishes Ehd2 as a pivotal factor in promoting heading while negatively regulating salt tolerance in rice. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice—2nd Edition)
Show Figures

Figure 1

13 pages, 1379 KiB  
Article
Parameterization of the Differences in Neural Oscillations Recorded by Wearable Magnetoencephalography for Chinese Semantic Cognition
by Xiaoyu Liang, Huanqi Wu, Yuyu Ma, Changzeng Liu and Xiaolin Ning
Biology 2025, 14(1), 91; https://doi.org/10.3390/biology14010091 - 18 Jan 2025
Viewed by 1106
Abstract
Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time–frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster [...] Read more.
Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time–frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time–frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics. Subsequently, ODTFR was parameterized based on the definition of local events. Finally, this study calculated the specific time–frequency values at which oscillation differences occurred in multiple auditory-language-processing regions. It was found that these oscillatory differences appeared in most regions and were mainly concentrated in the beta band. The average peak frequency of these oscillatory differences was 15.7 Hz, and the average peak time was 457 ms. These findings offer a fresh perspective on the neural mechanisms underlying the processing of distinct Chinese semantics and provide references and insights for analyzing language-related brain activities recorded by OPM-MEG. Full article
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Study on Evaluation and Dynamic Early Warning of Urban Water Resources Security
by Wenjie Xu, Hao Wang, Xiaolu Zhao, Dongxu Zhao, Xuepeng Ding, Yinghan Yin and Yuyu Liu
Water 2025, 17(2), 242; https://doi.org/10.3390/w17020242 - 16 Jan 2025
Cited by 2 | Viewed by 813
Abstract
Water resources security is crucial to the survival and development of human society. A water resources security assessment and dynamic early warning system was constructed. The weights of water resources evaluation indexes were calculated by the entropy weight method, and the water resources [...] Read more.
Water resources security is crucial to the survival and development of human society. A water resources security assessment and dynamic early warning system was constructed. The weights of water resources evaluation indexes were calculated by the entropy weight method, and the water resources security was evaluated with the comprehensive index method. The obstacle degree model was used to identify and analyze the main obstacle factors. The grey model was adopted to predict the future water resources security situation. The empirical study was carried out in Jinan. The results showed that the grade of water resources security in Jinan from 2008 to 2021 showed a gradually increasing trend. The obstacle factors were mainly concentrated in the pressure subsystem, indicating that the contradiction between supply and demand of water resources was the main problem affecting water resources security, which was accorded with the actual situation. The comprehensive index of water resources security from 2022 to 2026 shows a gradually increasing trend on the whole, and the warning situation develops towards a good trend, indicating that remarkable results in comprehensively building a water-saving society and vigorously promoting water pollution control have been achieved. The measures such as optimizing economic structure, improving water use structure, and improving water use efficiency will promote the further development of water resources security in Jinan. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

24 pages, 4556 KiB  
Article
Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota
by Wei Wang, Yuyu Wang, Peng Huang, Junjuan Zhou, Guifeng Tan, Jianguo Zeng and Wei Liu
Microorganisms 2024, 12(12), 2647; https://doi.org/10.3390/microorganisms12122647 - 20 Dec 2024
Cited by 1 | Viewed by 1041
Abstract
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The [...] Read more.
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1–21) and a grower phase (days 22–42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (p < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (p < 0.05). There was no significant difference in ZO-1 in dudenum (p > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (p < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (p < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (p < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health. Full article
(This article belongs to the Special Issue Advances in Diet–Host–Gut Microbiome Interactions)
Show Figures

Figure 1

Back to TopTop