Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Authors = Yunfei Yu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 380 KiB  
Article
High Social Motivation Can Promote Time-Based Prospective Memory Performance
by Yadong Zhou, Mingyuan Wang, Yu Tian and Yunfei Guo
Behav. Sci. 2025, 15(8), 1015; https://doi.org/10.3390/bs15081015 - 26 Jul 2025
Viewed by 210
Abstract
Prospective memory, the ability to remember to execute a preplanned activity, is important in social interactions, insofar as such interactions frequently involve preplanned activities. The importance of prospective memory varies across different social contexts and individuals generally make greater efforts to ensure the [...] Read more.
Prospective memory, the ability to remember to execute a preplanned activity, is important in social interactions, insofar as such interactions frequently involve preplanned activities. The importance of prospective memory varies across different social contexts and individuals generally make greater efforts to ensure the completion of prospective memory tasks under high social motivation conditions compared to low social motivation conditions. We aimed to investigate the effects of various levels of social motivation on prospective memory. A single-factor between-subjects experimental design was implemented to explore the influence of social motivation intensity on time-based prospective memory and its processing mechanism. We found that only the high social motivation group demonstrated superior prospective memory performance compared to the control group. The high social motivation group also had slower response speeds in response to the ongoing tasks than both the control group and the low social motivation group, but the number of strategies used was not different among the three groups. Moreover, in comparison with the control group, the high social motivation group monitored time more frequently. The results suggest that only high-intensity social motivation can promote time-based prospective memory performance, and increased attention consumption is necessary for the occurrence of this effect. Full article
Show Figures

Figure 1

22 pages, 10490 KiB  
Article
DFPS: An Efficient Downsampling Algorithm Designed for the Global Feature Preservation of Large-Scale Point Cloud Data
by Jiahui Dong, Maoyi Tian, Jiayong Yu, Guoyu Li, Yunfei Wang and Yuxin Su
Sensors 2025, 25(14), 4279; https://doi.org/10.3390/s25144279 - 9 Jul 2025
Viewed by 355
Abstract
This paper introduces an efficient 3D point cloud downsampling algorithm (DFPS) based on adaptive multi-level grid partitioning. By leveraging an adaptive hierarchical grid partitioning mechanism, the algorithm dynamically adjusts computational intensity in accordance with terrain complexity. This approach effectively balances the global feature [...] Read more.
This paper introduces an efficient 3D point cloud downsampling algorithm (DFPS) based on adaptive multi-level grid partitioning. By leveraging an adaptive hierarchical grid partitioning mechanism, the algorithm dynamically adjusts computational intensity in accordance with terrain complexity. This approach effectively balances the global feature retention of point cloud data with computational efficiency, making it highly adaptable to the growing trend of large-scale 3D point cloud datasets. DFPS is designed with a multithreaded parallel acceleration architecture, which significantly enhances processing speed. Experimental results demonstrate that, for a point cloud dataset containing millions of points, DFPS reduces processing time from approximately 161,665 s using the original FPS method to approximately 71.64 s at a 12.5% sampling rate, achieving an efficiency improvement of over 2200 times. As the sampling rate decreases, the performance advantage becomes more pronounced: at a 3.125% sampling rate, the efficiency improves by nearly 10,000 times. By employing visual observation and quantitative analysis (with the chamfer distance as the measurement index), it is evident that DFPS can effectively preserve global feature information. Notably, DFPS does not depend on GPU-based heterogeneous computing, enabling seamless deployment in resource-constrained environments such as airborne and mobile devices, which makes DFPS an effective and lightweighting tool for providing high-quality input data for subsequent algorithms, including point cloud registration and semantic segmentation. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 6528 KiB  
Article
Runoff Evolution Characteristics and Predictive Analysis of Chushandian Reservoir
by Jian Qi, Dongyang Ma, Zhikun Chen, Qingqing Tian, Yu Tian, Zhongkun He, Qianfang Ma, Yunfei Ma and Lei Guo
Water 2025, 17(13), 2015; https://doi.org/10.3390/w17132015 - 4 Jul 2025
Viewed by 290
Abstract
The Chushandian Reservoir, a key control project on the Huaihe River, is vital for flood control, water allocation, and maintaining ecological baseflow. This study analyzes runoff evolution and provides predictive insights for sustainable water management. Methods employed include Extremum Symmetric Mode Decomposition (ESMD) [...] Read more.
The Chushandian Reservoir, a key control project on the Huaihe River, is vital for flood control, water allocation, and maintaining ecological baseflow. This study analyzes runoff evolution and provides predictive insights for sustainable water management. Methods employed include Extremum Symmetric Mode Decomposition (ESMD) for decomposing complex signals, a mutation detection algorithm to identify significant changes in time-series data, and cross-wavelet transform to examine correlations and phase relationships between time series across frequencies. Additionally, the hybrid models GM-BP and CNN-LSTM were used for runoff forecasting. Results show cyclical fluctuations in annual runoff every 2.3, 5.3, and 14.5 years, with a significant decrease observed in 2010. Among climate factors, the Atlantic Multidecadal Oscillation (AMO) had the strongest correlation with runoff variability, while ENSO and PDO showed more localized impacts. Model evaluations indicated strong predictive performance, with Nash–Sutcliffe Efficiency (NSE) scores of 0.884 for GM-BP and 0.909 for CNN-LSTM. These findings clarify the climatic drivers of runoff variability and provide valuable tools for water resource management at the Chushandian Reservoir under future climate uncertainties. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 630 KiB  
Article
A Novel Feature-Scheduling Aggregation Clustering Framework Based on Convolutional Neural Networks
by Zhangyi Shen, Yu Jiao, Aohan Ji, Bingqing Ye, Yunfei Niu, Kaizhong Zuo, Peng Hu and Wenjie Li
Electronics 2025, 14(13), 2700; https://doi.org/10.3390/electronics14132700 - 4 Jul 2025
Viewed by 288
Abstract
This study presents a convolutional neural network (CNN)-based feature-scheduling aggregation clustering framework designed to address the limitations of conventional clustering algorithms in handling high-dimensional data structures. The proposed framework synergistically combines CNN’s automated feature extraction with adaptive feature-scheduling mechanisms and multi-level feature aggregation, [...] Read more.
This study presents a convolutional neural network (CNN)-based feature-scheduling aggregation clustering framework designed to address the limitations of conventional clustering algorithms in handling high-dimensional data structures. The proposed framework synergistically combines CNN’s automated feature extraction with adaptive feature-scheduling mechanisms and multi-level feature aggregation, enabling the effective capture of nonlinear data relationships and fine-grained pattern distinctions. The experimental results highlight the framework’s superior performance against existing algorithms, alongside its strong generalization capability. This framework advances cluster analysis methodology by providing an integrated deep learning architecture for complex data scenarios. Full article
Show Figures

Figure 1

14 pages, 1605 KiB  
Article
Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation
by Zhixiang Hu, Zhenyang Hu, Huan Zhang, Zhilong Yu and Yunfei Xie
Foods 2025, 14(13), 2216; https://doi.org/10.3390/foods14132216 - 24 Jun 2025
Viewed by 331
Abstract
This study investigated the combined antibacterial effects of PAW with natural antimicrobial agents and further examined the impact of this technology on postharvest strawberry preservation. The optimal PAW preparation condition was determined at 50 min at 400 W, although PAW alone showed limited [...] Read more.
This study investigated the combined antibacterial effects of PAW with natural antimicrobial agents and further examined the impact of this technology on postharvest strawberry preservation. The optimal PAW preparation condition was determined at 50 min at 400 W, although PAW alone showed limited efficacy against Staphylococcus aureus and Escherichia coli. Among the five selected natural antimicrobial agents, the 1% tannic acid–PAW combined treatment demonstrated optimal bactericidal performance, achieving reductions of 3.62 log CFU/mL for S. aureus in 20 min and 5.13 log CFU/mL for E. coli in 8 min. The results revealed membrane damage in both S. aureus and E. coli, with leakage of intracellular proteins and nucleic acids, decreased membrane protein content, and cellular shrinkage and collapse observed morphologically. Increased MDA content indicated membrane lipid peroxidation, while elevated intracellular H2O2 and ROS levels resulted from oxidative stress induced by PAW’s reactive species. Tannic acid reduced SOD and CAT enzyme activities, impairing bacterial antioxidant capacity, and PAW further exacerbated the decline in SOD and CAT activities, intensifying oxidative stress and disrupting bacterial physiological balance. In strawberry preservation applications, the combined treatment reduced surface microbial loads, decreased mold incidence and weight loss, slowed the deterioration of color, firmness, and edible quality, and enhanced antioxidant capacity. The results suggest that the tannic acid–PAW combined treatment offers a promising strategy for enhancing microbial safety and extending the shelf life of strawberries. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 4539 KiB  
Article
Equivalent Modeling of Temperature Field for Amorphous Alloy 3D Wound Core Transformer for New Energy
by Jianwei Han, Xiaolin Hou, Xinglong Yao, Yunfei Yan, Zonghan Dai, Xiaohui Wang, Peng Zhao, Pengzhe Zhuang and Zhanyang Yu
Energies 2025, 18(12), 3212; https://doi.org/10.3390/en18123212 - 19 Jun 2025
Viewed by 294
Abstract
It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the transformer. However, the intricate structure of high- and low-voltage windings, insulating materials, and other components presents numerous challenges for [...] Read more.
It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the transformer. However, the intricate structure of high- and low-voltage windings, insulating materials, and other components presents numerous challenges for modeling. Temperature exerts a significant influence on insulation aging, and elevated temperatures can notably accelerate the degradation process of insulation materials, reducing their service life and increasing the risk of electrical failures. In view of this, this paper proposes an equivalent modeling method of the temperature field of the transformer HLV winding and studies the refined modeling of the winding part. First of all, in order to reduce the difficulty of temperature field modeling, based on the principle of constant thermal resistance, the fine high- and low-voltage windings are equivalent to large conductors, and the equivalent thermal conductivity coefficient of the high- and low-voltage windings is obtained, which improves the calculation accuracy and shortens the calculation time. Secondly, we verify the feasibility of the equivalent model before and after the simulation, analyze the influence of different boundary conditions on the winding temperature field distribution, and predict the local hotspot location and temperature trend. Finally, a 50 kVA amorphous alloy winding-core transformer is tested on different prototypes to verify the effectiveness of the proposed method. Full article
Show Figures

Figure 1

21 pages, 1971 KiB  
Article
Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota
by Yusong Du, Zixi Yu, Shasha Wan, Yunfei Li, Rujie Liu, Jiaxuan Zhang, Zewei Sun and Qingzhen Zhong
Animals 2025, 15(12), 1701; https://doi.org/10.3390/ani15121701 - 9 Jun 2025
Viewed by 537
Abstract
This study aimed to comprehensively investigate the impact of soybean β-conglycinin on broiler growth performance, nutrient utilization, allergic and inflammatory responses, intestinal barrier integrity, and cecal microbiota. A total of 168 newly hatched (1-day-old) Arbor Acres broilers with similar body weights were [...] Read more.
This study aimed to comprehensively investigate the impact of soybean β-conglycinin on broiler growth performance, nutrient utilization, allergic and inflammatory responses, intestinal barrier integrity, and cecal microbiota. A total of 168 newly hatched (1-day-old) Arbor Acres broilers with similar body weights were randomly divided into 6 treatment groups with 4 replicates of 7 broilers per replicate: the control group received a soybean-free basal diet, while the remaining five experimental groups were provided with diets supplemented with purified soybean β-conglycinin at the doses of 1%, 2%, 3%, 4%, and 5%. The results demonstrated that dietary 1–5% β-conglycinin supplementation significantly reduced the growth performance, nutrient utilization, and content of digestive enzymes in broilers (p < 0.05). Dietary 1–5% β-conglycinin supplementation also significantly increased the serum levels of histamine, β-conglycinin-specific IgY and IgM, TNF-α, and IL-6 and decreased IL-10 levels; the 3% group had the highest levels of histamine, TNF-α, and IL-6 and the lowest levels of IL-10 (p < 0.05). β-conglycinin supplementation significantly down-regulated the mRNA expression of tight junction proteins, MUC2 and IL-10, and up-regulated the expression of TNF-α and IL-6 in the small intestinal mucosa (p < 0.05). Furthermore, the Shannon and Simpson indices were significantly reduced by dietary 1–5% β-conglycinin administration (p < 0.05). The relative abundance of beneficial bacteria (Blautia, Lactobacillus, and Butyricoccus) was significantly decreased in all treatments (p < 0.05). Taken together, these findings suggest that β-conglycinin induces allergic and inflammatory responses, impairs intestinal barrier integrity, and alters the intestinal microbial balance, ultimately leading to reduced nutrient utilization and inhibited growth in broilers. Notably, our study demonstrated that dietary supplementation with 1% β-conglycinin already had various negative effects on broilers, and particularly supplemental 3% β-conglycinin induced serious allergic and inflammatory reactions. Therefore, in the present study, it is recommended that the inclusion level of β-conglycinin in broiler formula feed should not exceed 1%, i.e., the β-conglycinin content in the diet should not exceed 0.6% (converted from β-conglycinin purification purity). Full article
(This article belongs to the Special Issue Poultry Nutritional Requirements)
Show Figures

Figure 1

15 pages, 5448 KiB  
Article
Modeling and Testing of 3D Wound Core Loss of Amorphous Alloy Transformer for Photovoltaic Inverter
by Peng Chen, Jianwei Han, Xinglong Yao, Xiaohui Wang, Yunfei Yan, Zhe Zhao, Lisong Zhang, Zhanyang Yu and Hao Li
Energies 2025, 18(11), 2698; https://doi.org/10.3390/en18112698 - 23 May 2025
Viewed by 426
Abstract
The harmonic content of transformers used in the field of new energy is significantly higher than that of conventional transformers, leading to an abnormal increase in transformer loss during operation. Therefore, the loss characteristics of amorphous alloy transformers are investigated in this paper. [...] Read more.
The harmonic content of transformers used in the field of new energy is significantly higher than that of conventional transformers, leading to an abnormal increase in transformer loss during operation. Therefore, the loss characteristics of amorphous alloy transformers are investigated in this paper. First, a measurement platform for the magnetic property of transformer cores under sinusoidal excitation is developed. The magnetization characteristics, loss characteristics and loss composition of the amorphous alloy core under sinusoidal excitation are measured and analyzed. On this basis, the traditional Steinmetz loss calculation formula is modified, and the loss calculation formula is further refined by improving its coefficients to accommodate various frequencies. Secondly, using a field-circuit coupling method, a 3D model of the transformer core is established by finite element simulation. The magnetic flux distribution and core losses are computed under both sinusoidal excitation and non-sinusoidal excitation. Finally, the impact of core rotation magnetization on the magnetic flux density is considered, and experimental errors are minimized by applying an empirical formula. The numerical model validity and accuracy are verified by comparing the simulation results with experimental data. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 4397 KiB  
Article
2bRAD-M Reveals the Characteristics of Urinary Microbiota in Overweight Patients with Urinary Tract Stones
by Pengfei Wu, Jingcheng Zhang, Wentao Zhang, Fuhang Yang, Yang Yu, Yuke Zhang, Guangchun Wang, Haimin Zhang, Yunfei Xu and Xudong Yao
Biomedicines 2025, 13(5), 1197; https://doi.org/10.3390/biomedicines13051197 - 14 May 2025
Viewed by 494
Abstract
Background: Urinary tract stone (UTS) is a common disease significantly impacting human health. Obesity influences stone formation and increases UTS incidence, yet the differences in the urinary microbiota and pathways between overweight and healthy-weight UTS patients remain unclear. Methods: In this study, 16 [...] Read more.
Background: Urinary tract stone (UTS) is a common disease significantly impacting human health. Obesity influences stone formation and increases UTS incidence, yet the differences in the urinary microbiota and pathways between overweight and healthy-weight UTS patients remain unclear. Methods: In this study, 16 patients were analyzed: 8 overweight and 8 healthy-weight UTS patients. Bladder urine samples were collected during surgery, and DNA was extracted for microbial analysis using 2bRAD markers. Microbial diversity and KEGG pathway differences were studied. Results: The results showed that overweight UTS patients had a significantly higher urinary microbial diversity than healthy-weight patients. The analysis identified differences in microbiota at various taxonomic levels. LEfSe analysis revealed Sphingomonas_paucimobilis as abundant in overweight patients, while Bifidobacterium_piotii dominated in healthy-weight patients. Key species, including Ralstonia_sp000620465, Sphingomonas_paucimobilis, and Campylobacter_D_coli, were identified. KEGG analysis highlighted enriched pathways in overweight UTS patients, including the porphyrin and chlorophyll metabolism, fatty acid metabolism, amino acid degradation, and renin–angiotensin and mineral absorption pathways. Conclusions: This study is the first to use 2bRAD-M microbiome analysis to compare the urinary microbiota between overweight and healthy-weight UTS patients. It identified significant microbiota and pathway differences, suggesting a link between microbiota imbalance, obesity, and stone formation. These findings provide potential targets for further research on obesity-related stone susceptibility mechanisms. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis)
by Yunfei Yu, Lizhou Tang, Mingkang Xiao, Jingjing Yin, Tianyu Ye, Rujiao Sun, Rui Ai, Fang Zhao, Zuhao Huang and Gonghua Lin
Biology 2025, 14(5), 517; https://doi.org/10.3390/biology14050517 - 8 May 2025
Cited by 2 | Viewed by 437
Abstract
With the growing severity of antibiotic resistance, antimicrobial peptides demonstrate significant potential for medical applications. Here, we performed genome and transcriptome sequencing of 30 Asian buffalo leech (Hirudinaria manillensis) individuals and integrated data from three other leech species (Whitmania pigra [...] Read more.
With the growing severity of antibiotic resistance, antimicrobial peptides demonstrate significant potential for medical applications. Here, we performed genome and transcriptome sequencing of 30 Asian buffalo leech (Hirudinaria manillensis) individuals and integrated data from three other leech species (Whitmania pigra, Hirudo nipponia, and Hirudo medicinalis) to investigate genetic variation and gene expression of H. manillensis macins. Three macins (Hman1, Hman2, and Hman3), along with their encoding genes (Hman1, Hman2, and Hman3), were identified in H. manillensis. Hman1 exhibited the highest similarity (63.5 ± 12.0%) to macins from other leeches, followed by Hman2 (57.8 ± 7.4%) and Hman3 (30.0 ± 3.5%). Both amino acid and codon sequences of Hman1 were conserved within the species, whereas Hman2 and Hman3 exhibited markedly higher variability. All Hman1 sequences were translatable, while four Hman2 and 28 Hman3 sequences had degenerated into pseudogenes. Transcripts per million (TPM) values for Hman1, Hman2, and Hman3 were 2196.63, 242.35, and 1.22, respectively. Total macin expression in H. manillensis was less than 1/20 of that in W. pigra. Based on sequence variation and expression patterns, we propose that Hman1 retains functionality while Hman2 and Hman3 have lost or are losing their antibacterial functions. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

19 pages, 11997 KiB  
Article
Age-Related Meat Flavor Precursors of Naturally Grazed Sunit Sheep: Metabolomics and Transcriptomics Approaches
by Yajuan Huang, Xige He, Yunfei Han, Lu Chen, Xueting Yu, Jin Li, Xueyan Yun, Rina Sha and Gerelt Borjigin
Foods 2025, 14(9), 1616; https://doi.org/10.3390/foods14091616 - 2 May 2025
Viewed by 619
Abstract
This study elucidated the regulatory mechanisms of age-related meat flavor precursors in naturally grazed Sunit sheep of different ages (6, 18, and 30 months) by analyzing their metabolite and mRNA profiles. The longissimus dorsi muscle was sampled from each group and subjected to [...] Read more.
This study elucidated the regulatory mechanisms of age-related meat flavor precursors in naturally grazed Sunit sheep of different ages (6, 18, and 30 months) by analyzing their metabolite and mRNA profiles. The longissimus dorsi muscle was sampled from each group and subjected to metabolomics and transcriptomics analyses. A total of 395 differential metabolites (DMs) and 1482 differentially expressed genes (DEGs) were detected across the age groups. As the age increased, the expression levels of GOT1 and GLUL increased, activating arginine biosynthesis and alanine, aspartate, and glutamate metabolism pathways, which promoted the accumulation of umami compounds (L-glutamate and L-glutamine). Meanwhile, the expression level of LPIN1 increased with age, promoting glycerophospholipid metabolism and contributing to the development of lipid-related aroma. FADS1 and FADS2 expressed the highest levels at age Mth_18. This pattern influenced the unsaturated fatty acid biosynthesis pathway and consequently had a regulatory effect on the DHA levels. An amino acid metabolic regulatory network that involved arginine biosynthesis, alanine, aspartate and glutamate metabolisms, and arginine and proline metabolisms was established. This study provided insights into the variations in meat flavor precursors among sheep of different ages and elucidated the underlying regulatory mechanisms. Full article
(This article belongs to the Special Issue Factors Impacting Meat Product Quality: From Farm to Table)
Show Figures

Figure 1

16 pages, 5843 KiB  
Article
Construction of Two Recombinant Pseudorabies Viruses with Deletion of Virulence Genes and Evaluation of Their Immune Protection in Mice and Piglets
by Shanghui Wang, Longfei Han, Jimin Yu, Guangqiang Ye, Hongyang Liu, Yunfei Liu, Qiongqiong Zhou, Zhaoxia Zhang and Changjiang Weng
Vaccines 2025, 13(4), 359; https://doi.org/10.3390/vaccines13040359 - 27 Mar 2025
Viewed by 764
Abstract
Background: Since 2011, re-emerging pseudorabies virus (PRV) variant strains have been widespread in swine herds immunized with the classical PRV vaccine in China, suggesting that it is necessary to develop a new vaccine against these PRV variant strains. Methods: Here, based on a [...] Read more.
Background: Since 2011, re-emerging pseudorabies virus (PRV) variant strains have been widespread in swine herds immunized with the classical PRV vaccine in China, suggesting that it is necessary to develop a new vaccine against these PRV variant strains. Methods: Here, based on a PRV mutant strain isolated in Jinmen (JM), two recombinant strains were constructed using CRISPR/Cas9 technology, including PRV-JM-ΔEK with the deletion of the gE and TK genes and PRV-JM-ΔEI92K with the deletion of the gE, gI, US2, US9, and TK genes. Results: A one-step growth curve and plaque assay revealed that the cell-to-cell transmission ability of PRV-JM-ΔEI92K was lower than that of PRV-JM-ΔEK. However, the replication ability of PRV-JM-ΔEI92K was approximately 10 times higher than that of PRV-JM-ΔEK, similar to wild-type PRV-JM. The intramuscular injection of 106 TCID50 of PRV-JM-ΔEK or PRV-JM-ΔEI92K could not cause death in mice, and both could produce specific antibodies against gB and gD. The survival rate of mice immunized with both recombinant viruses was 100% when the mice were challenged by the PRV-JM strain. Histopathological sections from the PRV-JM-ΔEK group showed milder pathological changes compared to the PRV-JM-ΔEI92K group, proving that PRV-JM-ΔEK provided more effective protection. In pigs injected with 106 TCID50 of PRV-JM-ΔEK or PRV-JM-ΔEI92K, their body temperature did not rise, and their weight gain was not affected. Both recombinant viruses could induce the production of gB- and gD-specific antibodies and neutralizing antibodies. After the challenge of the PRV-JM virus, neutralizing antibody production was rapidly induced and lasted for at least 3 weeks. Pigs immunized with both PRV-JM-ΔEI92K and PRV-JM-ΔEK had a 100% survival rate, demonstrating that both recombinant viruses could provide effective protection. Conclusions: Compared with PRV-JM-ΔEK, PRV-JM-ΔEI92K had better safety. In conclusion, we constructed two PRV recombinant viruses, which have the potential to be used as a live carrier vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

18 pages, 2807 KiB  
Article
Sustainable Development Pathways for China’s Copper Industry: A Three-Way Evolutionary Game Approach
by Chen Wang, Jinfen Huo, Fenghao Zhang, Wanying Lin, Yinglun Zhao, Youfei Ma, Xuan Shi, Yunfei Ma, Han Yu and Yan Lin
Sustainability 2025, 17(7), 2838; https://doi.org/10.3390/su17072838 - 22 Mar 2025
Viewed by 572
Abstract
Sustainable development is a tripartite game among the central (CG) and local governments (LGs) and enterprises, with economic factors as key drivers. China consumed about 16.2 million metric tons during this period, accounting for approximately 61% of global consumption, thereby reinforcing its position [...] Read more.
Sustainable development is a tripartite game among the central (CG) and local governments (LGs) and enterprises, with economic factors as key drivers. China consumed about 16.2 million metric tons during this period, accounting for approximately 61% of global consumption, thereby reinforcing its position as the world’s leading copper consumer. Seeking a balance of acceptable interests among the three parties may be a feasible method to explore the sustainable development of China’s copper enterprises (CEs). Therefore, based on evolutionary game theory, we construct a three-party evolutionary game model. Using the financial data of Chinese CEs and actual survey data on the CG and LGs, we identified 31 environmental impact parameters from the CG, LGs, and CEs. Then, we used MATLAB R2023b to simulate an evolution model and determined the influence of various factors on the evolutionary stable state. The results show that LGs, as local managers, have implemented more direct and expedited regulations than the CG. Enterprises with less brand impact frequently face difficulties in complying with governmental regulatory demands. When interests are balanced, 30% of enterprises cannot meet standards within 40 months, which may cause 500 small and medium-sized enterprises to stop production, thus resulting in high unemployment costs for LGs. A scenario analysis evaluates the economic benefits of environmental measures based on evolutionary game results. The results show that the introduction of advanced hydrometallurgy technology has the highest economic benefits; after 5 years, the economic benefits of China’s entire copper industry will reach CNY 147.2 billion. Full article
Show Figures

Figure 1

17 pages, 5040 KiB  
Article
Experimental and Simulation Study of Proton Exchange Membrane Fuel Cell with 12 µm Thick Membrane over the Temperature Range of 80 °C to 120 °C
by Yunfei Zhang, Zhengrui Xiao, Xiaoyang Zhao, Jian Wang, Yadong Wang and Jun Yu
Membranes 2025, 15(3), 72; https://doi.org/10.3390/membranes15030072 - 1 Mar 2025
Cited by 4 | Viewed by 1948
Abstract
Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode [...] Read more.
Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode assemblies composed of Gore12 during operation at an increasing temperature ranging from 80 to 120 °C, utilizing overpotential decomposition and electrochemical impedance analysis. The experimental results indicate that increasing back pressure can improve the performance of fuel cells, particularly at higher temperatures. The charge transfer resistance initially decreases and then increases with temperature. Furthermore, combined with the simulation results, it is demonstrated that Gore12’s thin membrane structure provides excellent self-humidification, which ensures efficient proton conduction at low relative humidity. These findings offer new insights into improving the performance of PEMFCs and enabling stable operation at high temperatures. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

24 pages, 9497 KiB  
Article
Optimization Method for Improving Efficiency of Thermal Field Reconstruction in Concrete Dam
by Yunfei Xiang, Peng Lin, Haoyang Peng, Zichang Li, Yuanguang Liu, Yu Qiao and Zuobin Yang
Appl. Sci. 2024, 14(23), 10857; https://doi.org/10.3390/app142310857 - 23 Nov 2024
Viewed by 1135
Abstract
In an actual concrete dam construction, the efficiency of thermal field reconstruction directly affects the timeliness of temperature control measures. Therefore, using lightweight methods to obtain real-time, accurate thermal fields is crucial for concrete temperature control. To balance both accuracy and efficiency, this [...] Read more.
In an actual concrete dam construction, the efficiency of thermal field reconstruction directly affects the timeliness of temperature control measures. Therefore, using lightweight methods to obtain real-time, accurate thermal fields is crucial for concrete temperature control. To balance both accuracy and efficiency, this study proposes an optimization method for thermal field reconstruction in concrete dams. The method consists of three components: evaluating interpolation algorithms, optimizing the number of monitoring points, and analyzing their positions. Specifically, a distributed temperature sensing system is employed for concrete monitoring, with a “Z-shaped” optical fiber layout. Three interpolation algorithms—Kriging, Natural Neighbor, and Inverse Distance Weighting—are quantitatively evaluated, with Kriging showing the highest accuracy. Sensitivity analysis, combined with the control variable method, is used to assess the impact of the monitoring point number and position. Lightweight application procedures are then proposed, using reconstructed thermal field results to guide strategy formulation and parameter adjustment for the intelligent cooling control system. A case study demonstrates that this method ensures the effectiveness and timeliness of concrete temperature control measures. The proposed approach enables real-time updates of concrete temperature control measures in sync with the progress of the pouring process, providing a valuable reference for similar projects. Full article
Show Figures

Figure 1

Back to TopTop