Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (259)

Search Parameters:
Authors = Yanli Chen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6927 KiB  
Article
Physiological and Transcriptomic Mechanisms Underlying Vitamin C-Mediated Cold Stress Tolerance in Grafted Cucumber
by Panpan Yu, Junkai Wang, Xuyang Zhang, Zhenglong Weng, Kaisen Huo, Qiuxia Yi, Chenxi Wu, Sunjeet Kumar, Hao Gao, Lin Fu, Yanli Chen and Guopeng Zhu
Plants 2025, 14(15), 2398; https://doi.org/10.3390/plants14152398 - 2 Aug 2025
Viewed by 306
Abstract
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber [...] Read more.
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber ‘Chiyu 505’ as the scion and pumpkin ‘Chuangfan No.1’ as the rootstock, seedlings were grafted using the whip grafting method. In the third true leaf expansion stage, seedlings were foliar sprayed with Vc at concentrations of 50, 100, 150, and 200 mg L−1. Three days after initial spraying, seedlings were subjected to cold stress (8 °C) for 3 days, with continued spraying. After that, morphological and physiological parameters were assessed. Results showed that 150 mg L−1 Vc treatment was most impactive, significantly reducing the cold damage index while increasing the root-to-shoot ratio, root vitality, chlorophyll content, and activities of antioxidant enzymes (SOD, POD, CAT). Moreover, this treatment enhanced levels of soluble sugars, soluble proteins, and proline compared to control. However, 200 mg L−1 treatment elevated malondialdehyde (MDA) content, indicating potential oxidative stress. For transcriptomic analysis, leaves from the 150 mg L−1 Vc and CK treatments were sampled at 0, 1, 2, and 3 days of cold stress. Differential gene expression revealed that genes associated with photosynthesis (LHCA1), stress signal transduction (MYC2-1, MYC2-2, WRKY22, WRKY2), and antioxidant defense (SOD-1, SOD-2) were initially up-regulated and subsequently down-regulated, as validated by qRT-PCR. Overall, we found that the application of 150 mg L−1 Vc enhanced cold tolerance in grafted cucumber seedlings by modulating gene expression networks related to photosynthesis, stress response, and the antioxidant defense system. This study provides a way for developing Vc biostimulants to enhance cold tolerance in grafted cucumbers, improving sustainable cultivation in low-temperature regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 4185 KiB  
Article
Morphology-Based Evaluation of Pollen Fertility and Storage Characteristics in Male Actinidia arguta Germplasm
by Hongyan Qin, Shutian Fan, Ying Zhao, Peilei Xu, Xiuling Chen, Jiaqi Li, Yiming Yang, Yanli Wang, Yue Wang, Changyu Li, Yingxue Liu, Baoxiang Zhang and Wenpeng Lu
Plants 2025, 14(15), 2366; https://doi.org/10.3390/plants14152366 - 1 Aug 2025
Viewed by 193
Abstract
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, [...] Read more.
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, and ultrastructural features. Results revealed significant variation in pollen germination rates (1.56–96.57%) among germplasms, with ‘Lvwang’, ‘TL20083’, and ‘TG06023’ performing best (all >90% germination). The storage characteristics study demonstrated that −80 °C is the optimal temperature for long-term pollen storage in A. arguta. Significant variations were observed in storage tolerance among different germplasms. Among them, Lvwang exhibited the best performance, maintaining a germination rate of 97.40% after 12 months of storage at −80 °C with no significant difference from the initial value, followed by TT07063. Pollen morphology was closely correlated with fertility. High-fertility pollen grains typically exhibited standard prolate or ultra-prolate shapes, featuring a tri-lobed polar view and an elliptical equatorial view, with neat germination furrows and clean surfaces. In contrast, low-fertility pollen grains frequently appeared shrunken and deformed, with widened germination furrows and visible exudates. Based on these findings, the following recommendations are proposed: ① Prioritize the use of germplasms with pollen germination rates >80% as pollinizers; ② Establish a rapid screening system based on pollen morphological characteristics. This study provides important scientific basis for both male germplasm selection and efficient cultivation practices in A. arguta (kiwiberry). Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 2862 KiB  
Article
Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake
by Yanli Zhang, Jiaxing Huang, Jiaxin Xue, Kaining Zhang, Xintong Chen, Jianhui Jia and Qingyang Huang
Microorganisms 2025, 13(7), 1648; https://doi.org/10.3390/microorganisms13071648 - 11 Jul 2025
Viewed by 388
Abstract
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical [...] Read more.
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical properties were identified among these types (p < 0.05). The soil bacterial community structures also varied significantly (p < 0.05), with Actinobacteriota, Proteobacteria, and Acidobacteria as the dominant phyla, exhibiting notable genus-level differences (p < 0.05). The soil organic matter (SOM), available nitrogen (AN), total nitrogen (TN), and soil water content (SWC) were significantly correlated with the bacterial community structure (p < 0.05 or p < 0.01), acting as key determinants of the microbial community structure and function. PICRUSt2 functional predictions revealed significant variations in the metabolic functions of the soil bacterial communities across vegetation types, indicating distinct functional specializations. In conclusion, the Jingpo Lake lava plateau harbors abundant bacterial resources. When devising vegetation adaptation strategies, it is essential to take into account variations in the rhizosphere soil bacteria across different vegetation types. Furthermore, prioritizing the implementation of forest vegetation is crucial in the adaptive management of the lava plateau. This approach holds significant implications for studying the bacterial diversity in the lava plateau and exploring the cultivation and application of functional bacteria in extreme environments. Full article
Show Figures

Figure 1

20 pages, 1312 KiB  
Article
Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity
by Zifeng Zhan, Weiwei Huo, Shangwei Xie, Wandong Chen, Xinming Liu, Kuidong Xu and Yanli Lei
Biology 2025, 14(7), 821; https://doi.org/10.3390/biology14070821 - 6 Jul 2025
Viewed by 427
Abstract
The rapid advancement of environmental DNA (eDNA) technology has transformed ecological research, particularly in aquatic ecosystems. However, the optimal sampling matrix (e.g., water or sediment) and the potential for eDNA to replace or complement traditional underwater visual census (UVC) remain unclear. Here, we [...] Read more.
The rapid advancement of environmental DNA (eDNA) technology has transformed ecological research, particularly in aquatic ecosystems. However, the optimal sampling matrix (e.g., water or sediment) and the potential for eDNA to replace or complement traditional underwater visual census (UVC) remain unclear. Here, we integrate water eDNA, sediment eDNA, and UVC approaches to systematically compare the diversity of benthic macrofauna in the subtidal zones of the Nanji Islands, China. Our results show that sediment eDNA samples exhibited the highest species richness, while UVC had the lowest. Each method revealed distinct species profiles, with relatively few shared taxa at the order level and below. Environmental eDNA showed significant advantages in detecting key phyla such as Annelida and Arthropoda. In contrast, traditional UVC was crucial for identifying certain taxa, such as Bryozoa, which were undetectable by eDNA methods. The low overlap in species detected by these methods underscores their complementary nature, highlighting the necessity of integrating multiple approaches to achieve a more comprehensive and accurate biodiversity assessment. Future research should focus on refining eDNA techniques, such as developing more universal primers, to further enhance their applicability in biodiversity monitoring. Full article
Show Figures

Figure 1

16 pages, 6077 KiB  
Review
Evolutionary and Structural Analysis of the Aquaporin Gene Family in Rice
by Tao Tong, Fanrong Zeng, Shuzhen Ye, Zhijuan Ji, Yanli Wang, Zhong-Hua Chen and Younan Ouyang
Plants 2025, 14(13), 2035; https://doi.org/10.3390/plants14132035 - 3 Jul 2025
Viewed by 505
Abstract
Aquaporins in rice (Oryza sativa L.) represent a pivotal class of transmembrane channel proteins that mediate the bidirectional transport of water and small solutes, which have critical functions in cellular osmoregulation and ion homeostasis maintenance. Their evolutionary diversity and functional plasticity constitute [...] Read more.
Aquaporins in rice (Oryza sativa L.) represent a pivotal class of transmembrane channel proteins that mediate the bidirectional transport of water and small solutes, which have critical functions in cellular osmoregulation and ion homeostasis maintenance. Their evolutionary diversity and functional plasticity constitute fundamental mechanisms underlying the adaptive responses to diversified environmental challenges. This review systematically summarizes rice AQPs’ evolutionary origins, structural characteristics, and spatiotemporal expression patterns under both physiological and stress conditions, highlighting the high conservation of their key functional domains across evolution and their environment-driven functional diversification. The molecular mechanisms governing AQPs in water utilization, nutrient uptake, and stress responses are unraveled. Furthermore, the potential of precision gene editing and multi-omics integration is discussed to decipher the intricate relationships between AQP evolutionary history, environmental adaptability, and functional specialization, thereby providing a theoretical basis for advancing crop stress resistance and high-quality breeding. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

13 pages, 3523 KiB  
Article
Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry
by Yanli Yang, Xiaojie Chen, Ming Li, Fei Xin, Yi Zhao, Chengfeng Zhang, Yiping Pan, Chuanyu He and Sun He
Vaccines 2025, 13(7), 721; https://doi.org/10.3390/vaccines13070721 - 2 Jul 2025
Viewed by 452
Abstract
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) [...] Read more.
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) antigens in monovalent and bivalent vaccines. Methods: Purified serotypes A and O FMDV were used to establish and validate the method. The DSF parameters, including the dye concentration, thermal scanning velocity, and PCR tube material, were optimized at different FMDV concentrations. The established DSF method was validated for the quantification of monovalent and A/O bivalent FMDV, and was compared with the ultracentrifugation of 86 samples from different processing stages and serotypes. Results: The DSF showed that the melting temperature (Tm) of type A (56.2 °C) was significantly higher than that of type O FMDV (50.5 °C), indicating that their Tm can be distinguished in bivalent antigens. After optimizing the DSF parameters, a strong correlation (R2 > 0.998) was observed between the 146S concentration and the maximum of the first derivative of the DSF fluorescence (d(RFU)/dT) for both serotypes A and O FMDV. The method demonstrated good reproducibility (RSD < 10%) and high sensitivity (limit of detection: 0.7 μg/mL). Using a multiple linear regression analysis, the simultaneous quantification of A and O FMDV in the bivalent mixtures achieved recovery rates of 82.4–105.5%, with an RSD < 10% for most of the samples. Additionally, the DSF results correlated well with the ultracentrifugation data (Pearson ρ = 0.9789), validating its accuracy and broad applicability. Conclusions: In summary, DSF represents a simple, rapid, and high-throughput tool for the quality control of monovalent and bivalent FMDV vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

13 pages, 1017 KiB  
Article
Separation of Exhaust Gas Pollutants from Urea Prilling Process with Gasified Biochar for Slow-Release Fertilizer: Adsorption Characteristics, Process Improvement, and Economic Assessment
by Tong Lou, Bingtao Zhao, Zixuan Zhang, Mengqi Wang, Yanli Mao, Baoming Chen, Xinwei Guo, Tuo Zhou and Fengcui Li
Separations 2025, 12(7), 173; https://doi.org/10.3390/separations12070173 - 29 Jun 2025
Viewed by 398
Abstract
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to [...] Read more.
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to gasified biochar, its ammonia gas adsorption capacity was significantly enhanced, with saturated adsorption capacity increasing from 0.61 mg/g (unmodified) to 32 mg/g. Coupled with the tower-top bag filter, the modified biochar combines with ammonia gas and urea dust in exhaust gases, subsequently forming biochar-based slow-release fertilizer through dehydration and granulation processes. Material balance analysis demonstrates that a single 400,000-ton/year urea prilling tower achieves a daily fertilizer production capacity of 55 tons, with 18% active ingredient content. The nitrogen content can be upgraded to national standards through urea supplementation. Economic analysis demonstrates a total capital investment of USD1.2 million, with an annual net profit of USD0.88 million and a static payback period of 1.36 years. This process not only achieves ammonia gas emission reduction but also converts waste biochar into high-value fertilizer. It displays dual advantages of environmental benefits and economic feasibility and provides an innovative solution for resource utilization of the exhaust gases from the urea prilling process. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

12 pages, 1982 KiB  
Article
Concrete Bridge Crack Detection Using Unmanned Aerial Vehicles and Image Segmentation
by Yanli Chen, Hongze Li, Hang Zhu, Tianlong Ren and Zhe Cao
Infrastructures 2025, 10(7), 161; https://doi.org/10.3390/infrastructures10070161 - 27 Jun 2025
Viewed by 467
Abstract
Concrete bridge cracks are critical indicators for maintenance planning. Traditional visual inspections are often subjective, labor-intensive, and time-consuming, requiring close-range access by inspectors. In contrast, UAV-based remote sensing, combined with advanced image processing, offers a more efficient and accurate solution. This study proposes [...] Read more.
Concrete bridge cracks are critical indicators for maintenance planning. Traditional visual inspections are often subjective, labor-intensive, and time-consuming, requiring close-range access by inspectors. In contrast, UAV-based remote sensing, combined with advanced image processing, offers a more efficient and accurate solution. This study proposes an enhanced crack detection method combining Laplacian of Gaussian (LoG) filtering and Otsu thresholding to improve segmentation accuracy through background noise suppression. The proposed approach extracts key crack characteristics—including area, length, centroid, and main direction—enabling precise damage assessment. Experimental validation on a real bridge dataset demonstrates significant improvements in detection accuracy. The method provides a reliable tool for automated structural health monitoring, supporting data-driven maintenance decisions. Full article
Show Figures

Figure 1

9 pages, 1976 KiB  
Article
Adsorption Characteristics of an AlGaN/GaN Heterojunction on Potassium Ions
by Yan Dong, Mengmeng Li, Yanli Liu, Jianming Lei, Haineng Bai, Yanmei Sun, Dunjun Chen, Dongjie Zhu, Rigao Wang and Yi Sun
Molecules 2025, 30(13), 2669; https://doi.org/10.3390/molecules30132669 - 20 Jun 2025
Viewed by 223
Abstract
Slight changes in potassium levels can affect health. Therefore, rapid, reliable, and quantitative determination of potassium ion content is important for medical diagnosis. AlGaN, as a semiconductor material with good biocompatibility, has many advantages in the development of new potassium ion sensors. Understanding [...] Read more.
Slight changes in potassium levels can affect health. Therefore, rapid, reliable, and quantitative determination of potassium ion content is important for medical diagnosis. AlGaN, as a semiconductor material with good biocompatibility, has many advantages in the development of new potassium ion sensors. Understanding the adsorption behavior of a specific ion on the AlGaN surface and the eventual effect on AlGaN/GaN’s heterostructure interface is the key to obtaining high-performance nitride sensors. In this paper, we calculated the changes in the density of states and energy bands of the material after AlGaN adsorbed potassium ions through first-principles simulation. Combined with two-dimensional device simulation software, the changes in device performance caused by the changes in material properties are presented. The simulation results show that the adsorption of a single potassium ion can cause a current change in the order of milliamperes, providing a theoretical reference for the subsequent development of high-sensitivity potassium ion sensors. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
Land Use Change and Mangrove Restoration Modulate Heavy Metal Accumulation in Tropical Coastal Sediments: A Nearly Decade-Long Study from Hainan, China
by Tingting Si, Penghua Qiu, Lei Li, Wenqian Zhou, Chuanzhao Chen, Qidong Shi, Meihuijuan Jiang and Yanli Yang
Land 2025, 14(6), 1259; https://doi.org/10.3390/land14061259 - 12 Jun 2025
Viewed by 833
Abstract
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of [...] Read more.
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of heavy metals in mangrove sediments. This study systematically analyzed two mangrove reserves in Hainan Island, China (Hainan Dongzhaigang National Nature Reserve [DZG] and Hainan Qinglan Provincial Nature Reserve [QL]), by collecting sediment samples in 2014 and 2022, analyzing metals (Cr, Cu, Zn, As, Cd, and Pb) via ICP-MS, and applying the geo-accumulation index, potential ecological risk index, Markov transition matrix, and statistical analyses. Results showed that DZG exhibited rising Cu and Zn levels but declining Cr, As, Cd, and Pb, with Cd showing the most significant decrease (66.83%). In contrast, QL saw only a 42.7% reduction in Cd, while other heavy metals increased. Spatial heterogeneity linked higher concentrations to anthropogenic hotspots, DZG’s southeast (industrial/aquaculture inputs), and QL’s northwest (urban/industrial discharges). Although ecological risks were generally low, Cd in QL reached a moderate risk level (ECd = 46.44, 40 ≤ Ei < 80). The large-scale pond-to-mangrove conversion significantly increased vegetation cover, which enhanced sedimentation rates and exerted a “dilution effect” on sediment heavy metals. These findings underscore anthropogenic activities as the dominant driver of heavy metal contamination. We recommend (1) stringent wastewater control near QL, (2) enhanced shipping regulation, and (3) the establishment of mangrove buffers in heavy metal accumulation zones to improve ecological status. Full article
Show Figures

Figure 1

15 pages, 1350 KiB  
Review
Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology
by Meng Hong, Guodi Wu, Yanli Ren, Shanshan Wu, Haihong Zhu and Zhi Chen
Pathogens 2025, 14(6), 554; https://doi.org/10.3390/pathogens14060554 - 2 Jun 2025
Viewed by 920
Abstract
In recent years, global public health security has encountered significant challenges, with infectious diseases accounting for approximately 25% of global mortality annually. The worldwide pandemic instigated by the novel coronavirus, alongside the persistent threats posed by Ebola, influenza, and multidrug-resistant bacteria, has severely [...] Read more.
In recent years, global public health security has encountered significant challenges, with infectious diseases accounting for approximately 25% of global mortality annually. The worldwide pandemic instigated by the novel coronavirus, alongside the persistent threats posed by Ebola, influenza, and multidrug-resistant bacteria, has severely compromised human health, economic development, and social stability. Within this context, the development of rapid and precise pathogen detection technologies has emerged as a critical frontline defense for epidemic prevention and control, serving as a pivotal component in the implementation of the “early detection, early isolation, and early treatment” strategy. The Argonaute (Ago) protein, recognized as a programmable and target-specific activated nuclease, has demonstrated substantial potential in the realm of nucleic acid detection due to its distinctive biological properties, garnering considerable attention. In this study, we delineate the structural characteristics of Ago proteins and elucidate the mechanism underlying their nuclease activity. Furthermore, we review the principles of nucleic acid detection based on Argonaute and provide a comprehensive analysis of recent advancements in related detection systems. Additionally, we compare the advantages of detection based on Argonaute with other detection methodologies. Through a comprehensive analysis, we aim to provide a robust theoretical foundation and an advanced technical reference for the development of new-generation nucleic acid detection platforms with high sensitivity and high specificity. Full article
Show Figures

Figure 1

19 pages, 2703 KiB  
Article
An Interval Fuzzy Linear Optimization Approach to Address a Green Intermodal Routing Problem with Mixed Time Window Under Capacity and Carbon Tax Rate Uncertainty
by Yanli Guo, Yan Sun and Chen Zhang
Appl. Syst. Innov. 2025, 8(3), 68; https://doi.org/10.3390/asi8030068 - 19 May 2025
Viewed by 1084
Abstract
This study investigates a green intermodal routing problem considering carbon tax regulation and a mixed (combined soft and hard) time window to improve cost- and time-effectiveness and promote carbon emission reduction in intermodal transportation. To enhance the feasibility of problem optimization, we model [...] Read more.
This study investigates a green intermodal routing problem considering carbon tax regulation and a mixed (combined soft and hard) time window to improve cost- and time-effectiveness and promote carbon emission reduction in intermodal transportation. To enhance the feasibility of problem optimization, we model the uncertainty of both the carbon tax rate and the intermodal network capacity in the routing problem. By using interval fuzzy numbers to formulate the twofold uncertainty, an interval fuzzy linear optimization model is established to address the problem optimization, in which the optimization objective of the model is to minimize the total costs (consisting of transportation, time, and carbon emission costs). Furthermore, we conduct crisp processing of the proposed model to make the problem solvable, in which the optimization level, a parameter whose value is determined by the receiver before solving the problem, is introduced to represent the receiver’s attitude towards the reliability of transportation. We present a numerical experiment to verify the feasibility of the optimization model. The sensitivity analysis shows that the economics and environmental sustainability of the intermodal routing optimization conflict with its reliability. Improving the reliability of transportation increases both the total costs and the carbon emissions of the intermodal route. Furthermore, through comparison with deterministic modeling, the numerical experiment shows that modeling the twofold uncertainty can cover the different decision-making attitudes of the receiver, provide intermodal routes that are sensitive to the optimization level, enable flexible route decision-making, and avoid unreliable transportation. Through comparison with hard and soft time windows, the numerical experiment proves that the mixed time window is more applicable for problem optimization, since it can obtain the intermodal route that yields improved economics and environmental sustainability and simultaneously satisfies the receiver’s requirement for timeliness. Through comparison with the green intermodal route aiming at minimum carbon emissions, the numerical experiment indicates that carbon tax regulation under an interval fuzzy carbon tax rate is not feasible in all decision-making scenarios where the receivers have different attitudes regarding the reliability of transportation. When carbon tax regulation is infeasible, bi-objective optimization can provide Pareto solutions to balance the objectives of reduced costs and lowered carbon emissions. Finally, the numerical experiment reveals the influence of the release time of the transportation order at the origin and the stability of the interval fuzzy capacity on the routing optimization in the scenario in which the receiver prefers highly reliable transportation. Full article
Show Figures

Figure 1

33 pages, 16266 KiB  
Article
Integrated Bioinformatics Analysis and Cellular Experimental Validation Identify Lipoprotein Lipase Gene as a Novel Biomarker for Tumorigenesis and Prognosis in Lung Adenocarcinoma
by Wanwan He, Meilian Wei, Yan Huang, Junsen Qin, Meng Liu, Na Liu, Yanli He, Chuanbing Chen, Yali Huang, Heng Yin and Ren Zhang
Biology 2025, 14(5), 566; https://doi.org/10.3390/biology14050566 - 19 May 2025
Viewed by 761
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of death worldwide, and thus, more biomarker and therapeutic targets need to be explored. Herein, we aimed to explore new biomarkers of LUAD by integrating bioinformatics analysis with cell experiments. We firstly identified 266 [...] Read more.
Lung adenocarcinoma (LUAD) is one of the leading causes of death worldwide, and thus, more biomarker and therapeutic targets need to be explored. Herein, we aimed to explore new biomarkers of LUAD by integrating bioinformatics analysis with cell experiments. We firstly identified 266 druggable genes that were significantly differentially expressed between LUAD tissues and adjacent normal lung tissues. Among these genes, SMR analysis with p-value correction suggested that declining lipoprotein lipase (LPL) levels may be causally associated with an elevated risk of LUAD, which was corroborated by co-localization analysis. Analyses of clinical data showed that LPL in lung cancer tissues has considerable diagnostic value for LUAD, and elevated LPL levels were positively associated with improved patient survival outcomes. Cell experiments with an LPL activator proved these findings; the activator inhibited the proliferation and migration of lung cancer cells. Next, we found that LPL promoted the infiltration of immune cells such as DCs, IDCs, and macrophages in LUAD by mononuclear sequencing analysis and TIMER2.0. Meanwhile, patients with low levels of LPL expression demonstrated superior immunotherapeutic responses to anti-PD-1 therapy. We conclude that LPL acts as a diagnostic and prognostic marker for LUAD. Full article
(This article belongs to the Special Issue Disease Biomarker Discovery and Validation)
Show Figures

Figure 1

21 pages, 4923 KiB  
Article
Study on the Effect of Water System Connection on the Improvement of Water Quality of Inner Lakes in Town—Taking Seven Lakes in Yangshuo Urban Area of Guilin as an Example
by Huili Liu, Shuhai Huang, Hang Chen, Mingbo Zuo, Guangyan He, Mei Wang, Shaoyuan Bai, Qin Zhang, Dandan Xu, Yanli Ding and Yanan Zhang
Water 2025, 17(9), 1398; https://doi.org/10.3390/w17091398 - 7 May 2025
Cited by 1 | Viewed by 513
Abstract
Urban lake degradation caused by intensive urbanization necessitates systematic solutions, with water connectivity being a crucial ecological restoration strategy. This study evaluates the two-year effects (2020–2022) of connectivity interventions on seven lakes in Yangshuo, Guilin, classified by connectivity: multi-channel (Mc), single-channel (Sc), and [...] Read more.
Urban lake degradation caused by intensive urbanization necessitates systematic solutions, with water connectivity being a crucial ecological restoration strategy. This study evaluates the two-year effects (2020–2022) of connectivity interventions on seven lakes in Yangshuo, Guilin, classified by connectivity: multi-channel (Mc), single-channel (Sc), and non-connected (Nc). Regular monitoring of the physicochemical parameters and microbial communities revealed significant patterns: multi-channel connected lakes exhibited superior water quality improvement, with trophic state downgrading (weak eutrophic → mesotrophic), but the water quality of Sc-BQ was deteriorating. Seasonal variations showed wet season peaks in pH, DO, CODMn, and Chl-a, versus dry season elevations in NH3-N, NO3-N, TN, and TP. Correlation analysis identified organic matter as the primary driver of eutrophication, with TN strongly linked to NH3-N, indicating persistent domestic sewage contamination. Microbial community restructuring was accompanied by changes in water quality, and the abundance and diversity of OTUs decreased after restoration. Notably, Limnohabitans dominated Mc lakes (31.82–35.1%), while Pleurocapsa prevailed (37.85%) in Nc-LH under weak eutrophic conditions. These findings demonstrate that multi-channel connectivity effectively enhances hydrodynamic conditions and pollutant dispersion, whereas inadequate connectivity exacerbates nutrient accumulation. The study provides critical empirical evidence for optimizing urban lake management, emphasizing the necessity of multi-dimensional connectivity designs and targeted control of untreated sewage inputs in water system rehabilitation projects. Full article
Show Figures

Graphical abstract

35 pages, 15716 KiB  
Article
Experimental Study of the Hydrodynamic Forces of Pontoon Raft Aquaculture Facilities Around a Wind Farm Monopile Under Wave Conditions
by Deming Chen, Mingchen Lin, Jinxin Zhou, Yanli Tang, Fenfang Zhao, Xinxin Wang, Mengjie Yu, Qiao Li and Daisuke Kitazawa
J. Mar. Sci. Eng. 2025, 13(4), 809; https://doi.org/10.3390/jmse13040809 - 18 Apr 2025
Viewed by 514
Abstract
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). [...] Read more.
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). Physical water tank experiments were conducted on PRAFs deployed around a wind farm monopile using the following configurations: single- and three-row arrangements of PRAFs with and without a monopile. The interaction between the aquaculture structure and the wind farm monopile was examined, with a particular focus on the mooring line tensions and bridle line tensions under different wave conditions. Utilizing the wind farm monopile foundation as an anchor, the mooring line tension was reduced significantly by 16–66% in the single-row PRAF. The multi-row PRAF arrangement experienced lower mooring line tension in comparison with the single-row PRAF arrangement, with the highest reduction of 73%. However, for the bridle line tension, the upstream component was enhanced, while the downstream one was weakened with a monopile, and they both decreased in the multi-row arrangement. Finally, we developed numerical models based on flume tank tests that examined the interactions between the monopile and PRAFs, including configurations of a single monopile, along with single- and three-row arrangements of PRAFs. The numerical simulation results confirmed that the monopile had a dampening effect on the wave propagation of 5% to 20%, and the impact of the pontoons on the monopile was negligible, implying that the integration of aquaculture facilities around wind farm infrastructure may not significantly alter the hydrodynamic loads experienced by the monopile. Full article
Show Figures

Figure 1

Back to TopTop