Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Sharnil Pandya ORCID = 0000-0002-4507-1844

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 2594 KiB  
Review
A Survey of Explainable Artificial Intelligence for Smart Cities
by Abdul Rehman Javed, Waqas Ahmed, Sharnil Pandya, Praveen Kumar Reddy Maddikunta, Mamoun Alazab and Thippa Reddy Gadekallu
Electronics 2023, 12(4), 1020; https://doi.org/10.3390/electronics12041020 - 18 Feb 2023
Cited by 139 | Viewed by 14930
Abstract
The emergence of Explainable Artificial Intelligence (XAI) has enhanced the lives of humans and envisioned the concept of smart cities using informed actions, enhanced user interpretations and explanations, and firm decision-making processes. The XAI systems can unbox the potential of black-box AI models [...] Read more.
The emergence of Explainable Artificial Intelligence (XAI) has enhanced the lives of humans and envisioned the concept of smart cities using informed actions, enhanced user interpretations and explanations, and firm decision-making processes. The XAI systems can unbox the potential of black-box AI models and describe them explicitly. The study comprehensively surveys the current and future developments in XAI technologies for smart cities. It also highlights the societal, industrial, and technological trends that initiate the drive towards XAI for smart cities. It presents the key to enabling XAI technologies for smart cities in detail. The paper also discusses the concept of XAI for smart cities, various XAI technology use cases, challenges, applications, possible alternative solutions, and current and future research enhancements. Research projects and activities, including standardization efforts toward developing XAI for smart cities, are outlined in detail. The lessons learned from state-of-the-art research are summarized, and various technical challenges are discussed to shed new light on future research possibilities. The presented study on XAI for smart cities is a first-of-its-kind, rigorous, and detailed study to assist future researchers in implementing XAI-driven systems, architectures, and applications for smart cities. Full article
Show Figures

Figure 1

17 pages, 2641 KiB  
Article
A Study of the Impacts of Air Pollution on the Agricultural Community and Yield Crops (Indian Context)
by Sharnil Pandya, Thippa Reddy Gadekallu, Praveen Kumar Reddy Maddikunta and Rohit Sharma
Sustainability 2022, 14(20), 13098; https://doi.org/10.3390/su142013098 - 13 Oct 2022
Cited by 38 | Viewed by 6360
Abstract
Air pollution has been an vital issue throughout the 21st century, and has also significantly impacted the agricultural community, especially farmers and yield crops. This work aims to review air-pollution research to understand its impacts on the agricultural community and yield crops, specifically [...] Read more.
Air pollution has been an vital issue throughout the 21st century, and has also significantly impacted the agricultural community, especially farmers and yield crops. This work aims to review air-pollution research to understand its impacts on the agricultural community and yield crops, specifically in developing countries, such as India. The present work highlights various aspects of agricultural damage caused by the impacts of air pollution. Furthermore, in the undertaken study, a rigorous and detailed discussion of state-wise and city-wise yield-crop losses caused by air pollution in India and its impacts has been performed. To represent air-pollution impacts, the color-coding-based AQI (Air Quality Index) risk-classification metrics have been used to represent AQI variations in India’s agrarian states and cities. Finally, recent impacts of air pollution concerning AQI variations for May 2019 to February 2020, Seasonal AQI variations, impacts of PM2.5, and PM10 in various agrarian states and India cities are presented using various tabular and graphical representations. Full article
Show Figures

Figure 1

15 pages, 2889 KiB  
Article
Credibility Analysis of User-Designed Content Using Machine Learning Techniques
by Milind Gayakwad, Suhas Patil, Amol Kadam, Shashank Joshi, Ketan Kotecha, Rahul Joshi, Sharnil Pandya, Sudhanshu Gonge, Suresh Rathod, Kalyani Kadam and Maya Shelke
Appl. Syst. Innov. 2022, 5(2), 43; https://doi.org/10.3390/asi5020043 - 14 Apr 2022
Cited by 17 | Viewed by 4147
Abstract
Content is a user-designed form of information, for example, observation, perception, or review. This type of information is more relevant to users, as they can relate it to their experience. The research problem is to identify the credibility and the percentage of credibility [...] Read more.
Content is a user-designed form of information, for example, observation, perception, or review. This type of information is more relevant to users, as they can relate it to their experience. The research problem is to identify the credibility and the percentage of credibility as well. Assessment of such content is important to convey the right understanding of the information. Different techniques are used for content analysis, such as voting the content, Machine Learning Techniques, and manual assessment to evaluate the content and the quality of information. In this research article, content analysis is performed by collecting the Movie Review dataset from Kaggle. Features are extracted and the most relevant features are shortlisted for experimentation. The effect of these features is analyzed by using base regression algorithms, such as Linear Regression, Lasso Regression, Ridge Regression, and Decision Tree. The contribution of the research is designing a heterogeneous ensemble regression algorithm for content credibility score assessment, which combines the above baseline methods. Moreover, these factors are also toned down to obtain the values closer to Gradient Descent minimum. Different forms of Error Loss, such as Mean Absolute Error, Mean Squared Error, LogCosh, Huber, and Jacobian, and the performance is optimized by introducing the balancing bias. The accuracy of the algorithm is compared with induvial regression algorithms and ensemble regression separately; this accuracy is 96.29%. Full article
Show Figures

Figure 1

25 pages, 6067 KiB  
Article
DBGC: Dimension-Based Generic Convolution Block for Object Recognition
by Chirag Patel, Dulari Bhatt, Urvashi Sharma, Radhika Patel, Sharnil Pandya, Kirit Modi, Nagaraj Cholli, Akash Patel, Urvi Bhatt, Muhammad Ahmed Khan, Shubhankar Majumdar, Mohd Zuhair, Khushi Patel, Syed Aziz Shah and Hemant Ghayvat
Sensors 2022, 22(5), 1780; https://doi.org/10.3390/s22051780 - 24 Feb 2022
Cited by 47 | Viewed by 3920
Abstract
The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process [...] Read more.
The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process frameworks. Much research has been carried out in this area, but the research scope is colossal as it deals with open-ended problems such as being able to achieve high accuracy in little time using lightweight process frameworks. Convolution Neural Networks and their variants are widely used in various computer vision activities, but most of the architectures of CNN are application-specific. There is always a need for generic architectures with better performance. This paper introduces the Dimension-Based Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture generic and provide a dimension-wise selection of various height, width, and depth kernels. This single unit which uses the separable convolution concept provides multiple combinations using various dimension-based kernels. This single unit can be used for height-based, width-based, or depth-based dimensions; the same unit can even be used for height and width, width and depth, and depth and height dimensions. It can also be used for combinations involving all three dimensions of height, width, and depth. The main novelty of DBGC lies in the dimension selector block included in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs. Full article
Show Figures

Figure 1

13 pages, 489 KiB  
Article
Deep Learning for Depression Detection from Textual Data
by Amna Amanat, Muhammad Rizwan, Abdul Rehman Javed, Maha Abdelhaq, Raed Alsaqour, Sharnil Pandya and Mueen Uddin
Electronics 2022, 11(5), 676; https://doi.org/10.3390/electronics11050676 - 23 Feb 2022
Cited by 183 | Viewed by 20432
Abstract
Depression is a prevalent sickness, spreading worldwide with potentially serious implications. Timely recognition of emotional responses plays a pivotal function at present, with the profound expansion of social media and users of the internet. Mental illnesses are highly hazardous, stirring more than three [...] Read more.
Depression is a prevalent sickness, spreading worldwide with potentially serious implications. Timely recognition of emotional responses plays a pivotal function at present, with the profound expansion of social media and users of the internet. Mental illnesses are highly hazardous, stirring more than three hundred million people. Moreover, that is why research is focused on this subject. With the advancements of machine learning and the availability of sample data relevant to depression, there is the possibility of developing an early depression diagnostic system, which is key to lessening the number of afflicted individuals. This paper proposes a productive model by implementing the Long-Short Term Memory (LSTM) model, consisting of two hidden layers and large bias with Recurrent Neural Network (RNN) with two dense layers, to predict depression from text, which can be beneficial in protecting individuals from mental disorders and suicidal affairs. We train RNN on textual data to identify depression from text, semantics, and written content. The proposed framework achieves 99.0% accuracy, higher than its counterpart, frequency-based deep learning models, whereas the false positive rate is reduced. We also compare the proposed model with other models regarding its mean accuracy. The proposed approach indicates the feasibility of RNN and LSTM by achieving exceptional results for early recognition of depression in the emotions of numerous social media subscribers. Full article
Show Figures

Figure 1

19 pages, 3905 KiB  
Article
FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems
by K. S. Arikumar, Sahaya Beni Prathiba, Mamoun Alazab, Thippa Reddy Gadekallu, Sharnil Pandya, Javed Masood Khan and Rajalakshmi Shenbaga Moorthy
Sensors 2022, 22(4), 1377; https://doi.org/10.3390/s22041377 - 11 Feb 2022
Cited by 123 | Viewed by 7357
Abstract
Recent technological developments, such as the Internet of Things (IoT), artificial intelligence, edge, and cloud computing, have paved the way in transforming traditional healthcare systems into smart healthcare (SHC) systems. SHC escalates healthcare management with increased efficiency, convenience, and personalization, via use of [...] Read more.
Recent technological developments, such as the Internet of Things (IoT), artificial intelligence, edge, and cloud computing, have paved the way in transforming traditional healthcare systems into smart healthcare (SHC) systems. SHC escalates healthcare management with increased efficiency, convenience, and personalization, via use of wearable devices and connectivity, to access information with rapid responses. Wearable devices are equipped with multiple sensors to identify a person’s movements. The unlabeled data acquired from these sensors are directly trained in the cloud servers, which require vast memory and high computational costs. To overcome this limitation in SHC, we propose a federated learning-based person movement identification (FL-PMI). The deep reinforcement learning (DRL) framework is leveraged in FL-PMI for auto-labeling the unlabeled data. The data are then trained using federated learning (FL), in which the edge servers allow the parameters alone to pass on the cloud, rather than passing vast amounts of sensor data. Finally, the bidirectional long short-term memory (BiLSTM) in FL-PMI classifies the data for various processes associated with the SHC. The simulation results proved the efficiency of FL-PMI, with 99.67% accuracy scores, minimized memory usage and computational costs, and reduced transmission data by 36.73%. Full article
Show Figures

Figure 1

22 pages, 5637 KiB  
Article
Memcached: An Experimental Study of DDoS Attacks for the Wellbeing of IoT Applications
by Nivedita Mishra, Sharnil Pandya, Chirag Patel, Nagaraj Cholli, Kirit Modi, Pooja Shah, Madhuri Chopade, Sudha Patel and Ketan Kotecha
Sensors 2021, 21(23), 8071; https://doi.org/10.3390/s21238071 - 2 Dec 2021
Cited by 4 | Viewed by 5165
Abstract
Distributed denial-of-service (DDoS) attacks are significant threats to the cyber world because of their potential to quickly bring down victims. Memcached vulnerabilities have been targeted by attackers using DDoS amplification attacks. GitHub and Arbor Networks were the victims of Memcached DDoS attacks with [...] Read more.
Distributed denial-of-service (DDoS) attacks are significant threats to the cyber world because of their potential to quickly bring down victims. Memcached vulnerabilities have been targeted by attackers using DDoS amplification attacks. GitHub and Arbor Networks were the victims of Memcached DDoS attacks with 1.3 Tbps and 1.8 Tbps attack strengths, respectively. The bandwidth amplification factor of nearly 50,000 makes Memcached the deadliest DDoS attack vector to date. In recent times, fellow researchers have made specific efforts to analyze and evaluate Memcached vulnerabilities; however, the solutions provided for security are based on best practices by users and service providers. This study is the first attempt at modifying the architecture of Memcached servers in the context of improving security against DDoS attacks. This study discusses the Memcached protocol, the vulnerabilities associated with it, the future challenges for different IoT applications associated with caches, and the solutions for detecting Memcached DDoS attacks. The proposed solution is a novel identification-pattern mechanism using a threshold scheme for detecting volume-based DDoS attacks. In the undertaken study, the solution acts as a pre-emptive measure for detecting DDoS attacks while maintaining low latency and high throughput. Full article
Show Figures

Figure 1

37 pages, 5442 KiB  
Review
A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions
by Sharnil Pandya, Aanchal Thakur, Santosh Saxena, Nandita Jassal, Chirag Patel, Kirit Modi, Pooja Shah, Rahul Joshi, Sudhanshu Gonge, Kalyani Kadam and Prachi Kadam
Sensors 2021, 21(23), 7786; https://doi.org/10.3390/s21237786 - 23 Nov 2021
Cited by 30 | Viewed by 10774
Abstract
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., [...] Read more.
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same. Full article
Show Figures

Figure 1

28 pages, 4424 KiB  
Review
CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope
by Dulari Bhatt, Chirag Patel, Hardik Talsania, Jigar Patel, Rasmika Vaghela, Sharnil Pandya, Kirit Modi and Hemant Ghayvat
Electronics 2021, 10(20), 2470; https://doi.org/10.3390/electronics10202470 - 11 Oct 2021
Cited by 635 | Viewed by 41185
Abstract
Computer vision is becoming an increasingly trendy word in the area of image processing. With the emergence of computer vision applications, there is a significant demand to recognize objects automatically. Deep CNN (convolution neural network) has benefited the computer vision community by producing [...] Read more.
Computer vision is becoming an increasingly trendy word in the area of image processing. With the emergence of computer vision applications, there is a significant demand to recognize objects automatically. Deep CNN (convolution neural network) has benefited the computer vision community by producing excellent results in video processing, object recognition, picture classification and segmentation, natural language processing, speech recognition, and many other fields. Furthermore, the introduction of large amounts of data and readily available hardware has opened new avenues for CNN study. Several inspirational concepts for the progress of CNN have been investigated, including alternative activation functions, regularization, parameter optimization, and architectural advances. Furthermore, achieving innovations in architecture results in a tremendous enhancement in the capacity of the deep CNN. Significant emphasis has been given to leveraging channel and spatial information, with a depth of architecture and information processing via multi-path. This survey paper focuses mainly on the primary taxonomy and newly released deep CNN architectures, and it divides numerous recent developments in CNN architectures into eight groups. Spatial exploitation, multi-path, depth, breadth, dimension, channel boosting, feature-map exploitation, and attention-based CNN are the eight categories. The main contribution of this manuscript is in comparing various architectural evolutions in CNN by its architectural change, strengths, and weaknesses. Besides, it also includes an explanation of the CNN’s components, the strengths and weaknesses of various CNN variants, research gap or open challenges, CNN applications, and the future research direction. Full article
Show Figures

Figure 1

32 pages, 3204 KiB  
Article
Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sequences
by Chirag I. Patel, Dileep Labana, Sharnil Pandya, Kirit Modi, Hemant Ghayvat and Muhammad Awais
Sensors 2020, 20(24), 7299; https://doi.org/10.3390/s20247299 - 18 Dec 2020
Cited by 75 | Viewed by 6655
Abstract
Human Action Recognition (HAR) is the classification of an action performed by a human. The goal of this study was to recognize human actions in action video sequences. We present a novel feature descriptor for HAR that involves multiple features and combining them [...] Read more.
Human Action Recognition (HAR) is the classification of an action performed by a human. The goal of this study was to recognize human actions in action video sequences. We present a novel feature descriptor for HAR that involves multiple features and combining them using fusion technique. The major focus of the feature descriptor is to exploits the action dissimilarities. The key contribution of the proposed approach is to built robust features descriptor that can work for underlying video sequences and various classification models. To achieve the objective of the proposed work, HAR has been performed in the following manner. First, moving object detection and segmentation are performed from the background. The features are calculated using the histogram of oriented gradient (HOG) from a segmented moving object. To reduce the feature descriptor size, we take an averaging of the HOG features across non-overlapping video frames. For the frequency domain information we have calculated regional features from the Fourier hog. Moreover, we have also included the velocity and displacement of moving object. Finally, we use fusion technique to combine these features in the proposed work. After a feature descriptor is prepared, it is provided to the classifier. Here, we have used well-known classifiers such as artificial neural networks (ANNs), support vector machine (SVM), multiple kernel learning (MKL), Meta-cognitive Neural Network (McNN), and the late fusion methods. The main objective of the proposed approach is to prepare a robust feature descriptor and to show the diversity of our feature descriptor. Though we are using five different classifiers, our feature descriptor performs relatively well across the various classifiers. The proposed approach is performed and compared with the state-of-the-art methods for action recognition on two publicly available benchmark datasets (KTH and Weizmann) and for cross-validation on the UCF11 dataset, HMDB51 dataset, and UCF101 dataset. Results of the control experiments, such as a change in the SVM classifier and the effects of the second hidden layer in ANN, are also reported. The results demonstrate that the proposed method performs reasonably compared with the majority of existing state-of-the-art methods, including the convolutional neural network-based feature extractors. Full article
(This article belongs to the Special Issue Smart Assisted Living)
Show Figures

Figure 1

25 pages, 9969 KiB  
Article
Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging
by Muhammad Awais, Hemant Ghayvat, Anitha Krishnan Pandarathodiyil, Wan Maria Nabillah Ghani, Anand Ramanathan, Sharnil Pandya, Nicolas Walter, Mohamad Naufal Saad, Rosnah Binti Zain and Ibrahima Faye
Sensors 2020, 20(20), 5780; https://doi.org/10.3390/s20205780 - 12 Oct 2020
Cited by 42 | Viewed by 6072
Abstract
Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an [...] Read more.
Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an advanced machine learning procedure. HPIL is a novel system approach based on the textural pattern of OML and OPMDs (anomalous regions) to differentiate them from standard regions of the oral cavity by using autofluorescence imaging. An innovative method based on pre-processing, e.g., the Deriche–Canny edge detector and circular Hough transform (CHT); a post-processing textural analysis approach using the gray-level co-occurrence matrix (GLCM); and a feature selection algorithm (linear discriminant analysis (LDA)), followed by k-nearest neighbor (KNN) to classify OPMDs and the standard region, is proposed in this paper. The accuracy, sensitivity, and specificity in differentiating between standard and anomalous regions of the oral cavity are 83%, 85%, and 84%, respectively. The performance evaluation was plotted through the receiver operating characteristics of periodontist diagnosis with the HPIL system and without the system. This method of classifying OML and OPMD areas may help the dental specialist to identify anomalous regions for performing their biopsies more efficiently to predict the histological diagnosis of epithelial dysplasia. Full article
(This article belongs to the Special Issue Smart Assisted Living)
Show Figures

Figure 1

25 pages, 5266 KiB  
Article
Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living
by Sharnil Pandya, Hemant Ghayvat, Anirban Sur, Muhammad Awais, Ketan Kotecha, Santosh Saxena, Nandita Jassal and Gayatri Pingale
Sensors 2020, 20(18), 5448; https://doi.org/10.3390/s20185448 - 22 Sep 2020
Cited by 25 | Viewed by 7311
Abstract
Air pollution has been a looming issue of the 21st century that has also significantly impacted the surrounding environment and societal health. Recently, previous studies have conducted extensive research on air pollution and air quality monitoring. Despite this, the fields of air pollution [...] Read more.
Air pollution has been a looming issue of the 21st century that has also significantly impacted the surrounding environment and societal health. Recently, previous studies have conducted extensive research on air pollution and air quality monitoring. Despite this, the fields of air pollution and air quality monitoring remain plagued with unsolved problems. In this study, the Pollution Weather Prediction System (PWP) is proposed to perform air pollution prediction for outdoor sites for various pollution parameters. In the presented research work, we introduced a PWP system configured with pollution-sensing units, such as SDS021, MQ07-CO, NO2-B43F, and Aeroqual Ozone (O3). These sensing units were utilized to collect and measure various pollutant levels, such as PM2.5, PM10, CO, NO2, and O3, for 90 days at Symbiosis International University, Pune, Maharashtra, India. The data collection was carried out between the duration of December 2019 to February 2020 during the winter. The investigation results validate the success of the presented PWP system. In the conducted experiments, linear regression and artificial neural network (ANN)-based AQI (air quality index) predictions were performed. Furthermore, the presented study also found that the customized linear regression methodology outperformed other machine-learning methods, such as linear, ridge, Lasso, Bayes, Huber, Lars, Lasso-lars, stochastic gradient descent (SGD), and ElasticNet regression methodologies, and the customized ANN regression methodology used in the conducted experiments. The overall AQI values of the air pollutants were calculated based on the summation of the AQI values of all the presented air pollutants. In the end, the web and mobile interfaces were developed to display air pollution prediction values of a variety of air pollutants. Full article
(This article belongs to the Special Issue Smart Assisted Living)
Show Figures

Figure 1

32 pages, 5761 KiB  
Article
Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection
by Hemant Ghayvat, Muhammad Awais, Sharnil Pandya, Hao Ren, Saeed Akbarzadeh, Subhas Chandra Mukhopadhyay, Chen Chen, Prosanta Gope, Arpita Chouhan and Wei Chen
Sensors 2019, 19(4), 766; https://doi.org/10.3390/s19040766 - 13 Feb 2019
Cited by 79 | Viewed by 10053
Abstract
Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This [...] Read more.
Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an individual in AAL. Each sensing category has its advantages and restrictions. Only a single type of sensing unit may not manage composite states in practice and lose the activity of daily living. To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through different sensing modalities; Methods: As behaviors may also change according to other contextual observations, including seasonal, weather (or temperature), and social interaction, we propose the design of a novel activity learning model by adding behavioral observations, which we name as the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly houses, including daily activities, with a sample size of three hundred days plus sensor activation. The investigation results validate the success of our method. The new feature set from sensor data fusion enhances the system accuracy to (98.17% ± 0.95) from (80.81% ± 0.68). The performance evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score (0.9851), False Negative Rate (0.0130). Full article
(This article belongs to the Special Issue Sensing and Instrumentation in IoT Era)
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
Smart Home Anti-Theft System: A Novel Approach for Near Real-Time Monitoring and Smart Home Security for Wellness Protocol
by Sharnil Pandya, Hemant Ghayvat, Ketan Kotecha, Mohammed Awais, Saeed Akbarzadeh, Prosanta Gope, Subhas Chandra Mukhopadhyay and Wei Chen
Appl. Syst. Innov. 2018, 1(4), 42; https://doi.org/10.3390/asi1040042 - 23 Oct 2018
Cited by 42 | Viewed by 24231
Abstract
The proposed research methodology aims to design a generally implementable framework for providing a house owner/member with the immediate notification of an ongoing theft (unauthorized access to their premises). For this purpose, a rigorous analysis of existing systems was undertaken to identify research [...] Read more.
The proposed research methodology aims to design a generally implementable framework for providing a house owner/member with the immediate notification of an ongoing theft (unauthorized access to their premises). For this purpose, a rigorous analysis of existing systems was undertaken to identify research gaps. The problems found with existing systems were that they can only identify the intruder after the theft, or cannot distinguish between human and non-human objects. Wireless Sensors Networks (WSNs) combined with the use of Internet of Things (IoT) and Cognitive Internet of Things are expanding smart home concepts and solutions, and their applications. The present research proposes a novel smart home anti-theft system that can detect an intruder, even if they have partially/fully hidden their face using clothing, leather, fiber, or plastic materials. The proposed system can also detect an intruder in the dark using a CCTV camera without night vision capability. The fundamental idea was to design a cost-effective and efficient system for an individual to be able to detect any kind of theft in real-time and provide instant notification of the theft to the house owner. The system also promises to implement home security with large video data handling in real-time. The investigation results validate the success of the proposed system. The system accuracy has been enhanced to 97.01%, 84.13, 78.19%, and 66.5%, in scenarios where a detected intruder had not hidden his/her face, hidden his/her face partially, fully, and was detected in the dark from 85%, 64.13%, 56.70%, and 44.01%. Full article
(This article belongs to the Special Issue Wireless Sensor Networks on Internet of Things and Intelligent System)
Show Figures

Figure 1

Back to TopTop