Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Authors = Tongtong Xu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6696 KiB  
Article
Ethanol Extract of Adlay Hulls Suppresses Acute Myeloid Leukemia Cell Proliferation via PI3K/Akt Pathway Inhibition
by Guangjie Li, Wenyuan Yang, Jiahui Xu, Ziqian Liu, Zhijian Li, Xiaoqiu Wu, Tongtong Li, Ruoxian Wang, Yamin Zhu and Ning Liu
Curr. Issues Mol. Biol. 2025, 47(5), 358; https://doi.org/10.3390/cimb47050358 - 13 May 2025
Viewed by 503
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research [...] Read more.
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research on adlay hulls, particularly their anti-AML bioactive molecules, remains insufficient. This study evaluated the effects of adlay hull ethanol extract (AHE) on AML cell proliferation and apoptosis. AHE was extracted with ethanol and fractionated using n-hexane, ethyl acetate, and n-butanol, followed by silica gel chromatography. Cytotoxicity was assessed via the CCK-8 assay, and mechanisms were analyzed by flow cytometry and Western blotting. The bioactive components were characterized by UPLC-IMS-QTOF-MS. AHE-EA-C (ethyl acetate fraction C) inhibited AML cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis. It suppressed the PI3K/Akt pathway by reducing PI3K and Akt phosphorylation. Using UPLC-IMS-QTOF-MS analysis, a total of 52 compounds with potential anti-AML activity were identified in AHE-EA-C, among which neohesperidin and cycloartanol have been previously reported to exhibit anti-AML activity and thus hold promise as candidates for further development as AML inhibitors. This study is the first to identify adlay hull bioactive components and their anti-AML mechanisms via PI3K/Akt pathway inhibition, providing a foundation for developing natural anti-AML therapies. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3149 KiB  
Article
Construction of Efficient Multienzyme Cascade Reactions for D-Tagatose Biosynthesis from D-Fructose
by Peiyu Miao, Qiang Wang, Kexin Ren, Tongtong Xu, Zigang Zhang, Runxin Hu, Meijuan Xu, Zhiming Rao and Xian Zhang
Fermentation 2025, 11(3), 139; https://doi.org/10.3390/fermentation11030139 - 12 Mar 2025
Cited by 1 | Viewed by 966
Abstract
D-tagatose is an ideal sucrose substitute with potential applications in food and healthcare. The combined catalysis of polyphosphate kinase (PPK), fructose kinase (FRK), D-tagatose-6-phosphate 3-differential anisomerase (FbaA) and phytase provides a low-cost and convenient pathway for the biosynthesis of D-tagatose from D-fructose; however, [...] Read more.
D-tagatose is an ideal sucrose substitute with potential applications in food and healthcare. The combined catalysis of polyphosphate kinase (PPK), fructose kinase (FRK), D-tagatose-6-phosphate 3-differential anisomerase (FbaA) and phytase provides a low-cost and convenient pathway for the biosynthesis of D-tagatose from D-fructose; however, there is still a problem of low catalytic efficiency that needs to be solved urgently. Therefore, this study enhanced the biosynthesis of D-tagatose by optimizing the expression levels of PPK, FRK and FbaA in a polycistronic system and knocking out the gene pfka of Escherichia coli. With 30 g/L D-fructose as a substrate, the conversion rate increased to 52%, which was the highest after 24 h. In addition, by constructing a multienzyme self-assembly system with SpyTag and SpyCatcher to improve the whole-cell catalytic ability, the conversion rate was further increased to 75%. Finally, through the fed-batch strategy, the optimal strain Ec-7 produced 68.1 g/L D-tagatose from 100 g/L D-fructose. The multienzyme cascade route reported herein provides an efficient and elegant innovative solution for the generation of D-tagatose. Full article
Show Figures

Figure 1

15 pages, 3659 KiB  
Article
Mr-lac3 and Mr-lcc2 in Metarhizium robertsii Regulate Conidiation and Maturation, Enhancing Tolerance to Abiotic Stresses and Pathogenicity
by Qiaoyun Wu, Yingying Ye, Yiran Liu, Yufan He, Xing Li, Siqi Yang, Tongtong Xu, Xiufang Hu and Guohong Zeng
J. Fungi 2025, 11(3), 176; https://doi.org/10.3390/jof11030176 - 22 Feb 2025
Cited by 1 | Viewed by 733
Abstract
As a type of multicopper oxidase, laccases play multiple biological roles in entomopathogenic fungi, enhancing their survival, development, and pathogenicity. However, the mechanisms by which laccases operate in these fungi remain under-researched. In this study, we identified two laccase-encoding genes, Mr-lac3 and Mr-lcc2 [...] Read more.
As a type of multicopper oxidase, laccases play multiple biological roles in entomopathogenic fungi, enhancing their survival, development, and pathogenicity. However, the mechanisms by which laccases operate in these fungi remain under-researched. In this study, we identified two laccase-encoding genes, Mr-lac3 and Mr-lcc2, from Metarhizium robertsii, both of which are highly expressed during conidiation. Knocking out Mr-lac3 and Mr-lcc2 resulted in a significant increase in the conidial yields of M. robertsii. Furthermore, the relative expression levels of upstream regulators associated with the conidiation pathway were markedly up-regulated in ΔMr-lac3 and ΔMr-lcc2 compared to the wild-type strain during conidiation, indicating that Mr-lac3 and Mr-lcc2 negatively regulate conidia formation. qRT-PCR analyses revealed that Mr-lac3 and Mr-lcc2 are regulated by the pigment synthesis gene cluster, including Mr-Pks1, Mr-EthD, and Mlac1, and they also provide feedback regulation to jointly control pigment synthesis. Additionally, ΔMr-lac3 and ΔMr-lcc2 significantly reduced the trehalose content in conidia and increased the sensitivity to cell wall-perturbing agents, such as Congo red and guaiacol, which led to a marked decrease in tolerance to abiotic stresses. In conclusion, the laccases Mr-lac3 and Mr-lcc2 negatively regulate conidia formation while positively regulating conidial maturation, thereby enhancing tolerance to abiotic stresses and pathogenicity. Full article
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Functional Characterization of OsCSN1 in the Agronomic Trait Control of Rice Seedlings Under Far-Red Light
by Yanxi Liu, Hua Zeng, Yuqing Shang, Hexin Zhang, Tongtong Jiao, Le Yin, Jinyuan Yang, Miao Xu, Jingmei Lu, Ming Wu and Liquan Guo
Int. J. Mol. Sci. 2025, 26(2), 522; https://doi.org/10.3390/ijms26020522 - 9 Jan 2025
Viewed by 888
Abstract
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red [...] Read more.
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined. This study investigates the function of OsCSN1 under far-red light through phenotypic analysis of wild type and OsCSN1 mutant seedlings. Additionally, the effect of the N-terminal region of OsCSN1 on rice seedling growth and development was examined. The addition of exogenous hormone gibberellin (GA3) and gibberellin synthesis inhibitor paclobutrazol (PAC) resulted in notable changes in phenotypes and the expression of key proteins, including CUL4 and SLR1. The findings indicate that OsCSN1 functions as a positive regulator of plant height under far-red light and inhibits root elongation. Under far-red light, OsCSN1 integrates into the COP9 complex and regulates the nuclear localization of COP1. Through its interaction with CUL4 in the CULLIN-RING family, OsCSN1 facilitates the ubiquitin-mediated degradation of SLR1, thereby influencing the growth of rice seedlings. The regulatory function of OsCSN1 in seedling growth and development under far-red light predominantly relies on the 32 amino acids of its N-terminal region. The results of this study can provide new ideas for rice breeding and genetic improvement. Based on the study of key regulatory factors such as OsCSN1, new varieties that can make better use of far-red light signals can be cultivated to enhance crop adaptability and productivity. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

15 pages, 9289 KiB  
Article
Molecular Dynamics Simulation on the Mechanism of Shale Oil Displacement by Carbon Dioxide in Inorganic Nanopores
by Chengshan Li, Hongbo Xue, Liping Rao, Fang Yuan, Zhongyi Xu, Tongtong He, Chengwei Ji, Zhengbin Wu and Jiacheng Yan
Energies 2025, 18(2), 262; https://doi.org/10.3390/en18020262 - 9 Jan 2025
Viewed by 769
Abstract
Shale oil reservoirs feature a considerable number of nanopores and complex minerals, and the impact of nano-pore confinement and pore types frequently poses challenges to the efficient development of shale oil. For shale oil reservoirs, CO2 flooding can effectively lower crude oil [...] Read more.
Shale oil reservoirs feature a considerable number of nanopores and complex minerals, and the impact of nano-pore confinement and pore types frequently poses challenges to the efficient development of shale oil. For shale oil reservoirs, CO2 flooding can effectively lower crude oil viscosity, enhance reservoir physical properties, and thereby increase recovery. In this paper, the CO2 displacement process in the nanoscale pores of shale oil was simulated through the molecular dynamic simulation method. The performance disparity of quartz and calcite slit nanopores was discussed, and the influences of nanoscale pore types and displacement rates on CO2 displacement behavior were further analyzed. The results demonstrate that the CO2 displacement processes of different inorganic pores vary. In contrast, the displacement efficiency of light oil components is higher and the transportation distance is longer. Intermolecular interaction has a remarkable effect on the displacement behavior of CO2 in nanopores. On the other hand, it is discovered that a lower displacement rate is conducive to the miscible process of alkane and CO2 and the overall displacement process of CO2. The displacement efficiency drops significantly with the increase in displacement velocity. Nevertheless, once the displacement speed is extremely high, a strong driving force can facilitate the forward movement of alkane, and the displacement efficiency will recover slightly. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 9078 KiB  
Article
Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber
by Tongtong Li, Congcong Zheng, Jianfei Wu, Wei Xu, Tongdi Yan, Junchen Liu, Li Zhang, Zhengmin Tang, Yupeng Fan, Huihui Guo and Fanchang Zeng
Plants 2024, 13(21), 3063; https://doi.org/10.3390/plants13213063 - 31 Oct 2024
Cited by 1 | Viewed by 1140
Abstract
Green fiber (GF) is a naturally colored fiber. A limited understanding of its color formation mechanism restricts the improvement of colored cotton quality. This experiment used upland cotton green fiber germplasm 1-4560 and genetic inbred line TM-1; the lipid profiles of green fibers [...] Read more.
Green fiber (GF) is a naturally colored fiber. A limited understanding of its color formation mechanism restricts the improvement of colored cotton quality. This experiment used upland cotton green fiber germplasm 1-4560 and genetic inbred line TM-1; the lipid profiles of green fibers at 30 (white stage) and 35 days post-anthesis (DPA) (early greening stage), as well as those of TM-1 at the same stages, were revealed. Among the 109 differential types of lipids (DTLs) unique to GF, the content of phosphatidylserine PS (16:0_18:3) was significantly different at 30 and 35 DPA. It is speculated that this lipid is crucial for the pigment accumulation and color formation process of green fibers. The 197 DTLs unique to TM-1 may be involved in white fiber (WF) development. Among the shared DTLs in GF35 vs. GF30 and WF35 vs. WF30, sulfoquinovosyldiacyl-glycerol SQDG (18:1_18:1) displays a significant difference in the content change between green fibers and white fibers, potentially affecting color formation through changes in content. The enriched metabolic pathways in both comparison groups are relatively conserved. In the most significantly enriched glycerophospholipid metabolic pathway, 1-acyl-sn-glycero-3-phosphocholine (C04230) only appears in white cotton. This indicates differences in the metabolic pathways between white and green fibers, potentially related to different mechanisms of color formation and fiber development. These findings provide a new theoretical basis for studying cotton fiber development and offer important insights into the specific mechanism of green fiber color formation. Full article
Show Figures

Figure 1

20 pages, 2691 KiB  
Review
A Review of Antimicrobial Peptides: Structure, Mechanism of Action, and Molecular Optimization Strategies
by Xu Ma, Qiang Wang, Kexin Ren, Tongtong Xu, Zigang Zhang, Meijuan Xu, Zhiming Rao and Xian Zhang
Fermentation 2024, 10(11), 540; https://doi.org/10.3390/fermentation10110540 - 23 Oct 2024
Cited by 19 | Viewed by 10936
Abstract
Antimicrobial peptides (AMPs) are bioactive macromolecules that exhibit antibacterial, antiviral, and immunomodulatory functions. They come from a wide range of sources and are found in all forms of life, from bacteria to plants, vertebrates, and invertebrates, and play an important role in controlling [...] Read more.
Antimicrobial peptides (AMPs) are bioactive macromolecules that exhibit antibacterial, antiviral, and immunomodulatory functions. They come from a wide range of sources and are found in all forms of life, from bacteria to plants, vertebrates, and invertebrates, and play an important role in controlling the spread of pathogens, promoting wound healing and treating tumors. Consequently, AMPs have emerged as promising alternatives to next-generation antibiotics. With advancements in systems biology and synthetic biology technologies, it has become possible to synthesize AMPs artificially. We can better understand their functional activities for further modification and development by investigating the mechanism of action underlying their antimicrobial properties. This review focuses on the structural aspects of AMPs while highlighting their significance for biological activity. Furthermore, it elucidates the membrane targeting mechanism and intracellular targets of these peptides while summarizing molecular modification approaches aimed at enhancing their antibacterial efficacy. Finally, this article outlines future challenges in the functional development of AMPs along with proposed strategies to overcome them. Full article
Show Figures

Figure 1

24 pages, 3569 KiB  
Article
Analysis on the Evolution Characteristics of Rural Tourism Public Service System from the Perspective of Digitalization—Empirical Evidence from the Silk Road Economic Belt
by Shuo Yang, Wei Guo, Tianjun Xu and Tongtong Liu
Sustainability 2024, 16(20), 8810; https://doi.org/10.3390/su16208810 - 11 Oct 2024
Cited by 1 | Viewed by 2228
Abstract
The integration of digitalization with public tourism services has emerged as a new model for the development of the rural tourism public services. The Silk Road Economic Belt is a crucial area for the future development of the tourism industry. Exploring the coupling [...] Read more.
The integration of digitalization with public tourism services has emerged as a new model for the development of the rural tourism public services. The Silk Road Economic Belt is a crucial area for the future development of the tourism industry. Exploring the coupling of the digitalization and the development trends of the rural tourism public services is significant for advancing rural tourism in this region. This study applies Complex Adaptive Systems theory and Synergy theory to the development of the digitization of rural tourism public services, clarifying the structure of the digitization of the rural tourism public service system. Based on this, a collaborative development evaluation system for the digitization of rural tourism public services is constructed, focusing on the Silk Road Economic Belt. By using the SMI-P evaluation model, ArcGIS spatial visualization, Gini coefficient, and kernel density methods, the collaborative development of the digitization of the rural tourism public service system was measured and analyzed in this paper. The findings reveal the following: (1) The collaborative development of the digitization of the rural tourism public service system in the Silk Road Economic Belt shows a gradual upward trend, yet the overall level of the collaboration is transitioning from a state of imbalance. (2) Compared to the Southwest, the Northwest exhibits a lower overall level of collaboration, with growing disparities in collaborative development indices among provinces, although there is a trend toward higher levels of aggregation. (3) The development of the rural tourism public services is trending toward a favorable state of multi-dimensional collaboration, characterized by significant regional features, including multi-polarization and unbalanced development. Finally, optimization paths for the digital development of the rural tourism public services were proposed in this study, which can provide guidance for improving the construction of the digitization of the rural tourism public service system and exploring clear development pathways. Full article
(This article belongs to the Collection Tourism Research and Regional Sciences)
Show Figures

Figure 1

18 pages, 3109 KiB  
Article
Enhancement of Active Substances in Astragali Radix Broth with Lactic Acid Bacteria Fermentation and the Promotion Role of Chlorella Growth Factor
by Xiaomeng Li, Wei Liu, Qingyan Ge, Tongtong Xu, Xiang Wu and Ruohui Zhong
Fermentation 2024, 10(9), 455; https://doi.org/10.3390/fermentation10090455 - 3 Sep 2024
Cited by 1 | Viewed by 1737
Abstract
Astragali Radix, a traditional Chinese herbal medicine widely used for its medicinal properties, is known to be rich in active components that possess various pharmacological effects. However, the effectiveness of microbial fermentation in enhancing the content of these active substances remains unclear. In [...] Read more.
Astragali Radix, a traditional Chinese herbal medicine widely used for its medicinal properties, is known to be rich in active components that possess various pharmacological effects. However, the effectiveness of microbial fermentation in enhancing the content of these active substances remains unclear. In this study, a microflora of lactic acid bacteria was used to ferment Astragali Radix, and the promoting effect of Chlorella Growth Factor (CGF) on the fermentation process was investigated so as to clarify the changes in major active compound content in the fermented Astragali Radix broth. Non-targeted metabolomic analysis based on ultra-high-performance liquid chromatography–mass spectrometry was conducted to analyze the differences in metabolites before and after fermentation. The results showed that the total polysaccharide, total flavonoid, and total saponin content in the fermented Astragali Radix broth increased by up to 51.42%, 97.76%, and 72.81% under the optimized conditions, respectively. Streptococcus lutetiensis was the dominant bacterial species during the fermentation process. There were significant differences in metabolites in the fermentation broth before and after fermentation, among which amino acids (such as L-Aspartyl-L-Phenylalanine, etc.) and saponin compounds (such as Cloversaponin I, Goyasaponin I, etc.) were the main upregulated metabolites, which can enhance the physiological functions of Astragali Radix fermentation broth. The CGF exhibited the ability to promote the increase of active substance content in the fermented Astragali Radix broth. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 7463 KiB  
Article
Immunoglobulin Superfamily Containing Leucine-Rich Repeat (ISLR) Serves as a Redox Sensor That Modulates Antioxidant Capacity by Suppressing Pyruvate Kinase Isozyme M2 Activity
by Tongtong Wang, Meijing Chen, Yang Su, Yuying Zhang, Chang Liu, Miaomiao Lan, Lei Li, Fan Liu, Na Li, Yingying Yu, Lei Xiong, Kun Wang, Jin Liu, Qing Xu, Yue Hu, Yuxin Jia, Yuxin Cao, Jingwen Pan and Qingyong Meng
Cells 2024, 13(10), 838; https://doi.org/10.3390/cells13100838 - 14 May 2024
Viewed by 1691
Abstract
Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) [...] Read more.
Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy–lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance. Full article
Show Figures

Figure 1

26 pages, 10159 KiB  
Article
Linear Parameter Varying Observer-Based Adaptive Dynamic Surface Sliding Mode Control for PMSM
by Tongtong Li, Liang Tao and Binzi Xu
Mathematics 2024, 12(8), 1219; https://doi.org/10.3390/math12081219 - 18 Apr 2024
Cited by 4 | Viewed by 1422
Abstract
This paper presents an adaptive dynamic surface sliding mode control technique to address the issue of system parameter changes in permanent magnet synchronous motor (PMSM) position servo systems. The proposed method involves adopting a linear parameter varying (LPV) observer-based parameter identification algorithm and [...] Read more.
This paper presents an adaptive dynamic surface sliding mode control technique to address the issue of system parameter changes in permanent magnet synchronous motor (PMSM) position servo systems. The proposed method involves adopting a linear parameter varying (LPV) observer-based parameter identification algorithm and adaptive control technique. Initially, a mathematical model of the PMSM is established, and the system parameters are divided into nominal and perturbation values. This allows for the reconstruction of the system model into a state space equation that incorporates the unknown perturbation parameters. To accurately estimate these unknown parameters, an LPV observer is designed based on the reconstructed model. Additionally, an adaptive dynamic surface sliding mode control technique is explored to achieve the desired tracking performance. Meanwhile, an exponential reaching law is introduced to expedite the dynamic behavior of the system and mitigate chattering. Finally, a suitable Lyapunov function is selected to ensure the overall stability of the system. The simulation results demonstrate the effectiveness of the parameter identification and control algorithm in achieving good identification and tracking control ability for PMSM systems. Full article
Show Figures

Figure 1

21 pages, 8893 KiB  
Article
A Characterization of the Functions of OsCSN1 in the Control of Sheath Elongation and Height in Rice Plants under Red Light
by Shining Han, Yanxi Liu, Anor Bao, Tongtong Jiao, Hua Zeng, Weijie Yue, Le Yin, Miao Xu, Jingmei Lu, Ming Wu and Liquan Guo
Agronomy 2024, 14(3), 572; https://doi.org/10.3390/agronomy14030572 - 13 Mar 2024
Cited by 2 | Viewed by 1386
Abstract
The COP9 signalosome (CSN) is a conserved protein complex, with CSN1 being one of the largest and most important subunits in the COP9 complex. To investigate the N-terminus function of OsCSN1, we edited the N-terminus of OsCSN1 and found that the mutant of [...] Read more.
The COP9 signalosome (CSN) is a conserved protein complex, with CSN1 being one of the largest and most important subunits in the COP9 complex. To investigate the N-terminus function of OsCSN1, we edited the N-terminus of OsCSN1 and found that the mutant of OsCSN1 with 102 amino acids missing at the N-terminus showed insensitivity to red light in terms of the embryonic sheath, stem elongation, and main-root elongation. Moreover, the mutant was able to produce, develop, and bear fruit normally. The research results indicate that OsCSN1 is a negative regulator of stem elongation in rice seedlings regulated by red light. Under red-light treatment, OsCSN1 assembles into CSN, which degrades SLR1 through de NEDDylation, affecting PIL11 activity and ultimately inhibiting stem elongation. OsCSN1 also plays an important regulatory role in the inhibition of rice embryonic sheath elongation under red light. By regulating the degradation of SLR1 and PIL14 through the ubiquitin/26S protease pathway, the elongation of the embryonic sheath is ultimately inhibited. OsCSN1 forms a COP9 complex and is modified with RUB/NEDD8 of the E3 ligase of CUL1 to promote the degradation of SLR1 and PIL14, ultimately affecting the elongation of the embryonic sheath. The regulatory domain is located at the N-terminus of CSN1. Full article
(This article belongs to the Special Issue Effects of Spectrum and Light Intensity on Plant Growth Metabolism)
Show Figures

Figure 1

17 pages, 6037 KiB  
Article
Evaluating the Effect of Deficit Irrigation on Yield and Water Use Efficiency of Drip Irrigation Cotton under Film in Xinjiang Based on Meta-Analysis
by Qi Xu, Xiaomei Dong, Weixiong Huang, Zhaoyang Li, Tongtong Huang, Zaijin Song, Yuhui Yang and Jinsai Chen
Plants 2024, 13(5), 640; https://doi.org/10.3390/plants13050640 - 26 Feb 2024
Cited by 7 | Viewed by 2561
Abstract
Water scarcity constrains the sustainable development of Chinese agriculture, and deficit irrigation as a new irrigation technology can effectively alleviate the problems of water scarcity and water use inefficiency in agriculture. In this study, the drip irrigation cotton field under film in Xinjiang [...] Read more.
Water scarcity constrains the sustainable development of Chinese agriculture, and deficit irrigation as a new irrigation technology can effectively alleviate the problems of water scarcity and water use inefficiency in agriculture. In this study, the drip irrigation cotton field under film in Xinjiang was taken as the research object. Meta-analysis and machine learning were used to quantitatively analyze the effects of different farm management practices, climate, and soil conditions on cotton yield and water use efficiency under deficit irrigation, to investigate the importance of the effects of different factors on cotton yield and water use efficiency, and to formulate appropriate optimization strategies. The results showed that deficit irrigation significantly increased cotton water use efficiency (7.39%) but decreased cotton yield (−15.00%) compared with full irrigation. All three deficit irrigation levels (80~100% FI, 60~80% FI, and 40~60% FI; FI: full irrigation) showed a significant decrease in cotton yield and a significant increase in water use efficiency. Under deficit irrigation, cotton yield reduction was the smallest and cotton water use efficiency increased the most when planted with one film, two tubes, a six-row cropping pattern, an irrigation frequency ≥10 times, a nitrogen application of 300~400 kg·ha−1, and a crop density ≥240,000 per hectare, and planted with the Xinluzhong series of cotton varieties; deficit irrigation in areas with average annual temperature >10 °C, annual evapotranspiration >2000 mm, annual precipitation <60 mm, and with loam, sandy soil had the least inhibition of cotton yield and the greatest increase in cotton water use efficiency. The results of the random forest showed that the irrigation amount and nitrogen application had the greatest influence on cotton yield and water use efficiency. Rational irrigation based on optimal management practices under conditions of irrigation not less than 90% FI is expected to achieve a win–win situation for both cotton yield and water use efficiency. The above results can provide the best strategy for deficit irrigation and efficient water use in drip irrigation cotton under film in arid areas. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

13 pages, 14158 KiB  
Article
Flexible Symmetric-Defection Antenna with Bending and Thermal Insensitivity for Miniaturized UAV
by Xueli Nan, Tongtong Kang, Zhonghe Zhang, Xin Wang, Jiale Zhang, Yusheng Lei, Libo Gao, Jianli Cui and Hongcheng Xu
Micromachines 2024, 15(1), 159; https://doi.org/10.3390/mi15010159 - 21 Jan 2024
Cited by 6 | Viewed by 2573
Abstract
Flexible conformal-enabled antennas have great potential for various developable surface-built unmanned aerial vehicles (UAVs) due to their superior mechanical compliance as well as maintaining excellent electromagnetic features. However, it remains a challenge that the antenna holds bending and thermal insensitivity to negligibly shift [...] Read more.
Flexible conformal-enabled antennas have great potential for various developable surface-built unmanned aerial vehicles (UAVs) due to their superior mechanical compliance as well as maintaining excellent electromagnetic features. However, it remains a challenge that the antenna holds bending and thermal insensitivity to negligibly shift resonant frequency during conformal attachment and aerial flight, respectively. Here, we report a flexible symmetric-defection antenna (FSDA) with bending and thermal insensitivity. By engraving a symmetric defection on the reflective ground, the radiated unit attached to the soft polydimethylsiloxane (PDMS) makes the antenna resonate at the ISM microwave band (resonant frequency = 2.44 GHz) and conformal with a miniaturized UAV. The antenna is also insensitive to both the bending-conformal attachment (20 mm < r < 70 mm) and thermal radiation (20~100 °C) due to the symmetric peripheral-current field along the defection and the low-change thermal effect of the PDMS, respectively. Therefore, the antenna in a non-bending state almost keeps the same impedance matching and radiation when it is attached to a cylinder-back of a UAV. The flexible antenna with bending and thermal insensitivity will pave the way for more conformal or wrapping applications. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 3rd Edition)
Show Figures

Figure 1

18 pages, 4307 KiB  
Article
Low-Temperature Fermented Straw Compost Regulates Rice Growth and Yield by Affecting Soil Physicochemical Properties and the Expression of Important Signaling Pathway Genes
by Tongtong Liu, Ziguang Liu, Ziyi Zhao, Kai Xu, Heshu Chen, Yanzhong Feng, Wentao Wang, Nan Zhang, Di Liu, Xinmiao He and Juan Wu
Agronomy 2023, 13(12), 3066; https://doi.org/10.3390/agronomy13123066 - 15 Dec 2023
Cited by 2 | Viewed by 1994
Abstract
Soil physicochemical properties affect crop growth and yield. The addition of fertilizers can improve the soil quality during crop cultivation, leading to increased agricultural production. Organic fertilizers may be produced by composting straw that would otherwise be discarded as agricultural waste, with potential [...] Read more.
Soil physicochemical properties affect crop growth and yield. The addition of fertilizers can improve the soil quality during crop cultivation, leading to increased agricultural production. Organic fertilizers may be produced by composting straw that would otherwise be discarded as agricultural waste, with potential implications for sustainable agricultural development. However, the mechanism underlying the effects of straw compost on crop growth is unknown. In this study, a microbial agent suitable for straw decomposition in cold regions was used for a large-scale biological fermentation. Organic compost was obtained after the decomposition of straw. The straw compost was mixed with soil in different proportions and then used to cultivate Songjing 2 rice plants. The addition of straw compost significantly increased the growth and yield of the rice plants and enhanced various physiological indices. Moreover, the straw compost treatment significantly improved soil physicochemical properties (e.g., pH, enzyme activity, nutrient composition, and microbial diversity) and optimized the soil conditions for crop growth. In addition, the application of straw compost influenced the expression of genes in rice metabolic pathways as well as pathways mediating secondary metabolite synthesis and plant hormone signal transduction. The study data reflect the potential applicability of low-temperature straw fermentation technology for maximizing crop production. Full article
Show Figures

Figure 1

Back to TopTop