Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Authors = Sylvain Guillou ORCID = 0000-0002-2415-5424

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4961 KiB  
Article
Modelling of Water Level Fluctuations and Sediment Fluxes in Nokoué Lake (Southern Benin)
by Tètchodiwèï Julie-Billard Yonouwinhi, Jérôme Thiébot, Sylvain S. Guillou, Gérard Alfred Franck Assiom d’Almeida and Felix Kofi Abagale
Water 2025, 17(15), 2209; https://doi.org/10.3390/w17152209 - 24 Jul 2025
Viewed by 518
Abstract
Nokoué Lake is located in the south of Benin and is fed by the Ouémé and Sô Rivers. Its hydrosedimentary dynamics were modelled using Telemac2D, incorporating the main environmental factors of this complex ecosystem. The simulations accounted for flow rates and suspended solids [...] Read more.
Nokoué Lake is located in the south of Benin and is fed by the Ouémé and Sô Rivers. Its hydrosedimentary dynamics were modelled using Telemac2D, incorporating the main environmental factors of this complex ecosystem. The simulations accounted for flow rates and suspended solids concentrations during periods of high and low water. The main factors controlling sediment transport were identified. The model was validated using field measurements of water levels and suspended solids. The results show that the north–south current velocity ranges from 0.5 to 1 m/s during periods of high water and 0.1 to 0.5 m/s during low-water periods. Residual currents are influenced by rainfall, river discharge, and tides. Complex circulation patterns are caused by increased river flow during high water, while tides dominate during low water and transitional periods. The northern, western, and south-eastern parts of the lake have weak residual currents and are, therefore, deposition zones for fine sediments. The estimated average annual suspended solids load for 2022–2023 is 17 Mt. The model performance shows a strong agreement between the observed and simulated values: R2 = 0.91 and NSE = 0.93 for water levels and R2 = 0.86 and NSE = 0.78 for sediment transport. Full article
Show Figures

Figure 1

25 pages, 6994 KiB  
Article
Predicting Interactions Between Full-Scale Counter-Rotating Vertical-Axis Tidal Turbines Using Actuator Lines
by Mikaël Grondeau and Sylvain S. Guillou
J. Mar. Sci. Eng. 2025, 13(8), 1382; https://doi.org/10.3390/jmse13081382 - 22 Jul 2025
Viewed by 244
Abstract
As with wind turbines, marine tidal turbines are expected to be deployed in arrays of multiple turbines. To optimize these arrays, a more profound understanding of the interactions between turbines is necessary. This paper employs the Actuator Line Method alongside the Lattice Boltzmann [...] Read more.
As with wind turbines, marine tidal turbines are expected to be deployed in arrays of multiple turbines. To optimize these arrays, a more profound understanding of the interactions between turbines is necessary. This paper employs the Actuator Line Method alongside the Lattice Boltzmann Method and Large Eddy Simulation to develop a numerical model of tidal turbine arrays. It studies a vertical-axis turbine manufactured by HydroQuest/CMN that is equipped with two counter-rotating columns, each comprising two rotors. The ambient turbulence and upstream velocity profiles correspond to the characteristics of a tidal site such as the Alderney Race. Six turbine layouts are modeled: three aligned layouts with three turbines and three staggered layouts with four turbines. The spacing between turbines varies depending on the layout. This study yields several observations regarding array configuration. A minimum distance of 300 m, or 12Deq, between aligned turbines is necessary for full wake recovery. At shorter distances, the accumulation of velocity deficits significantly decreases the efficiency of the third turbine in the array. Pairs of counter-rotating vortices are observed in the wake of turbines. The evolution of these vortices and their influence on the wake depend greatly on the array configuration. An optimal configuration is observed in which the overall averaged power is not impaired by the interactions. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

27 pages, 7725 KiB  
Article
Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence
by Kabir Bashir Shariff and Sylvain S. Guillou
Energies 2025, 18(9), 2257; https://doi.org/10.3390/en18092257 - 29 Apr 2025
Viewed by 316
Abstract
This study seeks to establish a comprehensive model for estimating both the velocity deficit and turbulence intensity within a tidal turbine farm across various layout configurations. The model incorporates a spectrum of ambient turbulence intensity ranging from 5% to 20%, a rotor diameter-to-depth [...] Read more.
This study seeks to establish a comprehensive model for estimating both the velocity deficit and turbulence intensity within a tidal turbine farm across various layout configurations. The model incorporates a spectrum of ambient turbulence intensity ranging from 5% to 20%, a rotor diameter-to-depth ratio between 20% and 60%, and a rotor thrust coefficient that varies from 0.64 to 0.98. The influence of added turbulence is factored into the evaluation of the velocity deficit within the farm. Consistent with findings from prior research, the results indicate that in a tidal farm consisting of 16 turbines, a staggered array configuration yields 21% more power compared to a rectilinear array. This staggered setup benefits from enhanced flow acceleration and greater spacing between turbines, which facilitates improved wake recovery. The findings suggest that the farm’s dimensions can be optimized by reducing lateral spacing in the rectilinear array and longitudinal spacing in the staggered array without compromising efficiency. Such reductions in farm size can lead to decreased cable expenses and create opportunities for future expansion. For the tidal turbines in shallow water regions, the ratio of rotor diameter to depth is shown to affect the power generated by the turbines. The power produced in the farm decreases with an increase in the rotor diameter-to-depth ratio due to the limited wake expansion along the vertical plane. The efficiency of a tidal farm can be increased by high ambient turbulent intensity, sufficient turbine spacing, and low rotor diameter-to-depth ratio. These factors improve the wake recovery to allow more energy to be extracted by a downstream turbine. This low-computational model can be useful in studying the wake interaction of tidal turbine parks in different configurations. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

20 pages, 2427 KiB  
Article
A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio
by Kabir Bashir Shariff and Sylvain S. Guillou
Energies 2024, 17(9), 2065; https://doi.org/10.3390/en17092065 - 26 Apr 2024
Cited by 3 | Viewed by 1219
Abstract
Commercial scale tidal stream turbines (TST) are expected to be deployed in shallow water where the depth varies from 1.5 to 3 turbine diameters. In this study, numerical simulation is conducted at realistic hydrodynamic conditions of potential tidal sites using the stationary actuator [...] Read more.
Commercial scale tidal stream turbines (TST) are expected to be deployed in shallow water where the depth varies from 1.5 to 3 turbine diameters. In this study, numerical simulation is conducted at realistic hydrodynamic conditions of potential tidal sites using the stationary actuator disc method at ambient turbulence varying from 5% to 20%, a range of rotor realistic rotor thrust coefficient from 0.64 to 0.98 and a rotor-diameter-to-depth ratio of 20% to 60%. The result shows that the TST wake is affected by the rotor-diameter-to-depth ratio, ambient turbulence, and thrust coefficient. The new empirical model is in accordance with the numerical simulation of a full-scale turbine and is validated with the TST experiment at different rotor-diameter-to-depth ratios with reasonable results in the far wake. This low computational model can benefit the investigation of tidal turbine parks at different configurations where the far wake is pertinent. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

15 pages, 3789 KiB  
Article
The Potential of Tidal Energy Production in a Narrow Channel: The Gulf of Morbihan
by Jérôme Thiébot, Mouncef Sedrati and Sylvain Guillou
J. Mar. Sci. Eng. 2024, 12(3), 479; https://doi.org/10.3390/jmse12030479 - 12 Mar 2024
Cited by 3 | Viewed by 1703
Abstract
The tidal currents of the Gulf of Morbihan reach up to 3.5 m/s within a narrow (200 m large) channel connecting the sea to the inner part of the gulf. In this study, a Telemac2D model validated with a large dataset of field [...] Read more.
The tidal currents of the Gulf of Morbihan reach up to 3.5 m/s within a narrow (200 m large) channel connecting the sea to the inner part of the gulf. In this study, a Telemac2D model validated with a large dataset of field measurements is used to assess the resources of the gulf. The results show that two sites have the potential to host up to 48 turbines (diameter of 8 m). If the entire width of the channel is occupied by turbines, significant increases in current speed are expected to occur on each side of the main channel. Simulations also show that flow changes differ between ebbing and flooding tides. During ebbing tide, the changes are limited in amplitude and remain localised within the channel. During flooding tide, the changes are more significant, especially in the vicinity of one of the two sites where the water passing through the site is flushed into a large and shallow basin. In this area, energy extraction significantly modifies the spatial distribution of the current velocities. We consider different scenarios of tidal energy extraction. The results show that flow perturbation can be significantly reduced using a lower density of turbines, that extracting tidal energy at one site slightly reduces the resource of the other, and that the deployment of two turbines (testing conditions) has a negligible effect on ambient current speeds. Full article
Show Figures

Figure 1

24 pages, 6776 KiB  
Article
A 3D Numerical Study on the Tidal Asymmetry, Residual Circulation and Saline Intrusion in the Gironde Estuary (France)
by Damien Pham Van Bang, Ngoc Vinh Phan, Sylvain Guillou and Kim Dan Nguyen
Water 2023, 15(23), 4042; https://doi.org/10.3390/w15234042 - 22 Nov 2023
Cited by 2 | Viewed by 1610
Abstract
A full 3D numerical model is used for studying tidal asymmetry, estuarine circulation, and saline intrusion in the Gironde estuary. The model is calibrated and verified using the data measured during two field surveys in the Gironde estuary. Harmonic analysis of numerical results [...] Read more.
A full 3D numerical model is used for studying tidal asymmetry, estuarine circulation, and saline intrusion in the Gironde estuary. The model is calibrated and verified using the data measured during two field surveys in the Gironde estuary. Harmonic analysis of numerical results is proposed to understand how the superposition of M2, M4 and M6 components generate a complex estuarine circulation and salinity intrusion in the Gironde estuary. The numerical results show that the M6 component plays a significant role as important as the M4 one in modifying the nature of tidal asymmetry, especially in the Gironde upper estuary. In this case, the use of the phase lag between M2 and M4, neglecting M6, to predict the tidal asymmetry nature could produce errors. The effect of asymmetrical tides on saline intrusion and residual circulation is specifically discussed here. Full article
(This article belongs to the Special Issue Estuarine and Coastal Hydrodynamics)
Show Figures

Figure 1

30 pages, 1765 KiB  
Article
Evaluation of Model Predictions of the Unsteady Tidal Stream Resource and Turbine Fatigue Loads Relative to Multi-Point Flow Measurements at Raz Blanchard
by Hannah Mullings, Samuel Draycott, Jérôme Thiébot, Sylvain Guillou, Philippe Mercier, Jon Hardwick, Ed Mackay, Philipp Thies and Tim Stallard
Energies 2023, 16(20), 7057; https://doi.org/10.3390/en16207057 - 12 Oct 2023
Cited by 5 | Viewed by 1824
Abstract
The next stage of development of the tidal stream industry will see a focus on the deployment of tidal turbines in arrays of increasing device numbers and rated power. Successful array development requires a thorough understanding of the resource within potential deployment sites. [...] Read more.
The next stage of development of the tidal stream industry will see a focus on the deployment of tidal turbines in arrays of increasing device numbers and rated power. Successful array development requires a thorough understanding of the resource within potential deployment sites. This is predictable in terms of flow speeds, based upon tidal constituents. However, the operating environment for the turbine is more complex than the turbine experiencing a uniform flow, with turbulence, shear and wave conditions all affecting the loading on the turbine components. This study establishes the accuracy with which several alternative modelling tools predict the resource characteristics which define unsteady loading—velocity shear, turbulence and waves—and assesses the impact of the model choice on predicted damage equivalent loads. In addition, the predictions of turbulence are compared to a higher fidelity model and the occurrence of flow speeds to a Delft3D model for currents and waves. These models have been run for a specific tidal site, the Raz Blanchard, one of the major tidal stream sites in European waters. The measured resource and predicted loading are established using data collected in a recent deployment of acoustic Doppler current profilers (ADCPs) as part of the Interreg TIGER project. The conditions are measured at three locations across the site, with transverse spacing of 145.7 m and 59.3 m between each device. Turbine fatigue loading is assessed using measurements and model predictions based on an unsteady blade element momentum model applied to near-surface and near-bed deployment positions. As well as across-site spatial variation of loading, the through life loading over a 5-year period results in an 8% difference to measured loads for a near-surface turbine, using conditions purely defined from a resource model and to within 3% when using a combination of modelled shear with measured turbulence characteristics. Full article
Show Figures

Figure 1

21 pages, 8204 KiB  
Article
On the Usefulness of the Proper Orthogonal Decomposition on the Description of the Highly Concentrated Sediment Release Phenomena Resulting from a Two-Phase Solid-Fluid Simulation: Effect of the Ambient Current
by Alina Santa Cruz, Duc Hau Nguyen and Sylvain S. Guillou
Water 2023, 15(18), 3284; https://doi.org/10.3390/w15183284 - 18 Sep 2023
Viewed by 1574
Abstract
Proper orthogonal decomposition (POD) is used to examine the release of highly concentrated water–sediment mixture in water, with or without ambient current. This technique allows us to extract the dominant features in spatio-temporal data sets and the POD total energies associated to the [...] Read more.
Proper orthogonal decomposition (POD) is used to examine the release of highly concentrated water–sediment mixture in water, with or without ambient current. This technique allows us to extract the dominant features in spatio-temporal data sets and the POD total energies associated to the base parameter of the decomposition. Both one-component and two-component POD techniques are, respectively, applied on data relative to the solid volume fraction and on the solid volume fraction velocities. The analysis is based on an experiment in the literature and data sets provided by a two-phase flow solid-fluid numerical simulation. For release phenomenon without ambient current, the analysis of the POD results highlights that the impact of the particle diameter on the solid phase dynamics and the particle dispersion is modest during the falling time, but that it becomes preponderant during the formation of a turbidity current. Aided by POD, the impact of the ambient current is studied for a given particle diameter. As the ambient current becomes strong, we can observe the effect of the resistance of the bottom against the water–sediment mixture transport. According to the strength of the ambient current, the POD results show that the dynamics of the release phenomenon have two different regimes on either side of a clearly identified threshold value. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

5 pages, 187 KiB  
Editorial
Tidal Turbines
by Sylvain S. Guillou and Eric Bibeau
Energies 2023, 16(7), 3204; https://doi.org/10.3390/en16073204 - 2 Apr 2023
Cited by 1 | Viewed by 1797
Abstract
Tidal turbines generate energy from tidal currents [...] Full article
(This article belongs to the Special Issue Tidal Turbines)
26 pages, 11563 KiB  
Article
Numerical Study on Measures for Protecting the Go-Cong Coastlines (Vietnam) from Erosion
by Dinh Cong San, Nguyen Binh Duong, Nguyen Cong Phong, Le Xuan Tu, Damien Pham-Van-Bang, Sylvain Guillou and Kim Dan Nguyen
Water 2022, 14(23), 3850; https://doi.org/10.3390/w14233850 - 26 Nov 2022
Cited by 5 | Viewed by 2965
Abstract
Every year, in the Vietnam Mekong Delta Coastal Zone (VMDCZ), erosions cause approximately 300 ha of agricultural land loss. Therefore, measures for shoreline protection are urgently needed. This paper discusses the impacts of protection measures in the Go-Cong Coastal Zone to prevent erosion/accretion [...] Read more.
Every year, in the Vietnam Mekong Delta Coastal Zone (VMDCZ), erosions cause approximately 300 ha of agricultural land loss. Therefore, measures for shoreline protection are urgently needed. This paper discusses the impacts of protection measures in the Go-Cong Coastal Zone to prevent erosion/accretion processes, predicted by two numerical models, MIKE21-FM and TELEMAC-2D. Hard and soft measures have been proposed using breakwaters and sandbars, respectively. The simulations show that the erosion/accretion trends provided by both models are similar. For breakwaters, MIKE21-FM provides less accretion than TELEMAC-2D in areas extending over 300 m and 500 m from shorelines. However, for sandbars, MIKE21-FM shows higher accretion within areas extending over 500 m but less than 300 m. Sandbars cause higher accretion in a larger area, extending over 1000 m offshore. The simulation results allow us to propose two alternative measures: (1) a row of several breakwater units will be implanted at 300 m offshore. The length of each unit is 600 m, with a gap between two neighbouring units of 70 m and a crest elevation of 2.2 m above mean sea level (MSL). (2) A row of sandbar units will be posed at 500 m offshore, with a unit length of 1000 m and a gap between the two neighbouring units of 200 m. The crest elevation is fixed at MSL. Full article
(This article belongs to the Special Issue Coastal Planning and Sediment Management Perspectives)
Show Figures

Figure 1

18 pages, 8566 KiB  
Article
Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race
by Nasteho Djama Dirieh, Jérôme Thiébot, Sylvain Guillou and Nicolas Guillou
Energies 2022, 15(10), 3475; https://doi.org/10.3390/en15103475 - 10 May 2022
Cited by 12 | Viewed by 2671
Abstract
Tidal turbines are located in shallow water depths in comparison to their dimensions (15 m-diameter turbines in 40 m depths, typically). Constrained vertically by the water depth and laterally by neighbouring turbines, the flow within a tidal farm is subjected to blockage effects [...] Read more.
Tidal turbines are located in shallow water depths in comparison to their dimensions (15 m-diameter turbines in 40 m depths, typically). Constrained vertically by the water depth and laterally by neighbouring turbines, the flow within a tidal farm is subjected to blockage effects that influence the performance of individual devices. The Betz limit (which is the maximum power extractable from an unconstrained flow) can, therefore, be exceeded as demonstrated by Garrett and Cummins. Thus, beyond a significant blockage ratio, blockage effects should be considered when assessing the energy production of a tidal farm. The actuator disk method is particularly suited to simulate the flow field within an array of turbines under realistic tidal flow conditions. However, the implementation of actuator disks in coastal numerical models relies on relationships that neglect the blockage effects on the thrust and power of devices. We propose here an actuator disk formulation corrected to integrate these effects. This modified formulation, based on the model of Whelan et al., is integrated into a regional implementation of a three-dimensional model Telemac3D targeted towards the Alderney Race (English Channel). The method is applied to two hypothetical tidal farms with aligned and staggered arrangements, respectively. Blockage corrections of the thrust and power coefficients are found to have counterbalanced effects on the array production. Thrust correction results in a noticeable flow reduction within the array. However, the associated decrease of the array production is counterbalanced by the increase of the turbine power coefficient. Blockage corrections were, therefore, found to result in a slight increase, by 3%, of the array production over a mean spring tidal cycle. Full article
(This article belongs to the Special Issue Tidal Turbines II)
Show Figures

Figure 1

34 pages, 5443 KiB  
Article
Studying the Wake of a Tidal Turbine with an IBM-LBM Approach Using Realistic Inflow Conditions
by Mickael Grondeau, Sylvain S. Guillou, Jean Charles Poirier, Philippe Mercier, Emmnuel Poizot and Yann Méar
Energies 2022, 15(6), 2092; https://doi.org/10.3390/en15062092 - 13 Mar 2022
Cited by 12 | Viewed by 2843
Abstract
The lattice Boltzmann method is used to model a horizontal axis tidal turbine. Because tidal turbines generally operate in highly turbulent flows, a synthetic eddy method is implemented to generate realistic turbulent inflow condition. The approach makes use of the open-source code Palabos. [...] Read more.
The lattice Boltzmann method is used to model a horizontal axis tidal turbine. Because tidal turbines generally operate in highly turbulent flows, a synthetic eddy method is implemented to generate realistic turbulent inflow condition. The approach makes use of the open-source code Palabos. Large eddy simulation is employed. A coupling between an immersed boundary method and a wall model is realized to model the turbine. Calculations are performed at two different turbulence rates. The upstream flow condition is first set up to match with experimental results. Numerical simulations of a tidal turbine with realistic turbulent inflow conditions are then realized with the lattice Boltzmann method. The approach is found to be in good agreement with experimental data. Cases with three different inflow turbulence rates are simulated. An almost linear evolution with the turbulence rate is observed for the axial velocity deficit. An analysis of the propagation of tip-vortices in the close wake is carried out. It is found that turbulence has a great impact on the tip-vortices propagation envelope. Full article
Show Figures

Figure 1

23 pages, 13690 KiB  
Article
Study of a Bi-Vertical Axis Turbines Farm Using the Actuator Cylinder Method
by Laurie Jégo and Sylvain S. Guillou
Energies 2021, 14(16), 5199; https://doi.org/10.3390/en14165199 - 23 Aug 2021
Cited by 8 | Viewed by 2379
Abstract
Vertical axis turbines, which extract kinetic energy from currents, can produce electricity independently from a current’s direction. Hence, this type of turbines raises interest for harvesting energy from tidal currents, where flow changes direction during flood and ebb tides, and where currents present [...] Read more.
Vertical axis turbines, which extract kinetic energy from currents, can produce electricity independently from a current’s direction. Hence, this type of turbines raises interest for harvesting energy from tidal currents, where flow changes direction during flood and ebb tides, and where currents present large variation of direction during tide. Methods for representing vertical axis turbines in tidal farms should be implemented in order to predict correctly power production with an acceptable time cost. The Actuator Cylinder (AC) is one of them. Numerical results in terms of wakes, with the study of velocity profiles, and efforts are compared to experiences, as well as showed that the method is sufficiently accurate and for a reasonable computing time, which is of prime importance for tidal turbines farms studies. The Actuator Cylinder method is implemented in ANSYS Fluent in a 2D stationary resolution. The method is then applied to a double levels of two counter-rotating rotors marine turbine designed by Hydroquest. Wake and power production of a single turbine and several farm configurations are studied under different current conditions (magnitude and direction). Full article
(This article belongs to the Special Issue Tidal Turbines)
Show Figures

Figure 1

19 pages, 10120 KiB  
Article
Hydrodynamic Efficiency Analysis of a Flexible Hydrofoil Oscillating in a Moderate Reynolds Number Fluid Flow
by Paul Brousseau, Mustapha Benaouicha and Sylvain Guillou
Energies 2021, 14(14), 4370; https://doi.org/10.3390/en14144370 - 20 Jul 2021
Cited by 11 | Viewed by 3492
Abstract
The paper focuses on the study of a semi-activated system, based on a combination of two movements of forced pitching and free-heaving motion. Therefore, quantifying with accuracy the hydrodynamic forces applied on the hydrofoil seems to be crucial. This is investigated throughout a [...] Read more.
The paper focuses on the study of a semi-activated system, based on a combination of two movements of forced pitching and free-heaving motion. Therefore, quantifying with accuracy the hydrodynamic forces applied on the hydrofoil seems to be crucial. This is investigated throughout a numerical analysis of the hydrofoil dynamics. The deformable structure is oscillating in a low-Reynolds number flow. In this study, a hydrofoil animated by a combined forced pitching and heaving movements is considered. Various materials of the hydrofoil structure are studied, from the rigid material to a more flexible one. A partitioned implicit coupling approach is applied in order to consider the Fluid-Structure Interaction (FSI) effects, while the Navier–Stokes equations are solved using the Arbitrary Lagrangian–Eulerian (ALE) method. Both the viscous incompressible Navier–Stokes equations and the elasticity equation are solved using finite volume method. The study is based on the analysis of the hydrodynamic loads acting on the structure. Therefore, the induced dynamics and the power coefficient of the structure are investigated. It is shown that the flexibility of the hydrofoil has an effect on its hydrodynamic behavior. Indeed it increases the load fluctuations and the horizontal mean force component. Furthermore, the unsteady vortices around the hydrofoil are highly impacted by its deformations. Finally, the structure deformations mostly improve the device energy efficiency. Full article
(This article belongs to the Special Issue Tidal Turbines)
Show Figures

Figure 1

13 pages, 5682 KiB  
Article
The Efficiency of a Fence of Tidal Turbines in the Alderney Race: Comparison between Analytical and Numerical Models
by Jérôme Thiébot, Nasteho Djama Dirieh, Sylvain Guillou and Nicolas Guillou
Energies 2021, 14(4), 892; https://doi.org/10.3390/en14040892 - 9 Feb 2021
Cited by 8 | Viewed by 2385
Abstract
Assessing the efficiency of a tidal turbine array is necessary for adequate device positioning and the reliable evaluation of annual energy production. Array efficiency depends on hydrodynamic characteristics, operating conditions, and blockage effects, and is commonly evaluated by relying on analytical models or [...] Read more.
Assessing the efficiency of a tidal turbine array is necessary for adequate device positioning and the reliable evaluation of annual energy production. Array efficiency depends on hydrodynamic characteristics, operating conditions, and blockage effects, and is commonly evaluated by relying on analytical models or more complex numerical simulations. By applying the conservations of mass, momentum, and energy in an idealized flow field, analytical models derive formulations of turbines’ thrust and power as a function of the induction factor (change in the current velocity induced by turbines). This simplified approach also gives a preliminary characterization of the influence of blockage on array efficiency. Numerical models with turbines represented as actuator disks also enable the assessment of the efficiency of a tidal array. We compare here these two approaches, considering the numerical model as a reference as it includes more physics than the analytical models. The actuator disk approach is applied to the three-dimensional model Telemac3D in realistic flow conditions and for different operating scenarios. Reference results are compared to those obtained from three analytical models that permit the investigation of the flow within tidal farm integrating or excluding processes such as the deformation of the free surface or the effects of global blockage. The comparison is applied to the deployment of a fence of turbines in the Alderney Race (macro-tidal conditions of the English Channel, northwest European shelf). Efficiency estimates are found to vary significantly from one model to another. The main result is that analytical models predict lower efficiency as they fail to approach realistically the flow structure in the vicinity of turbines, especially because they neglect the three-dimensional effects and turbulent mixing. This finding implies that the tidal energy yield potential could be larger than previously estimated (with analytical models). Full article
(This article belongs to the Special Issue Tidal Turbines)
Show Figures

Figure 1

Back to TopTop