Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Authors = Weilin Xiao

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7418 KiB  
Article
Computational Fluid Dynamics Analysis of Radiation Characteristics in Gas–Iron Ore Particle Reactive Flow Processes at an Industrial-Scale in a Hydrogen-Based Flash Smelting Furnace
by Yuchen Feng, Mingzhou Li, Shiyu Lai, Jindi Huang, Zhanghao Wan, Weilin Xiao and Tengwei Long
Metals 2025, 15(3), 242; https://doi.org/10.3390/met15030242 - 25 Feb 2025
Viewed by 749
Abstract
Iron smelting is one of the primary sources of carbon emissions. The development of low-carbon ironmaking technologies is essential for the iron and steel industry to realize the “dual carbon” ambition. Hydrogen-based flash ironmaking technology eliminates traditional pretreatment steps such as sintering, pelletizing, [...] Read more.
Iron smelting is one of the primary sources of carbon emissions. The development of low-carbon ironmaking technologies is essential for the iron and steel industry to realize the “dual carbon” ambition. Hydrogen-based flash ironmaking technology eliminates traditional pretreatment steps such as sintering, pelletizing, and coking while using hydrogen as a reducing agent, significantly reducing carbon emissions. In the present work, a computational fluid dynamics approach is employed to conduct an in-depth analysis of the radiative properties inside the reaction shaft of a flash smelting furnace. The results illustrate that the lowest gas absorption coefficient and volumetric absorption radiation along the radial direction appear at y = 2.84 m, with the values of 0.085 m−1 and 89,364.6 W/m3, respectively, whereas the largest values for these two variables in the axial direction can be obtained at h = 6.14 m with values of 0.128 m−1 and 132,841.11 W/m3. The reduced incident radiation intensity under case 1’s condition led to distinct differences in the radiative temperature compared to the other four cases. The spatial distributions of the particle absorption and scattering coefficients exhibit excellent consistency. The thermal conductivities of all investigated cases depict similar trends along both the axial and radial directions. Volumetric emissive radiation presents a non-linear trend of first increasing and then decreasing, followed by the rise as the height decreases. This study highlights the critical role of hydrogen-based flash ironmaking technology in reducing carbon emissions and provides valuable insights into the radiative characteristics of its reaction shaft under different operating conditions. Full article
Show Figures

Figure 1

17 pages, 8865 KiB  
Article
Termite Fungus Comb Polysaccharides Alleviate Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice by Regulating Hepatic Glucose/Lipid Metabolism and the Gut Microbiota
by Haihan Xiao, Xudong Song, Peng Wang, Weilin Li, Senhua Qin, Chaofu Huang, Beimin Wu, Bao Jia, Qionghua Gao and Ziyi Song
Int. J. Mol. Sci. 2024, 25(13), 7430; https://doi.org/10.3390/ijms25137430 - 6 Jul 2024
Cited by 5 | Viewed by 2264
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, [...] Read more.
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D. Full article
(This article belongs to the Special Issue New Types of Antimicrobial Biocides)
Show Figures

Figure 1

17 pages, 15630 KiB  
Article
Submarine Morphological Description of the Ancient Archipelagic Aprons in the Marcus–Wake Seamount Group, Northwestern Pacific Ocean
by Xiao Wang, Huaiming Li, Yongshou Cheng, Pengfei Yao, Fengyou Chu, Weilin Ma, Hongyi Wang, Shihui Lv, Xiaohu Li, Zhenggang Li, Weiyan Zhang and Yanhui Dong
J. Mar. Sci. Eng. 2024, 12(4), 670; https://doi.org/10.3390/jmse12040670 - 18 Apr 2024
Cited by 3 | Viewed by 1915
Abstract
Herein, the morphological characteristics of submarine archipelagic aprons were presented for five guyots, Suda, Arnold, Lamont, Niulang, and Zhinyv, which are over 80 Ma years old and are located in the Marcus–Wake seamount group, northwestern Pacific Ocean. Nearly 28 landslide deposits were recognized [...] Read more.
Herein, the morphological characteristics of submarine archipelagic aprons were presented for five guyots, Suda, Arnold, Lamont, Niulang, and Zhinyv, which are over 80 Ma years old and are located in the Marcus–Wake seamount group, northwestern Pacific Ocean. Nearly 28 landslide deposits were recognized using the bathymetry and backscatter intensity data collected from the studied guyots. Landslides and their deposits that surround seamounts are mostly related to the morphology of debris avalanches, scarps, gullies/channels, and bedforms. The morphology of the archipelagic aprons of the studied guyots indicates mutual landslide processes, including slump and distinct debris avalanches arising from a cohesive or cohesionless landslide material flow. The superimposition of debris flows and sedimentation dominates the recent stages of the studied guyots. The archipelagic aprons corresponding to convex-arc-shaped scarps exhibit larger domains compared to the invagination-arc-shaped scarps with similar lateral lengths. The scarp morphologies of the studied guyots are predominantly of the complex-arc shape, indicating multiple landslide events. Parallel and convergent gullies and channels are mostly found on the elongated landslide deposits, whereas divergent and radial gullies and channels are mostly distributed on the fan-shaped aprons. Ubiquitous sediment waves occurred on the bedforms of the distal archipelagic apron across the studied guyots because of sediment creep. Small-scale sediment waves were only observed in the channels on the aprons of the Suda guyot. Full article
Show Figures

Figure 1

16 pages, 6916 KiB  
Article
Strengthened Decellularized Porcine Valves via Polyvinyl Alcohol as a Template Improving Processability
by Qingqing Chen, Chaorong Wang, Han Wang, Jinfeng Xiao, Yingshan Zhou, Shaojin Gu, Weilin Xu and Hongjun Yang
Polymers 2024, 16(1), 16; https://doi.org/10.3390/polym16010016 - 20 Dec 2023
Viewed by 1457
Abstract
The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft [...] Read more.
The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing. Mechanical tests show that the strength and elastic modulus of DHVs treated with different concentrations of PVA significantly improve. Without the PVA layer, the valve would shift during suture puncture and not achieve the desired suture result. The in vitro results indicate that decellularized valves treated with PVA can sustain the adhesion and growth of human umbilical vein endothelial cells (HUVECs). All results above show that the DHVs treated with water-soluble PVA have good mechanical properties and cytocompatibility to ensure post-treatment. On this basis, the improved processability of DHV treated with PVA enables a new paradigm for the manufacturing of scaffolds, making it easy to apply. Full article
Show Figures

Graphical abstract

23 pages, 39907 KiB  
Review
Recent Progress of Switching Power Management for Triboelectric Nanogenerators
by Han Zhou, Guoxu Liu, Jianhua Zeng, Yiming Dai, Weilin Zhou, Chongyong Xiao, Tianrui Dang, Wenbo Yu, Yuanfen Chen and Chi Zhang
Sensors 2022, 22(4), 1668; https://doi.org/10.3390/s22041668 - 21 Feb 2022
Cited by 28 | Viewed by 6858
Abstract
Based on the coupling effect of contact electrification and electrostatic induction, the triboelectric nanogenerator (TENG) as an emerging energy technology can effectively harvest mechanical energy from the ambient environment. However, due to its inherent property of large impedance, the TENG shows high voltage, [...] Read more.
Based on the coupling effect of contact electrification and electrostatic induction, the triboelectric nanogenerator (TENG) as an emerging energy technology can effectively harvest mechanical energy from the ambient environment. However, due to its inherent property of large impedance, the TENG shows high voltage, low current and limited output power, which cannot satisfy the stable power supply requirements of conventional electronics. As the interface unit between the TENG and load devices, the power management circuit can perform significant functions of voltage and impedance conversion for efficient energy supply and storage. Here, a review of the recent progress of switching power management for TENGs is introduced. Firstly, the fundamentals of the TENG are briefly introduced. Secondly, according to the switch types, the existing power management methods are summarized and divided into four categories: travel switch, voltage trigger switch, transistor switch of discrete components and integrated circuit switch. The switch structure and power management principle of each type are reviewed in detail. Finally, the advantages and drawbacks of various switching power management circuits for TENGs are systematically summarized, and the challenges and development of further research are prospected. Full article
(This article belongs to the Special Issue Micro/Nano Energy and Flexible Sensors)
Show Figures

Figure 1

26 pages, 2316 KiB  
Review
Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics
by Xiao Ma, Yun Gao, Duoyi Zhao, Weilin Zhang, Wei Zhao, Meng Wu, Yan Cui, Qin Li, Zhiyu Zhang and Chengbin Ma
Nanomaterials 2022, 12(1), 47; https://doi.org/10.3390/nano12010047 - 24 Dec 2021
Cited by 28 | Viewed by 4531
Abstract
Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to [...] Read more.
Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems—such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease—sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field. Full article
(This article belongs to the Special Issue Novel Nanomaterials—Synthesis and Application in Biological Systems)
Show Figures

Figure 1

10 pages, 4419 KiB  
Letter
A NDIR Mid-Infrared Methane Sensor with a Compact Pentahedron Gas-Cell
by Weilin Ye, Zihan Tu, Xupeng Xiao, Alessandro Simeone, Jingwen Yan, Tao Wu, Fupei Wu, Chuantao Zheng and Frank K. Tittel
Sensors 2020, 20(19), 5461; https://doi.org/10.3390/s20195461 - 23 Sep 2020
Cited by 25 | Viewed by 4703
Abstract
In order to improve the performance of the large divergence angle mid-infrared source in gas sensing, this paper aims at developing a methane (CH4) sensor with non-dispersive infrared (NDIR) technology using a compact pentahedron gas-cell. A paraboloid concentrator, two biconvex lenses [...] Read more.
In order to improve the performance of the large divergence angle mid-infrared source in gas sensing, this paper aims at developing a methane (CH4) sensor with non-dispersive infrared (NDIR) technology using a compact pentahedron gas-cell. A paraboloid concentrator, two biconvex lenses and five planar mirrors were used to set up the pentahedron structure. The gas cell is endowed with a 170 mm optical path length with a volume of 19.8 mL. The mathematical model of the cross-section and the three-dimension spiral structure of the pentahedron gas-cell were established. The gas-cell was integrated with a mid-infrared light source and a detector as the optical part of the sensor. Concerning the electrical part, a STM32F429 was employed as a microcontroller to generate the driving signal for the IR source, and the signal from the detector was sampled by an analog-to-digital converter. A static volumetric method was employed for the experimental setup, and 20 different concentration CH4 samples were prepared to study the sensor’s evaluation, which revealed a 1σ detection limit of 2.96 parts-per-million (ppm) with a 43 s averaging time. Full article
(This article belongs to the Special Issue Mid-Infrared Laser Based Sensors)
Show Figures

Figure 1

28 pages, 384 KiB  
Article
Maximum Likelihood Estimation for the Fractional Vasicek Model
by Katsuto Tanaka, Weilin Xiao and Jun Yu
Econometrics 2020, 8(3), 32; https://doi.org/10.3390/econometrics8030032 - 12 Aug 2020
Cited by 20 | Viewed by 6335
Abstract
This paper estimates the drift parameters in the fractional Vasicek model from a continuous record of observations via maximum likelihood (ML). The asymptotic theory for the ML estimates (MLE) is established in the stationary case, the explosive case, and the boundary case for [...] Read more.
This paper estimates the drift parameters in the fractional Vasicek model from a continuous record of observations via maximum likelihood (ML). The asymptotic theory for the ML estimates (MLE) is established in the stationary case, the explosive case, and the boundary case for the entire range of the Hurst parameter, providing a complete treatment of asymptotic analysis. It is shown that changing the sign of the persistence parameter changes the asymptotic theory for the MLE, including the rate of convergence and the limiting distribution. It is also found that the asymptotic theory depends on the value of the Hurst parameter. Full article
Show Figures

Figure 1

11 pages, 3508 KiB  
Article
Dyeing and Characterization of Cellulose Powder Developed from Waste Cotton
by Linli Gan, Heng Guo, Zhiheng Xiao, Zhiwei Jia, Han Yang, Dan Sheng, Heng Pan, Weilin Xu and Yunli Wang
Polymers 2019, 11(12), 1982; https://doi.org/10.3390/polym11121982 - 2 Dec 2019
Cited by 14 | Viewed by 6171
Abstract
In this study, waste cotton fibers were environmentally reused. First, they were milled into fine powders with particle sizes of around 30 µm and dyed for use as pigments. Dyeing properties of the cellulose powder were explored by determining the dye uptake, K/S [...] Read more.
In this study, waste cotton fibers were environmentally reused. First, they were milled into fine powders with particle sizes of around 30 µm and dyed for use as pigments. Dyeing properties of the cellulose powder were explored by determining the dye uptake, K/S value, and bath ratio. Among the various samples, powders with owf (on weight of fabric) of 0% dye (pristine cellulose powder), and 10% and 50% dyed powders were selected; and these powders were characterized by several methods to compare the properties of dyed and undyed cellulose. The surface morphologies of the powders were observed with a scanning electron microscope (SEM). Combining the SEM images with the Brunauer–Emmet–Teller (BET) data, it was found that the smaller the particle size, the larger is the surface area. In addition, the X-ray photoelectron spectroscopy (XPS) results revealed that with increasing dye concentration, the intensity of the C peak reduced, while those of O and S increased. Moreover, the main components of the dyed and undyed cellulose powders were found to be almost the same from the Fourier-transform infrared spectroscopy (FTIR) results. Finally, the dynamic mechanical analysis (DMA) data revealed that the loss modulus was significantly larger than the storage modulus, demonstrating that the material mainly undergoes viscous deformation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

17 pages, 2459 KiB  
Article
Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China
by Tao Liu, Zhoupeng Ren, Yonghui Zhang, Baixiang Feng, Hualiang Lin, Jianpeng Xiao, Weilin Zeng, Xing Li, Zhihao Li, Shannon Rutherford, Yanjun Xu, Shao Lin, Philip C. Nasca, Yaodong Du, Jinfeng Wang, Cunrui Huang, Peng Jia and Wenjun Ma
Int. J. Environ. Res. Public Health 2019, 16(3), 376; https://doi.org/10.3390/ijerph16030376 - 29 Jan 2019
Cited by 28 | Viewed by 5556
Abstract
(1) Background: Although the health effects of future climate change have been examined in previous studies, few have considered additive impacts of population expansion, ageing, and adaptation. We aimed to quantify the future heat-related years of life lost (YLLs) under different [...] Read more.
(1) Background: Although the health effects of future climate change have been examined in previous studies, few have considered additive impacts of population expansion, ageing, and adaptation. We aimed to quantify the future heat-related years of life lost (YLLs) under different Representative Concentration Pathways (RCP) scenarios and global-scale General Circulation Models (GCMs), and further to examine relative contributions of population expansion, ageing, and adaptation on these projections. (2) Methods: We used downscaled and bias-corrected projections of daily temperature from 27 GCMs under RCP2.6, 4.5, and 8.5 scenarios to quantify the potential annual heat-related YLLs in Guangzhou, China in the 2030s, 2060s, and 2090s, compared to those in the 1980s as a baseline. We also explored the modification effects of a range of population expansion, ageing, and adaptation scenarios on the heat-related YLLs. (3) Results: Global warming, particularly under the RCP8.5 scenario, would lead to a substantial increase in the heat-related YLLs in the 2030s, 2060s, and 2090s for the majority of the GCMs. For the total population, the annual heat-related YLLs under the RCP8.5 in the 2030s, 2060s, and 2090s were 2.2, 7.0, and 11.4 thousand, respectively. The heat effects would be significantly exacerbated by rapid population expansion and ageing. However, substantial heat-related YLLs could be counteracted by the increased adaptation (75% for the total population and 20% for the elderly). (4) Conclusions: The rapid population expansion and ageing coinciding with climate change may present an important health challenge in China, which, however, could be partially counteracted by the increased adaptation of individuals. Full article
Show Figures

Figure 1

13 pages, 4534 KiB  
Article
Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours
by Weilin Li, Jian Wen, Zhongliang Xiao and Shengxia Xu
Sensors 2018, 18(2), 649; https://doi.org/10.3390/s18020649 - 22 Feb 2018
Cited by 26 | Viewed by 7433
Abstract
To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, [...] Read more.
To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave. Full article
(This article belongs to the Special Issue Sensors Signal Processing and Visual Computing)
Show Figures

Figure 1

9 pages, 516 KiB  
Article
Estimating the Excess Mortality Risk during Two Red Alert Periods in Beijing, China
by Weilin Zeng, Lingling Lang, Yue Li, Lingchuan Guo, Hualiang Lin, Yonghui Zhang, Tao Liu, Jianpeng Xiao, Xing Li, Yanjun Xu, Xiaojun Xu, Lauren D. Arnold, Erik J. Nelson, Zhengmin Qian and Wenjun Ma
Int. J. Environ. Res. Public Health 2018, 15(1), 50; https://doi.org/10.3390/ijerph15010050 - 29 Dec 2017
Cited by 4 | Viewed by 4599
Abstract
The magnitude of excess mortality risk due to exposures to heavy air pollution during the red alert periods in Beijing remains unknown. A health impact assessment tool combined with the PM2.5-mortality relationship was applied to estimate the number of excess deaths [...] Read more.
The magnitude of excess mortality risk due to exposures to heavy air pollution during the red alert periods in Beijing remains unknown. A health impact assessment tool combined with the PM2.5-mortality relationship was applied to estimate the number of excess deaths due to high air pollution exposure during two red alert periods in Beijing, China in December 2015. Daily PM2.5 concentration increased from 80.2 µg/m3 to 159.8 µg/m3 during the first red alert period and from 61.9 µg/m3 to 226 µg/m3 during the second period in 2015 when compared to daily PM2.5 concentrations during the same calendar date of 2013 and 2014. It was estimated that 26 to 42 excessive deaths (including 14 to 34 cardiovascular deaths, and four to 16 respiratory deaths) occurred during the first period, and 40 to 65 excessive deaths (22 to 53 cardiovascular deaths, and six to 13 respiratory deaths) occurred during the second period. The results show that heavy smog may have substantially increased the mortality risk in Beijing, suggesting more stringent air pollution controlling measures should be implemented to protect the public health. Full article
Show Figures

Figure 1

10 pages, 1257 KiB  
Article
The Interaction between Ambient PM10 and NO2 on Mortality in Guangzhou, China
by Yuzhou Gu, Hualiang Lin, Tao Liu, Jianpeng Xiao, Weilin Zeng, Zhihao Li, Xiaojuan Lv and Wenjun Ma
Int. J. Environ. Res. Public Health 2017, 14(11), 1381; https://doi.org/10.3390/ijerph14111381 - 13 Nov 2017
Cited by 23 | Viewed by 4944
Abstract
Air pollution is now a significant environmental issue in China. To better understand the health impacts of ambient air pollution, this study investigated the potential interaction between PM10 and NO2 on mortality in Guangzhou, China. Time series data of daily non-accidental [...] Read more.
Air pollution is now a significant environmental issue in China. To better understand the health impacts of ambient air pollution, this study investigated the potential interaction between PM10 and NO2 on mortality in Guangzhou, China. Time series data of daily non-accidental mortality and concentrations of PM10 and NO2 from 2006 to 2010 were collected. Based on generalized additive model, we developed two models (bivariate model and stratified model) to explore the interaction both qualitatively and quantitatively. At lag of 0–2 days, greater interactive effects between PM10 and NO2 were presented in the graphs. Positive modified effects were also found between the two pollutants on total non-accidental death and cardiovascular death. When the NO2 concentration was at a high level (>76.14 μg/m3), PM10 showed the greatest excess relative risk percentage (ERR%) for total non-accidental mortality (0.46, 95% CI: 0.13–0.79) and cardiovascular disease mortality (0.61, 95% CI: 0.06–1.16) for each 10 μg/m3 increase. During the period of high PM10 concentration (>89.82 μg/m3), NO2 demonstrated its strongest effect for total non-accidental mortality (ERR%: 0.92, 95% CI: 0.42–1.42) and cardiovascular disease mortality (ERR%: 1.20, 95% CI: 0.38–2.03). Our results suggest a positive interaction between PM10 and NO2 on non-accidental mortality in Guangzhou. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

12 pages, 491 KiB  
Article
The Association of Domestic Incense Burning with Hypertension and Blood Pressure in Guangdong, China
by Xiuling Song, Wenjun Ma, Xiaojun Xu, Tao Liu, Jianpeng Xiao, Weilin Zeng, Xing Li, Zhengmin Qian, Yanjun Xu and Hualiang Lin
Int. J. Environ. Res. Public Health 2017, 14(7), 788; https://doi.org/10.3390/ijerph14070788 - 14 Jul 2017
Cited by 7 | Viewed by 5795
Abstract
Abstract: Domestic incense burning is a common activity in China. Although it generates serious air pollution and has been linked to various health outcomes, it remains unknown whether it is associated with blood pressure and hypertension. A community-based survey including 1153 hypertensive [...] Read more.
Abstract: Domestic incense burning is a common activity in China. Although it generates serious air pollution and has been linked to various health outcomes, it remains unknown whether it is associated with blood pressure and hypertension. A community-based survey including 1153 hypertensive subjects and 4432 normotensive participants in Guangdong (China) was used to examine this question. Two-level logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI). The analyses showed that, compared with non-users, OR of hypertension was 1.24 (95% CI: 1.03–1.50) for users, and 1.37 (95% CI: 1.04–1.80) for daily users with a clear dose-response relationship. The estimated increases in systolic and diastolic blood pressures were 1.02 mmHg (95% CI: 0.06–1.99) and 1.26 mmHg (95% CI: 0.69–1.83) for users, 0.67 mmHg (95% CI: −0.35–1.68) and 1.25 mmHg (95% CI: 0.66–1.85) for occasional users, and 2.09 mmHg (95% CI: 0.79–3.39) and 1.28 mmHg (95% CI: 0.52–2.05) for daily users, respectively. The results remained after adjusting for potential confounders and more pronounced associations were found among females. This study suggests that domestic incense burning may increase the risk of hypertension and blood pressure in the study population, and women are more vulnerable to these effects than men. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

14 pages, 1165 KiB  
Article
Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data
by Tao Liu, Weilin Zeng, Hualiang Lin, Shannon Rutherford, Jianpeng Xiao, Xing Li, Zhihao Li, Zhengmin Qian, Baixiang Feng and Wenjun Ma
Int. J. Environ. Res. Public Health 2016, 13(9), 851; https://doi.org/10.3390/ijerph13090851 - 26 Aug 2016
Cited by 16 | Viewed by 5376
Abstract
Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear [...] Read more.
Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of −0.07%, −0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and −0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks. Full article
Show Figures

Figure 1

Back to TopTop