Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,659)

Search Parameters:
Authors = Xin Xu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2839 KiB  
Article
Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
by Yijie Ren, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei and Shuang Song
Agriculture 2025, 15(15), 1689; https://doi.org/10.3390/agriculture15151689 - 5 Aug 2025
Abstract
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve [...] Read more.
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve the recognition accuracy of various maize disease spores, this study introduced the YOLOv8s-SPM model by incorporating the space-to-depth and convolution (SPD-Conv) layers, the Partial Self-Attention (PSA) mechanism, and Minimum Point Distance Intersection over Union (MPDIoU) loss function. First, we combined SPD-Conv layers into the Backbone of the YOLOv8s to enhance recognition performance on small targets and low-resolution images. To improve computational efficiency, the PSA mechanism was incorporated within the Neck layer of the network. Finally, MPDIoU loss function was applied to refine the localization performance of bounding boxes. The results revealed that the YOLOv8s-SPM model achieved 98.9% accuracy on the mixed spore dataset. Relative to the baseline YOLOv8s, the YOLOv8s-SPM model yielded a 1.4% gain in accuracy. The improved model significantly improved spore detection accuracy and demonstrated superior performance in recognizing diverse spore types under complex background conditions. It met the demands for high-precision spore detection and filled a gap in intelligent spore recognition for maize, offering an effective starting point and practical path for future research in this field. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

19 pages, 3110 KiB  
Article
Integrated Environmental–Economic Assessment of Small-Scale Natural Gas Sweetening Processes
by Qing Wen, Xin Chen, Xingrui Peng, Yanhua Qiu, Kunyi Wu, Yu Lin, Ping Liang and Di Xu
Processes 2025, 13(8), 2473; https://doi.org/10.3390/pr13082473 - 5 Aug 2025
Abstract
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based [...] Read more.
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based framework. Environmental impacts were assessed via the Waste Reduction Algorithm (WAR), considering both Potential Environmental Impact (PEI) generation and output across eight categories, while economic performance was analyzed based on equipment, chemical, energy, environmental treatment, and labor costs. Results show that the triazine-based process offers superior environmental performance due to lower toxic emissions, whereas LO-CAT® demonstrates better economic viability at higher gas flow rates and H2S concentrations. An integrated assessment combining monetized environmental impacts with economic costs reveals that the triazine-based process becomes competitive only if environmental impacts are priced above specific thresholds. This study contributes a practical evaluation framework and scenario-based dataset that support sustainable process selection for decentralized sour gas treatment applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 4260 KiB  
Article
Priority Control of Intelligent Connected Dedicated Bus Corridor Based on Deep Deterministic Policy Gradient
by Chunlin Shang, Fenghua Zhu, Yancai Xu, Guiqing Zhu and Xin Tong
Sensors 2025, 25(15), 4802; https://doi.org/10.3390/s25154802 - 4 Aug 2025
Abstract
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. [...] Read more.
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. Initially, an analysis of the differences in travel time distribution on both types of roads is conducted. The likelihood of buses passing through upstream and downstream intersections without stopping is also assessed. This analysis aids in determining the correlated traffic states and the corresponding signal adjustment strategies for arterial coordination. Subsequently, an incentive mechanism is established by quantitatively analyzing vehicle delay losses and bus priority benefits based on the signal adjustment strategy. Finally, a deep reinforcement learning framework is proposed to solve, in real-time, the optimal signal adjustment strategy. Simulation experiments indicate that, in comparison to the arterial coordination of social vehicles and dedicated bus arterial coordination control, this method significantly reduces the average per capita delay by 38.63% and 27.43%, respectively, under conventional traffic flow scenarios. This is in contrast to the separate arterial coordination for social vehicles and dedicated bus lanes. Furthermore, it leads to a reduction of 52.17% in the number of bus stops at intersections when compared solely with the arterial coordination of social vehicles. In saturated traffic flow scenarios, this method achieves a reduction in average per capita delay by 29.7% and 9.6%, respectively, while also decreasing the number of bus stops at intersections by 39.5% and 8.7%, respectively. Full article
Show Figures

Figure 1

15 pages, 5630 KiB  
Article
Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda
by Ya-Nan Deng, Jin-Yan Lv, Xiao-Rong Liu, Dan Niu, Ling-Xin Xu and Jun-Xin Yan
Biology 2025, 14(8), 979; https://doi.org/10.3390/biology14080979 (registering DOI) - 1 Aug 2025
Viewed by 140
Abstract
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the [...] Read more.
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the ecofriendly control of S. frugiperda. In this study, S. frugiperda larvae were exposed to vanillic acid or sinapic acid at the second and third instar, and physiological and growth parameters were measured. The results showed that the effects of vanillic acid treatment on S. frugiperda were similar at the different instars. They can significantly affect the larval carboxylesterase, glutathione S-transferase, and mixed-function oxidase activities. By reducing larval food intake, food conversion, and utilization efficiency while increasing the food consumption rate, it inhibits weight accumulation. This leads to a significant extension of the development of both the larval and pupal stages, and the adult longevity was reduced. Treatment with sinapic acid at the second instar extended the negative effects on the pupal duration of S. frugiperda when compared to treatment at the third instar, but did not affect adult longevity. Therefore, vanillic acid treatment at the second or third instar stage, can play an important role in the ecofriendly control process of S. frugiperda. The results of this study are of great significance for integrated pest management. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

16 pages, 4770 KiB  
Article
Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor
by Shan-Diao Xu, Li-Cheng Wu, Muhammad Adil, Lin-Feng Sheng, Zi-Yue Zhao, Kui Xu and Xin Chen
Batteries 2025, 11(8), 289; https://doi.org/10.3390/batteries11080289 - 1 Aug 2025
Viewed by 183
Abstract
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. Full article
Show Figures

Graphical abstract

31 pages, 26260 KiB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 - 31 Jul 2025
Viewed by 86
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Accurate Identification of Native Asian Honey Bee Populations in Jilong (Xizang, China) by Population Genomics and Deep Learning
by Zhiyu Liu, Yongqiang Xu, Wei Sun, Bing Yang, Tenzin Nyima, Zhuoma Pubu, Xin Zhou, Wa Da and Shiqi Luo
Insects 2025, 16(8), 788; https://doi.org/10.3390/insects16080788 (registering DOI) - 31 Jul 2025
Viewed by 240
Abstract
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate [...] Read more.
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate the population structure and lineage differentiation of A. cerana within this ecologically distinct region. In this study, we collected A. cerana specimens from 12 geographically disparate locations across various altitudinal gradients within the Jilong Valley, and also integrated publicly available sequencing data of A. cerana from various regions across mainland Asia. In total, our analysis encompassed sequencing data from 296 individuals. Population structure analyses based on SNP data revealed that A. cerana in Jilong represents a genetically distinct population that differs markedly from other regional A. cerana populations in terms of genetic lineage, although its subspecies identity remains to be confirmed. Through screening based on FST values, we identified SNP loci that contribute significantly to distinguishing between Jilong and non-Jilong A. cerana. Using these loci, the convolutional neural network model TraceNet was trained, which demonstrated specific recognition capabilities for Jilong versus non-Jilong A. cerana. This further confirmed the universality and efficiency of TraceNet in identifying honey bee lineages. These findings contribute valuable insights for the identification and conservation of A. cerana germplasm resources in specific geographical regions. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 220
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 192
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

19 pages, 4287 KiB  
Article
Tailoring Microstructure via Rolling to Achieve Concurrent High Strength and Thermal Conductivity in Mg-Zn-Nd-Zr Alloys
by Hailong Shi, Xiaohuan Zhang, Xin Li, Yining Zhang, Siqi Li, You Wang, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3578; https://doi.org/10.3390/ma18153578 - 30 Jul 2025
Viewed by 145
Abstract
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results [...] Read more.
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results indicate that the addition of Nd promotes the formation of the W phase (Mg3Zn3RE2), which contributes to grain boundary strengthening and enhances the overall strength. Moreover, dynamic precipitation during the rolling process leads to the formation of nanoscale MgZn2 and Zn2Zr phases, significantly improving both the strength and thermal conductivity. After rolling, both the Mg-5Zn-1Nd-0.4Zr (ZNK510) and Mg-5Zn-2Nd-0.4Zr (ZNK520) alloys exhibited a notable enhancement in thermal conductivity, with ZNK520 demonstrating superior properties due to its higher Nd content. This study highlights that optimizing alloy composition and phase evolution through rolling can markedly enhance both the mechanical and thermal properties, offering a promising strategy for the development of high-performance magnesium alloys. Full article
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 320
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

15 pages, 4068 KiB  
Article
Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
by Xin Shu, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng and Jianfei Chen
Animals 2025, 15(15), 2230; https://doi.org/10.3390/ani15152230 - 29 Jul 2025
Viewed by 173
Abstract
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize [...] Read more.
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize MOTS-c coding sequences across major poultry species through bioinformatics analysis and experimental validation. The alignment results showed high sequence similarity in the MOTS-c coding regions between avian and mammalian species. However, a single nucleotide deletion was identified in avian sequences at the position corresponding to the fourth amino acid residue of mammalian homologs, resulting in divergent downstream amino acid sequences. Despite this deletion, several residues were conserved across species. Phylogenetic analysis of mRNA sequences grouped pigeons with mammals, while protein sequence analysis revealed that poultry and mammals form separate branches, highlighting the divergence between avian and mammalian MOTS-c sequences. Tissue expression profiling demonstrated widespread distribution of chicken MOTS-c across multiple tissues, with the highest expression levels in the heart. Fasting significantly reduced heart MOTS-c expression, suggesting potential metabolic regulatory functions. Functional analysis of MOTS-c in primary hepatocytes revealed significant enrichment of the ribosome, oxidative phosphorylation, and key signaling pathways (PI3K-AKT and JAK-STAT) following 24 hours of treatment. Western blot validation confirmed MOTS-c-mediated activation of the AKT signaling pathway. This study represents the first comprehensive characterization of avian MOTS-c, providing critical insights into its evolutionary conservation and its potential functional roles in gene expression and cellular metabolism. Our findings establish a foundation for further investigation into the functions of mitochondrial-encoded peptides in avian species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 14921 KiB  
Article
Analysis of the Dynamic Process of Tornado Formation on 28 July 2024
by Xin Zhou, Ling Yang, Shuqing Ma, Ruifeng Wang, Zhaoming Li, Yuchen Song, Yongsheng Gao and Jinyan Xu
Remote Sens. 2025, 17(15), 2615; https://doi.org/10.3390/rs17152615 - 28 Jul 2025
Viewed by 284
Abstract
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct [...] Read more.
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct the 3D wind field. The dynamics and 3D structure of the tornado were analysed, with a new parameter, vorticity volume (VV), introduced to study its variation. The observation results indicate that the tornado moved roughly from south to north. During the tornado’s early stage (00:10–00:20 UTC), arc-shaped and annular echoes emerged and positive vorticity increased (peaking at 0.042 s−1). Based on the tornado’s movement direction, the right side of the vortex centre was divergent, while the left side was convergent, whereas the vorticity area and volume continued to grow centrally. During the mature stage (00:23–00:25 UTC), the echo intensity weakened and, at 00:24, the vorticity reached its peak and touched the ground, with the vorticity area and volume also reaching their peaks at the same time. During the dissipation stage (00:25–00:30 UTC), the vorticity and echo features faded and the vorticity area and volume also declined rapidly. The analysis showed that the vorticity volume effectively reflects the tornado’s life cycle, enhancing the understanding of the dynamic and thermodynamic processes during the tornado’s development. Full article
Show Figures

Figure 1

14 pages, 10838 KiB  
Article
Transcription Factor LjWRKY50 Affects Jasmonate-Regulated Floral Bud Duration in Lonicera japonica
by Yanfei Li, Yutong Gan, Guihong Qi, Wenjie Xu, Tianyi Xin, Yuanhao Huang, Lianguo Fu, Lijun Hao, Qian Lou, Xiao Fu, Xiangyun Wei, Lijun Liu, Chengming Liu and Jingyuan Song
Plants 2025, 14(15), 2328; https://doi.org/10.3390/plants14152328 - 27 Jul 2025
Viewed by 349
Abstract
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and [...] Read more.
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and economic value. However, the genetic mechanisms controlling floral bud duration remain poorly understood. In this study, we employed population structure analysis and molecular experiments to identify candidate genes associated with this trait. The improved cultivar Beihua No. 1 (BH1) opens its floral buds significantly later than the landrace Damaohua (DMH). Exogenous application of methyl jasmonate (MeJA) to BH1 indicated that jasmonate acts as a negative regulator of floral bud duration by accelerating floral bud opening. A genome-wide selection scan across 35 germplasms with varying floral bud durations identified the transcription factor LjWRKY50 as the causative gene influencing this trait. The dual-luciferase reporter assay and qRT-PCR experiments showed that LjWRKY50 activates the expression of the jasmonate biosynthesis gene, LjAOS. A functional variant within LjWRKY50 (Chr7:24636061) was further developed into a derived cleaved amplified polymorphic sequence (dCAPS) marker. These findings provide valuable insights into the jasmonate-mediated regulation of floral bud duration, offering genetic and marker resources for molecular breeding in L. japonica. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Back to TopTop