Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Sequencing and Macin Identification
2.2. Interspecific Variation Analysis
2.3. Intraspecific Variation Analysis
2.4. Gene Expression Analysis
3. Results
3.1. Basic Sequence Information
3.2. Interspecific Variation
3.3. Intraspecific Variation
3.4. Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | antimicrobial peptide |
CDS | coding sequence |
AAS | amino acid sequence |
TPM | transcripts per million |
PSL | protein subcellular localization; |
pI | isoelectric point |
GRAVY | grand average of hydropathicity |
II | instability index |
References
- Phillips, A.J.; Dornburg, A.; Zapfe, K.L.; Anderson, F.E.; James, S.W.; Erséus, C.; Moriarty Lemmon, E.; Lemmon, A.R.; Williams, B.W. Expression of concern: Phylogenomic Analysis of a Putative Missing Link Sparks Reinterpretation of Leech Evolution. Genome Biol. Evol. 2019, 11, 1882. [Google Scholar] [CrossRef] [PubMed]
- Kvist, S.; Min, G.S.; Siddall, M.E. Diversity and selective pressures of anticoagulants in three medicinal leeches (Hirudinida: Hirudinidae, Macrobdellidae). Ecol. Evol. 2013, 3, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, I.S.; Rao, J.; Izadi, D.; Butler, P.E. Historical Article: Hirudo medicinalis: Ancient origins of, and trends in the use of medicinal leeches throughout history. Br. J. Oral Maxillofac. Surg. 2004, 42, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Elyassi, A.R.; Terres, J.; Rowshan, H.H. Medicinal leech therapy on head and neck patients: A review of literature and proposed protocol. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e167–e172. [Google Scholar] [CrossRef]
- Montinari, M.R.; Minelli, S. From ancient leech to direct thrombin inhibitors and beyond: New from old. Biomed. Pharmacother. 2022, 149, 112878. [Google Scholar] [CrossRef]
- Sig, A.K.; Guney, M.; Uskudar Guclu, A.; Ozmen, E. Medicinal leech therapy-an overall perspective. Integr. Med. Res. 2017, 6, 337–343. [Google Scholar] [CrossRef]
- Schikorski, D.; Cuvillier-Hot, V.; Leippe, M.; Boidin-Wichlacz, C.; Slomianny, C.; Macagno, E.; Salzet, M.; Tasiemski, A. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J. Immunol. 2008, 181, 1083–1095. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Pei, J.; Luo, Y.; Yuan, N.; Xiao, Z.; Wu, H.; Luo, C.; Wang, J.; Wei, S.; et al. Molecular dynamic and pharmacological studies on protein-engineered hirudin variants of Hirudinaria manillensis and Hirudo medicinalis. Br. J. Pharmacol. 2022, 179, 3740–3753. [Google Scholar] [CrossRef]
- Indergand, S.; Graf, J. Ingested blood contributes to the specificity of the symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech. Appl. Environ. Microbiol. 2000, 66, 4735–4741. [Google Scholar] [CrossRef]
- Graf, J. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: A novel model for digestive tract associations. Infect. Immun. 1999, 67, 1–7. [Google Scholar] [CrossRef]
- Worthen, P.L.; Gode, C.J.; Graf, J. Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl. Environ. Microbiol. 2006, 72, 4775–4781. [Google Scholar] [CrossRef] [PubMed]
- Maltz, M.A.; Bomar, L.; Lapierre, P.; Morrison, H.G.; McClure, E.A.; Sogin, M.L.; Graf, J. Metagenomic analysis of the medicinal leech gut microbiota. Front. Microbiol. 2014, 5, 151. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Graf, J. Bacterial symbioses of the medicinal leech Hirudo verbana. Gut Microbes 2012, 3, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.K.R.; Ahmad, N.W.; Lee, H.L.; Ahmad, N.; Othamn, S.; Mokhtar, N.; Chong, S.S.Y. Hirudotherapy in Wound Healing. Int. J. Low. Extrem. Wounds 2022, 21, 425–431. [Google Scholar] [CrossRef]
- Özkaya, D. Keratitis following leech therapy for periocular eczematous dermatitis: A case report. BMC Complement. Med. Ther. 2023, 23, 124. [Google Scholar] [CrossRef]
- Sproll, C.; Lommen, J.; Balasiu, A.; Schorn, L.; Kübler, N.R.; Henrich, B.; Kram, R.; Petersdorf, S. Lethal Aeromonas veronii Sepsis in the Course of Medicinal Leech Therapy. Antibiotics 2022, 11, 1180. [Google Scholar] [CrossRef]
- Bykowski, M.R.; Zhu, X.; Diaz-Garcia, R. Ceftriaxone-Resistant Aeromonas hydrophila Infection Following Leech Therapy: A New Resistant Strain. Ann. Plast. Surg. 2018, 81, 327–328. [Google Scholar] [CrossRef]
- Bibbo, C.; Fritsche, T.; Stemper, M.; Hall, M. Flap infection associated with medicinal leeches in reconstructive surgery: Two new drug-resistant organisms. J. Reconstr. Microsurg. 2013, 29, 457–460. [Google Scholar] [CrossRef]
- Whitaker, I.S.; Maltz, M.; Siddall, M.E.; Graf, J. Characterization of the digestive tract microbiota of Hirudo orientalis (medicinal leech) and antibiotic resistance profile. Plast. Reconstr. Surg. 2014, 133, 408e–418e. [Google Scholar] [CrossRef]
- Grafskaia, E.N.; Pavlova, E.R.; Latsis, I.A.; Malakhova, M.V.; Ivchenkov, D.V.; Bashkirov, P.V.; Kot, E.F.; Mineev, K.S.; Arseniev, A.S.; Klinov, D.V.; et al. Non-toxic antimicrobial peptide Hm-AMP2 from leech metagenome proteins identified by the gradient-boosting approach. Mater. Des. 2022, 224, 111364. [Google Scholar] [CrossRef]
- Hancock, R.E.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480. [Google Scholar] [CrossRef] [PubMed]
- Migoń, D.; Neubauer, D.; Kamysz, W. Hydrocarbon Stapled Antimicrobial Peptides. Protein J. 2018, 37, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Galzitskaya, O.V. Creation of New Antimicrobial Peptides. Int. J. Mol. Sci. 2023, 24, 9451. [Google Scholar] [CrossRef]
- Lu, X.; Yang, M.; Zhou, S.; Yang, S.; Chen, X.; Khalid, M.; Wang, K.; Fang, Y.; Wang, C.; Lai, R.; et al. Identification and Characterization of RK22, a Novel Antimicrobial Peptide from Hirudinaria manillensis against Methicillin Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2023, 24, 13453. [Google Scholar] [CrossRef]
- Grafskaia, E.N.; Nadezhdin, K.D.; Talyzina, I.A.; Polina, N.F.; Podgorny, O.V.; Pavlova, E.R.; Bashkirov, P.V.; Kharlampieva, D.D.; Bobrovsky, P.A.; Latsis, I.A.; et al. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens. Eur. J. Med. Chem. 2019, 180, 143–153. [Google Scholar] [CrossRef]
- Tasiemski, A.; Vandenbulcke, F.; Mitta, G.; Lemoine, J.; Lefebvre, C.; Sautière, P.-E.; Salzet, M. Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J. Biol. Chem. 2004, 279, 30973–30982. [Google Scholar] [CrossRef]
- Ding, A.; Shi, H.; Guo, Q.; Liu, F.; Wang, J.; Cheng, B.; Wei, W.; Xu, C. Gene cloning and expression of a partial sequence of Hirudomacin, an antimicrobial protein that is increased in leech (Hirudo nipponica Whitman) after a blood meal. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 231, 75–86. [Google Scholar] [CrossRef]
- Jung, S.; Dingley, A.J.; Augustin, R.; Anton-Erxleben, F.; Stanisak, M.; Gelhaus, C.; Gutsmann, T.; Hammer, M.U.; Podschun, R.; Bonvin, A.M.J.J.; et al. Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J. Biol. Chem. 2009, 284, 1896–1905. [Google Scholar] [CrossRef]
- Guan, D.L.; Yang, J.; Liu, Y.K.; Li, Y.; Mi, D.; Ma, L.B.; Wang, Z.Z.; Xu, S.Q.; Qiu, Q. Draft Genome of the Asian Buffalo Leech Hirudinaria manillensis. Front. Genet. 2019, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, F.; Huang, Z.; Hu, Q.; Meng, R.; Lin, Y.; Qi, J.; Lin, G. Revisiting the Asian Buffalo Leech (Hirudinaria manillensis) Genome: Focus on Antithrombotic Genes and Their Corresponding Proteins. Genes 2023, 14, 2068. [Google Scholar] [CrossRef]
- Chen, J.; Xie, X.; Zhang, H.; Li, G.; Yin, Y.; Cao, X.; Gao, Y.; Li, Y.; Zhang, Y.; Peng, F.; et al. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives—A Review. Front. Pharmacol. 2021, 12, 660757. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, F.; Huang, Z.; He, B.; Liu, K.; Shi, F.; Zhao, Z.; Lin, G. A Chromosome-Level Genome Assembly of the Non-Hematophagous Leech Whitmania pigra (Whitman 1884): Identification and Expression Analysis of Antithrombotic Genes. Genes 2024, 15, 164. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, Z.; He, B.; Liu, K.; Li, J.; Liu, Z.; Lin, G. Comparative genomics of two Asian medicinal leeches Hirudo nipponia and Hirudo tianjinensis: With emphasis on antithrombotic genes and their corresponding proteins. Int. J. Biol. Macromol. 2024, 270, 132278. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Yu, C.-S.; Chen, Y.-C.; Lu, C.-H.; Hwang, J.-K. Prediction of protein subcellular localization. Proteins Struct. Funct. Bioinf. 2006, 64, 643–651. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Chevreux, B.; Wetter, T.; Suhai, S. Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. In Proceedings of the German Conference on Bioinformatics, Hannover, Germany, 4–6 October 1999; Volume 99, pp. 45–56. [Google Scholar]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol. Biol. Evol. 2013, 31, 303–309. [Google Scholar] [CrossRef]
- Feyertag, F.; Alvarez-Ponce, D. Disulfide Bonds Enable Accelerated Protein Evolution. Mol. Biol. Evol. 2017, 34, 1833–1837. [Google Scholar] [CrossRef]
- Yan, B.X.; Sun, Y.Q. Glycine residues provide flexibility for enzyme active sites. J. Biol. Chem. 1997, 272, 3190–3194. [Google Scholar] [CrossRef]
- Chakravarty, D.; Sreenivasan, S.; Swint-Kruse, L.; Porter, L.L. Identification of a covert evolutionary pathway between two protein folds. Nat. Commun. 2023, 14, 3177. [Google Scholar] [CrossRef]
- Joshi, T.; Xu, D. Quantitative assessment of relationship between sequence similarity and function similarity. BMC Genom. 2007, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Graf, J.; Kikuchi, Y.; Rio, R.V. Leeches and their microbiota: Naturally simple symbiosis models. Trends Microbiol. 2006, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Bomar, L.; Maltz, M.; Graf, J. Mucinivorans hirudinis gen. nov., sp. nov., an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the medicinal leech Hirudo verbana. Int. J. Syst. Evol. Microbiol. 2015, 65, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, H.; Wang, S.; Ma, B.; Xiong, L.; Li, H.; Wang, M.; Li, Y. Isolation, identification and drug susceptibility of the etiological agent of lethal edema of Whitmania pigra. Zhongguo Dongwu Chuanranbing Xuebao 2024, 32, 36–41. [Google Scholar] [CrossRef]
- Majeed, S.; De Silva, L.; Kumarage, P.M.; Heo, G.J. Occurrence of potential virulence determinants in Aeromonas spp. isolated from different aquatic environments. J. Appl. Microbiol. 2023, 134, lxad031. [Google Scholar] [CrossRef]
- Meng, F.; Liu, Z.; Sun, J.; Kong, D.; Wang, Y.; Tong, X.; Cao, Y.; Bi, X. Insights into gut microbiota communities of Poecilobdella manillensis, a prevalent Asian medicinal leech. J. Appl. Microbiol. 2022, 133, 1402–1413. [Google Scholar] [CrossRef]
- Sheldon, K.S. Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 303–333. [Google Scholar] [CrossRef]
- Kumar, S.; Paul, T.; Sarkar, P.; Kumar, K. Environmental Factors Affecting Aquatic Animal Health. In Management of Fish Diseases; Mallik, S.K., Shahi, N., Pandey, P.K., Eds.; Springer Nature: Singapore, 2025; pp. 171–188. [Google Scholar]
- Hanson, M.A.; Lemaitre, B.; Unckless, R.L. Dynamic Evolution of Antimicrobial Peptides Underscores Trade-Offs Between Immunity and Ecological Fitness. Front. Immunol. 2019, 10, 2620. [Google Scholar] [CrossRef]
- Mo, H.; Wei, P.; Zhou, W.; Liao, P.; Tao, J. Isolation and Characterization of Common Pathogens from Diseased Leeches. Chin. J. Zool. 2003, 38, 2–7. [Google Scholar] [CrossRef]
Species | Macin | Length | Target Species | Target Peptide | Accession | Identity * |
---|---|---|---|---|---|---|
Hirudinaria manillensis | Hman1 | 83 | H. medicinalis | neuromacin | A8V0B3.1 | 76.8% |
Hman2 | 84 | H. nipponia | hirudomacin | QBK51064.1 | 66.7% | |
Hman3 | 81 | H. medicinalis | neuromacin | A8V0B3.1 | 67.7% | |
Hirudo medicinalis | Hmed1 | 83 | H. medicinalis | neuromacin | A8V0B3.1 | 98.8% |
Hmed2 | 83 | H. medicinalis | neuromacin | A8V0B3.1 | 98.8% | |
Hmed3 | 84 | H. nipponia | hirudomacin | QBK51064.1 | 63.1% | |
Hmed4 | 87 | H. nipponia | hirudomacin | QBK51064.1 | 54.6% | |
Hirudo nipponia | Hnip1 | 83 | H. nipponia | hirudomacin | QBK51064.1 | 95.1% |
Hnip2 | 83 | H. nipponia | hirudomacin | QBK51064.1 | 95.1% | |
Hnip3 | 83 | H. nipponia | hirudomacin | QBK51064.1 | 93.9% | |
Hnip4 | 85 | H. nipponia | hirudomacin | QBK51064.1 | 61.9% | |
Whitmania pigra | Wpig1 | 83 | H. nipponia | hirudomacin | QBK51064.1 | 90.2% |
Wpig2 | 83 | H. medicinalis | neuromacin | A8V0B3.1 | 86.6% | |
Wpig3 | 83 | H. medicinalis | neuromacin | A8V0B3.1 | 82.5% | |
Wpig4 | 82 | H. nipponia | hirudomacin | QBK51064.1 | 80.5% | |
Wpig5 | 79 | H. medicinalis | neuromacin | A8V0B3.1 | 51.8% |
Hman1 | Hman2 | Hman3 | Hmed1 | Hmed2 | Hmed3 | Hmed4 | Hnip1 | Hnip2 | Hnip3 | Hnip4 | Wpig1 | Wpig2 | Wpig3 | Wpig4 | Wpig5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hman1 | — | 59.0 | 32.1 | 77.1 | 77.1 | 60.2 | 56.6 | 72.3 | 72.3 | 71.1 | 56.6 | 71.1 | 69.9 | 63.9 | 64.6 | 48.1 |
Hman2 | 62.2 | — | 38.3 | 60.2 | 60.2 | 66.7 | 61.9 | 62.7 | 62.7 | 61.4 | 59.5 | 60.2 | 61.4 | 55.4 | 53.7 | 44.3 |
Hman3 | 49.0 | 51.4 | — | 29.6 | 29.6 | 34.6 | 32.1 | 29.6 | 29.6 | 28.4 | 29.6 | 29.6 | 29.6 | 22.2 | 27.2 | 27.8 |
Hmed1 | 77.9 | 61.8 | 43.6 | — | 98.8 | 62.7 | 57.8 | 90.4 | 90.4 | 89.2 | 62.7 | 89.2 | 86.7 | 79.5 | 80.5 | 54.4 |
Hmed2 | 76.3 | 61.4 | 42.8 | 98.0 | — | 62.7 | 57.8 | 90.4 | 90.4 | 89.2 | 62.7 | 89.2 | 86.7 | 79.5 | 81.7 | 54.4 |
Hmed3 | 61.4 | 68.3 | 47.7 | 60.2 | 60.6 | — | 72.6 | 65.1 | 65.1 | 63.9 | 61.9 | 61.4 | 62.7 | 57.8 | 53.7 | 50.6 |
Hmed4 | 60.6 | 64.3 | 45.7 | 61.4 | 61.4 | 77.4 | — | 59.0 | 59.0 | 59.0 | 70.6 | 55.4 | 55.4 | 51.8 | 50.0 | 53.2 |
Hnip1 | 74.3 | 65.1 | 44.9 | 89.2 | 88.4 | 62.7 | 64.7 | — | 100.0 | 97.6 | 62.7 | 94.0 | 86.7 | 80.7 | 80.5 | 53.2 |
Hnip2 | 74.7 | 65.5 | 44.4 | 89.6 | 88.8 | 62.2 | 64.3 | 99.6 | — | 97.6 | 62.7 | 94.0 | 86.7 | 80.7 | 80.5 | 53.2 |
Hnip3 | 73.9 | 64.7 | 43.6 | 89.6 | 88.8 | 61.8 | 63.9 | 98.4 | 98.8 | — | 61.4 | 92.8 | 85.5 | 80.7 | 79.3 | 54.4 |
Hnip4 | 57.8 | 57.5 | 39.1 | 64.3 | 63.9 | 60.7 | 69.0 | 63.9 | 64.3 | 63.9 | — | 59.0 | 59.0 | 54.2 | 50.0 | 57.0 |
Wpig1 | 72.3 | 65.1 | 44.9 | 89.2 | 88.4 | 60.6 | 62.7 | 93.6 | 94.0 | 94.0 | 63.9 | — | 86.7 | 81.9 | 84.1 | 53.2 |
Wpig2 | 73.5 | 64.7 | 43.2 | 89.2 | 88.0 | 61.4 | 62.2 | 92.8 | 92.4 | 92.4 | 62.2 | 91.6 | — | 79.5 | 78.0 | 51.9 |
Wpig3 | 72.7 | 64.7 | 43.2 | 85.5 | 85.5 | 61.8 | 63.5 | 91.2 | 90.8 | 90.8 | 61.0 | 89.6 | 90.4 | — | 75.6 | 45.6 |
Wpig4 | 70.3 | 61.0 | 41.6 | 85.4 | 85.0 | 57.3 | 59.3 | 88.6 | 89.0 | 89.0 | 58.9 | 89.4 | 87.8 | 87.0 | — | 48.1 |
Wpig5 | 47.7 | 48.1 | 39.2 | 57.0 | 57.0 | 54.4 | 62.4 | 57.8 | 58.2 | 58.2 | 71.7 | 58.2 | 56.1 | 54.0 | 54.4 | — |
Species | Macin | Cys | Gly | PSL | Reliability | pI | GRAVY | II |
---|---|---|---|---|---|---|---|---|
H. manillensis | Hman1 | 8 | 6 | Extracellular | 4.253 | 8.49 | −0.705 | 59.53 |
Hman2 | 8 | 5 | Extracellular | 4.309 | 7.68 | −0.798 | 103.89 | |
Hman3 | 4 | 4 | Nuclear | 1.819 | 7.68 | −0.619 | 73.42 | |
H. medicinalis | Hmed1 | 8 | 6 | Extracellular | 3.968 | 8.49 | −0.705 | 55.00 |
Hmed2 | 8 | 6 | Extracellular | 4.100 | 8.49 | −0.829 | 49.18 | |
Hmed3 | 8 | 6 | Extracellular | 4.304 | 7.71 | −0.717 | 62.77 | |
Hmed4 | 8 | 9 | Extracellular | 4.522 | 8.18 | −0.777 | 75.11 | |
H. nipponia | Hnip1 | 8 | 7 | Extracellular | 4.249 | 9.06 | −0.785 | 63.71 |
Hnip2 | 8 | 7 | Extracellular | 4.249 | 9.06 | −0.785 | 63.71 | |
Hnip3 | 8 | 6 | Extracellular | 4.220 | 8.90 | −0.768 | 68.41 | |
Hnip4 | 8 | 7 | Extracellular | 4.226 | 8.49 | −0.580 | 70.69 | |
W. pigra | Wpig1 | 8 | 6 | Extracellular | 4.196 | 8.90 | −0.781 | 60.14 |
Wpig2 | 8 | 6 | Extracellular | 4.052 | 6.46 | −0.451 | 64.15 | |
Wpig3 | 5 | 5 | Extracellular | 3.523 | 8.36 | −0.869 | 62.77 | |
Wpig4 | 8 | 8 | Extracellular | 3.775 | 8.72 | −0.472 | 57.44 | |
Wpig5 | 7 | 5 | Extracellular | 3.980 | 7.72 | −0.212 | 36.85 |
Macin | Variable Sites | Nonsynonymous Codons | Malfunctional Codons | Nucleotide Diversity |
---|---|---|---|---|
Hman1 | 5 | 1 | 0 | 0.00413 |
Hman2 | 24 | 16 | 2 | 0.01722 |
Hman3 | 25 | 10 | 4 | 0.02309 |
Wpig1 | 1 | 0 | 0 | 0.00162 |
Wpig2 | 9 | 6 | 0 | 0.00992 |
Wpig3 | 9 | 7 | 0 | 0.01052 |
Wpig4 | 7 | 4 | 0 | 0.00446 |
Wpig5 | 6 | 4 | 0 | 0.00359 |
Macin | TPM (Mean ± SD) | Total TPM (Mean ± SD) | |
---|---|---|---|
H. manillensis | Hman1 | 2196.63 ± 1033.77 a | 2440.20 ± 1048.87 |
Hman2 | 242.35 ± 371.24 b | ||
Hman3 | 1.22 ± 2.50 c | ||
W. pigra | Wpig1 | 22,278.23 ± 18,671.18 A | 59,433.26 ± 82,551.14 |
Wpig2 | 37,089.85 ± 85,607.08 A | ||
Wpig3 | 45.10 ± 195.60 B | ||
Wpig4 | 1.96 ± 4.09 C | ||
Wpig5 | 18.11 ± 40.69 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Tang, L.; Xiao, M.; Yin, J.; Ye, T.; Sun, R.; Ai, R.; Zhao, F.; Huang, Z.; Lin, G. Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis). Biology 2025, 14, 517. https://doi.org/10.3390/biology14050517
Yu Y, Tang L, Xiao M, Yin J, Ye T, Sun R, Ai R, Zhao F, Huang Z, Lin G. Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis). Biology. 2025; 14(5):517. https://doi.org/10.3390/biology14050517
Chicago/Turabian StyleYu, Yunfei, Lizhou Tang, Mingkang Xiao, Jingjing Yin, Tianyu Ye, Rujiao Sun, Rui Ai, Fang Zhao, Zuhao Huang, and Gonghua Lin. 2025. "Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis)" Biology 14, no. 5: 517. https://doi.org/10.3390/biology14050517
APA StyleYu, Y., Tang, L., Xiao, M., Yin, J., Ye, T., Sun, R., Ai, R., Zhao, F., Huang, Z., & Lin, G. (2025). Genetic Variation and Gene Expression of the Antimicrobial Peptide Macins in Asian Buffalo Leech (Hirudinaria manillensis). Biology, 14(5), 517. https://doi.org/10.3390/biology14050517