Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Subba Rao Cheekatla ORCID = 0000-0002-2346-5930

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2987 KiB  
Review
Benzothiazole-Based Therapeutics: FDA Insights and Clinical Advances
by Subba Rao Cheekatla
Chemistry 2025, 7(4), 118; https://doi.org/10.3390/chemistry7040118 - 25 Jul 2025
Viewed by 840
Abstract
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse [...] Read more.
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse set of clinically approved and investigational compounds, such as flutemetamol for Alzheimer’s diagnosis, riluzole for ALS, and quizartinib for AML, illustrates the scaffold’s therapeutic potential in varied applications. These agents act via mechanisms such as enzyme inhibition, receptor modulation, and amyloid imaging, demonstrating the scaffold’s high binding affinity and target specificity. Advances in synthetic strategies and our understanding of structure–activity relationships (SARs) continue to drive the development of novel benzothiazole-based therapeutics with improved potency, selectivity, and safety profiles. We also emphasize recent in vitro and in vivo studies, including drug candidates in clinical trials, to provide a comprehensive perspective on the therapeutic potential of benzothiazole-based compounds in modern drug discovery. This review brings together recent progress to help guide the development of new benzothiazole-based compounds for future therapeutic applications. Full article
Show Figures

Graphical abstract

31 pages, 14087 KiB  
Review
Indole-Based Macrocyclization by Metal-Catalyzed Approaches
by Subba Rao Cheekatla, Debashis Barik, Geethanjali Anand, Rakhi Mol K. M. and Mintu Porel
Organics 2023, 4(3), 333-363; https://doi.org/10.3390/org4030026 - 4 Jul 2023
Cited by 7 | Viewed by 3929
Abstract
This review is dedicated to the different varieties of macrocycles synthesis bearing indole units in their architecture by metal-catalyzed strategies. The progress of the new macrocyclization approaches is persisted be a keen area of research. Macrocycles contain a wide variety of molecules, and [...] Read more.
This review is dedicated to the different varieties of macrocycles synthesis bearing indole units in their architecture by metal-catalyzed strategies. The progress of the new macrocyclization approaches is persisted be a keen area of research. Macrocycles contain a wide variety of molecules, and among those, heteroaryl motifs are valuable constituents that provide an attractive feature to macrocyclic systems. Indole represents one of the privileged pharmacophores against a variety of targets with various biological applications. Among the nitrogen-based heterocycles, indole plays a prominent role in organic synthesis, medicinal chemistry, pharmaceuticals, natural products synthesis, agrochemicals, dye and fragrances, and drug design. These scaffolds are widely distributed in several bioactive natural products and synthetic macrocycles constructed against a specific biochemical target and the most common constituents of naturally occurring molecules. Due to its immense importance, the progress of novel approaches for the synthesis of indole-based scaffolds has increased steadily. The majority of the macrocycles synthesis proceeds through the macrolactamization and macrolactonization, as well as the C–C bond macrocyclization process described by metal-catalyzed ring-closing metathesis (RCM) and coupling reactions. Among macrocyclizations, metal-catalyzed approaches are considered one of the most powerful tools for synthetic chemists in the design of a variety of macrocycles. This review aims to give a comprehensive insight into the synthesis of varieties of macrocycles bearing indole scaffold catalyzed by various transition metals that emerged in the literature over the last two decades. We hope that this review will persuade synthetic chemists to search for novel strategies for the C–C bond macrocyclization by metal-catalyzed protocols. Full article
(This article belongs to the Collection Advanced Research Papers in Organics)
Show Figures

Figure 1

13 pages, 3227 KiB  
Article
A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins
by Debashis Barik, Geethanjali Anand, Subba Rao Cheekatla and Mintu Porel
Organics 2023, 4(2), 219-231; https://doi.org/10.3390/org4020018 - 16 May 2023
Cited by 1 | Viewed by 2558
Abstract
Molecules with tuneable properties are well known for their applications in the material and bio-medical fields; nevertheless, the structural and functional tunability makes them more significant in diverse applications. Herein, we designed and synthesized a novel class of star-shaped molecules via incorporating two [...] Read more.
Molecules with tuneable properties are well known for their applications in the material and bio-medical fields; nevertheless, the structural and functional tunability makes them more significant in diverse applications. Herein, we designed and synthesized a novel class of star-shaped molecules via incorporating two important functional groups, i.e., triazole and dithiocarbamate (DTC). The rationale behind selecting these two key functional groups is their diverse applications, e.g., DTC having applications for therapeutics, pesticides, and vulcanizing agents, and triazole having applications for anti-cancer, fungicides, anti-microbials, inhibitors, etc. The structure of the molecules was strategically designed in such a way that their overall structures are the same (central tertiary-amine and peripheral hydroxy groups), except the key functional group (DTC and triazole) in the respective molecules was different. Following synthesis and characterization, the influence of DTC and triazole groups on their bioactivity was compared via interacting with the most abundant proteins present in the blood, including serum albumin, trypsin, haemoglobin, and ribonuclease. From both the experimental and molecular docking studies, it was confirmed that the triazole molecule has a higher binding affinity towards these proteins as compared to the DTC molecule. In summary, two star-shaped DTC- and triazole-based molecules were synthesized and their bioactivity was compared via binding with blood plasma proteins. Full article
(This article belongs to the Collection Advanced Research Papers in Organics)
Show Figures

Figure 1

7 pages, 762 KiB  
Communication
Synthesis of Pentacycloundecane (PCUD) Based Spiro-Pyrano-Cage Framework via Ring-Closing Metathesis
by Sambasivarao Kotha, Mohammad Salman and Subba Rao Cheekatla
Molbank 2023, 2023(1), M1567; https://doi.org/10.3390/M1567 - 23 Jan 2023
Cited by 1 | Viewed by 2309
Abstract
Here, we demonstrate a short synthetic route to pyrano cage systems containing pentacycloundecane units by employing ring-closing metathesis (RCM) as a key step. These cage systems were constructed starting with readily available starting materials by adopting atomic economic processes such as cycloadditions (Diels-Alder [...] Read more.
Here, we demonstrate a short synthetic route to pyrano cage systems containing pentacycloundecane units by employing ring-closing metathesis (RCM) as a key step. These cage systems were constructed starting with readily available starting materials by adopting atomic economic processes such as cycloadditions (Diels-Alder reaction and [2+2] cycloaddition), Grignard addition, and olefin metathesis. The key building block, such as hexacyclic cage dione, was prepared from 1,4-naphthoquinone derivative and freshly cracked 1,3-cyclopentadiene. Some of these heterocyclic motifs are useful in biological chemistry and valuable as key synthons for high-energy-density materials. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

11 pages, 3902 KiB  
Article
Superfast Capture of Iodine from Air, Water, and Organic Solvent by Potential Dithiocarbamate-Based Organic Polymer
by Liya Thurakkal, Subba Rao Cheekatla and Mintu Porel
Int. J. Mol. Sci. 2023, 24(2), 1466; https://doi.org/10.3390/ijms24021466 - 11 Jan 2023
Cited by 9 | Viewed by 3975
Abstract
Organic polymers are widely explored due to their high stability, scalability, and more facile modification properties. We developed cost-effective dithiocarbamate-based organic polymers synthesized using diamides, carbon disulfide, and diamines to apply for environmental remediation. The sequestration of radioiodine is a serious concern to [...] Read more.
Organic polymers are widely explored due to their high stability, scalability, and more facile modification properties. We developed cost-effective dithiocarbamate-based organic polymers synthesized using diamides, carbon disulfide, and diamines to apply for environmental remediation. The sequestration of radioiodine is a serious concern to tackle when dealing with nuclear power for energy requirements. However, many of the current sorbents have the problem of slower adsorption for removing iodine. In this report, we discuss the utilization of an electron-rich dithiocarbamate-based organic polymer for the removal of iodine in a very short time and with high uptake. Our material showed 2.8 g/g uptake of vapor iodine in 1 h, 915.19 mg/g uptake of iodine from cyclohexane within 5 s, 93% removal of saturated iodine from water in 1 min, and 1250 mg/g uptake of triiodide ions from water within 30 s. To the best of our knowledge, the iodine capture was faster than previously observed for any existing material. The material was fully recyclable when applied for up to four cycles. Hence, this dithiocarbamate-based polymer can be a promising system for the fast removal of various forms of iodine and, thus, enhance environmental security. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

7 pages, 1961 KiB  
Communication
Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles
by Sambasivarao Kotha and Subba Rao Cheekatla
Molbank 2022, 2022(3), M1440; https://doi.org/10.3390/M1440 - 6 Sep 2022
Cited by 2 | Viewed by 2834
Abstract
Herein, we report a bisoxazole derivative as well as a bromo-substituted oxazole derivatives via a simple approach. The synthesis begins with an inexpensive and readily available starting material, such as 2,5-dimethoxybenzaldehyde, hydroquinone, and p-toluenesulfonylmethyl isocyanide (TosMIC). This approach relies on the Van [...] Read more.
Herein, we report a bisoxazole derivative as well as a bromo-substituted oxazole derivatives via a simple approach. The synthesis begins with an inexpensive and readily available starting material, such as 2,5-dimethoxybenzaldehyde, hydroquinone, and p-toluenesulfonylmethyl isocyanide (TosMIC). This approach relies on the Van Leusen oxazole method and electrophilic aromatic bromination. The structures of bisoxazole and bromosubstituted aryloxazoles were fully supported by spectroscopic methods (IR, NMR, and HRMS) and further established using single crystal X-ray diffraction studies. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

13 pages, 3577 KiB  
Review
Chemical Probes and Activity-Based Protein Profiling for Cancer Research
by Mohammad Faysal Al Mazid, Seung Bin Park, Subba Rao Cheekatla, Dhiraj P. Murale, Kyung Ho Shin and Jun-Seok Lee
Int. J. Mol. Sci. 2022, 23(11), 5936; https://doi.org/10.3390/ijms23115936 - 25 May 2022
Cited by 5 | Viewed by 4314
Abstract
Chemical probes can be used to understand the complex biological nature of diseases. Due to the diversity of cancer types and dynamic regulatory pathways involved in the disease, there is a need to identify signaling pathways and associated proteins or enzymes that are [...] Read more.
Chemical probes can be used to understand the complex biological nature of diseases. Due to the diversity of cancer types and dynamic regulatory pathways involved in the disease, there is a need to identify signaling pathways and associated proteins or enzymes that are traceable or detectable in tests for cancer diagnosis and treatment. Currently, fluorogenic chemical probes are widely used to detect cancer-associated proteins and their binding partners. These probes are also applicable in photodynamic therapy to determine drug efficacy and monitor regulating factors. In this review, we discuss the synthesis of chemical probes for different cancer types from 2016 to the present time and their application in monitoring the activity of transferases, hydrolases, deacetylases, oxidoreductases, and immune cells. Moreover, we elaborate on their potential roles in photodynamic therapy. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Disease)
Show Figures

Figure 1

12 pages, 1770 KiB  
Article
Aza-Oxa-Triazole Based Macrocycles with Tunable Properties: Design, Synthesis, and Bioactivity
by Subba Rao Cheekatla, Liya Thurakkal, Anna Jose, Debashis Barik and Mintu Porel
Molecules 2022, 27(11), 3409; https://doi.org/10.3390/molecules27113409 - 25 May 2022
Cited by 8 | Viewed by 3621
Abstract
A modular platform for the synthesis of tunable aza-oxa-based macrocycles was established. Modulations in the backbone and the side-chain functional groups have been rendered to achieve the tunable property. These aza-oxa-based macrocycles can also differ in the number of heteroatoms in the backbone [...] Read more.
A modular platform for the synthesis of tunable aza-oxa-based macrocycles was established. Modulations in the backbone and the side-chain functional groups have been rendered to achieve the tunable property. These aza-oxa-based macrocycles can also differ in the number of heteroatoms in the backbone and the ring size of the macrocycles. For the proof of concept, a library of macrocycles was synthesized with various hanging functional groups, different combinations of heteroatoms, and ring sizes in the range of 17–27 atoms and was characterized by NMR and mass spectrometry. In light of the importance of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and the significance of triazole groups for various applications, we employed the click-reaction-based macrocyclization. The competence of the synthesized macrocycles in various biomedical applications was proven by studying the interactions with the serum albumin proteins; bovine serum albumin and human serum albumin. It was observed that some candidates, based on their hanging functional groups and specific backbone atoms, could interact well with the protein, thus improving the bioactive properties. On the whole, this work is a proof-of-concept to explore the backbone- and side-chain-tunable macrocycle for different properties and applications. Full article
Show Figures

Graphical abstract

Back to TopTop