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Abstract: Human Action Recognition (HAR) is the classification of an action performed by a human.
The goal of this study was to recognize human actions in action video sequences. We present
a novel feature descriptor for HAR that involves multiple features and combining them using
fusion technique. The major focus of the feature descriptor is to exploits the action dissimilarities.
The key contribution of the proposed approach is to built robust features descriptor that can work
for underlying video sequences and various classification models. To achieve the objective of the
proposed work, HAR has been performed in the following manner. First, moving object detection and
segmentation are performed from the background. The features are calculated using the histogram
of oriented gradient (HOG) from a segmented moving object. To reduce the feature descriptor size,
we take an averaging of the HOG features across non-overlapping video frames. For the frequency
domain information we have calculated regional features from the Fourier hog. Moreover, we have
also included the velocity and displacement of moving object. Finally, we use fusion technique to
combine these features in the proposed work. After a feature descriptor is prepared, it is provided to
the classifier. Here, we have used well-known classifiers such as artificial neural networks (ANNs),
support vector machine (SVM), multiple kernel learning (MKL), Meta-cognitive Neural Network
(McNN), and the late fusion methods. The main objective of the proposed approach is to prepare
a robust feature descriptor and to show the diversity of our feature descriptor. Though we are
using five different classifiers, our feature descriptor performs relatively well across the various
classifiers. The proposed approach is performed and compared with the state-of-the-art methods
for action recognition on two publicly available benchmark datasets (KTH and Weizmann) and for
cross-validation on the UCF11 dataset, HMDB51 dataset, and UCF101 dataset. Results of the control
experiments, such as a change in the SVM classifier and the effects of the second hidden layer in
ANN, are also reported. The results demonstrate that the proposed method performs reasonably
compared with the majority of existing state-of-the-art methods, including the convolutional neural
network-based feature extractors.
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1. Introduction

In machine vision, automatic understanding of video data (e.g., action recognition) remains a
difficult but important challenge. The method of recognizing human actions that occur in a video
sequence is defined as human action recognition (HAR). In video understanding, it is difficult to
differentiate routine life actions, such as running, jogging, and walking, using an executable script.
There has been an increasing interest in HAR over the past decade, and it is still an open field for
many researchers. The domain of HAR has developed considerably with significant application in
human motion analysis [1,2], identification of familiar people and gender [3], motion capture and
animation [4], video editing [5], unusual activity detection [6], video search and indexing (useful for TV
production, entertainment, social studies, security) [7], video2text (auto-scripting) [8], video annotation,
and video mining [9].

Human action recognition is a challenging multi-class classification problem due to high intra-class
variability within a given class. To overcome variability issue, we propose a scheme to design a feature
descriptor that is highly invariant to the fluctuations present in the classes. In other words, the proposed
feature descriptor fuses various diverse features. In addition, this paper addresses various challenges
in HAR, such as variation in the background (outdoor or indoor), recognizing the gender of the action
performer, variation in clothes worn, and scale variation. We deal with constrained video sequences
that involve moving background and multiple actions in single video sequence.

Our contributions in this paper can be summarized in the following way. First, for moving
object detection, we use a novel technique by incorporating the human visual attention model [10]
making it background-independent. Therefore, its computational complexity is much lower than the
algorithm which updates background at regular interval for moving object detection in the video.
Second, we propose the feature description preparation layer, which includes the use of the HOG
features with the non-overlapping windowing concept. Moreover, averaging the features reduces the
size of the feature descriptor. In addition to the HOG, we also use the object displacement, which is
crucial to differentiate the action performed at the same location, i.e., zero displacements (like boxing,
hand waving, clapping, etc.) or at various locations, i.e., non-zero displacement (like walking,
running, etc.). Furthermore, a velocity feature is used at this stage to further identify the overlapping
actions having non-zero displacement (like walking, running, etc.). It is based on the observation
that speed variation among such actions exists and incorporation of velocity feature can aid the
classification. To consider the spatial context in terms of boundaries and smooth shapes of the human
body, regional features from Fourier HOG are employed. Finally, we propose six different models
for classification to demonstrate the effectiveness of the proposed features descriptor across different
types of classifier families.

The rest of the paper is organized in the following way. Section 2 discusses the existing
literature on HAR. Section 3 outlines the motivation for feature fusion and briefly describes the
HOG, support vector machines (SVMs), artificial neural networks (ANNs), multiple kernel learning
(MKL), and Meta-cognitive Neural Network (McNN). In Section 4, the proposed approach for HAR is
described. Section 3 also presents the proposed techniques for fusing features. Section 4 presents and
discusses the experimental results. Finally, we conclude the paper in Section 5.

2. Existing Methods

In the last two decades, most research on human action recognition is concentrated at two levels:
(1) feature extraction and (2) feature classification. One of the feature extraction methods is the
Dense trajectories approach [11] that extracts features at multiple scales. In addition, these features
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are sampled for each frame, and based on the displacement information from dense optical flow
field actions are classified. In [12], an extension to Dense trajectories was proposed by replacing the
Scale-Invariant Feature Transform (SIFT) feature with the Speeded Up Robust Features (SURF) feature
to estimate camera motion.

The advantage of these trajectories representations is that they are robust to fast irregular motions
and boundaries of human action. However, this method cannot handle the local motion in any
action which involves the important movement of the hand, arm, and leg. Therefore, it is not
providing enough information for action discrimination. This particular problem is overcome by using
important motion parts using Motion Part Regularization Framework (MPRF) [13]. This framework
uses Spatio-temporal grouping of densely extracted trajectories, which have been generated for motion
part. Objective function for sparse selection of these trajectory groups has been optimized and learned
motion parts are represented by fisher vector. Lan et al. again points out in [14] about the local motion
of body parts, which result in small changes of intensity, resulting in low-frequency action information.
In feature preparation layer, low-frequency action information is not included; therefore, resultant
feature descriptors cannot capture enough detail for action classification. In order to address this
problem, the Multi-skIp Feature Staking (MIFS) approach was proposed. This approach considers
stacking extracted features using differential operators at various scales, which makes the task of action
recognition invariant to speed and range of motion offered by the human subject. Due to consideration
of various scales in feature building stage, computation complexity is increased in this approach.

In the traditional way, distinct features are derived for representing any human action. However,
Liu et al. [15] proposed a human action recognition system, which extracts spatio-temporal and
motion features automatically, and this is accomplished by an evolutionary algorithm such as genetic
programming. These features are scale and shift invariant and extract color information as well from
optical flow sequences. Finally, classification is performed using SVM but the automatic learning
needs training process which is time-consuming. The approach in [16] defined the Fisher vector model
based on the spatio-temporal local features. Conventional dictionary learning approaches are not
appropriate for Fisher vectors extracted from features; therefore, the authors of Reference [16] proposed
Multiple Instance Discriminative Dictionary Learning (MIDDL) methods for human action recognition.
Recently, frequency domain representation of the multi-scale trajectories has been proposed [17].
The critical points are extracted from the optical flow field of each frame; later multi-scale trajectories
are generated from these points and transformed into frequency domain. This frequency information
is combined with other information like motion orientation and shapes at the end. The computational
complexity of this method is high due to the consideration of the optical flow. The author [18] proposed
the skeleton information as a coordinated non-cyclic diagram that gave the kinematic reliance between
the joints and bones in the characteristic human body.

Recently proposed, the Deep Convolution Generate Adversarial Network (DCGANs) [19] bridges the
gap between supervised and unsupervised learning. The author proposed a semisupervised framework
for action recognition, which uses trained discriminator from GAN model. However, the method
evaluates the feature based on the appearance of the human and does not account motion in
feature building stage. Representation of action is evaluated in terms of distinct action sketches [20].
Sketch formation has been done using fast edge detection. Later on, the person in each particular frame
is detected by R-CNN. Furthermore, ranking and pooling are deployed for designing distinct action
sketch. Improved dense trajectories and pooling feature fusion are provided to SVM classifier for
action recognition. VideoLSTM, a new recurrent neural network architecture, has been proposed in [21].
This architecture can adaptively fit the requirement of given video. This approach exploits new spatial
layout of architecture, motion-based attention for relevant spatio-temporal location, and action localization
from videoLSTM. In addition to that, there are several methods proposed over the decades [22].



Sensors 2020, 20, 7299 4 of 32

3. Proposed Framework

The proposed HAR framework is shown in Figure 1 and involves three parts: moving object
detection, feature extraction, and action classification.

Moving
Object

Detection

Input
Video

Sequence

Feature
Extraction

Fusion of Features

• Average of
HOG(HOGAVG10)

• HOGAVG10+
Displacement

• HOGAVG10 +
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basis
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constant
– Epochs
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• LATE FUSION
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Output
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Figure 1. Proposed framework.

3.1. Moving Object Detection

Moving object detection plays crucial role in many computer vision applications. The process
involves the classification of pixels from each frame of a video stream as a background or foreground
pixel, and a model representing the background is generated. Then, the background is removed from
each frame to enable moving object detection and the process is referred to as background subtraction.
Popular background subtraction techniques include frame differencing [23,24], Shadow removal [25],
Gaussian mixture model(GMM) [26], and CNN-based background removal [27]. However, an
algorithm for moving object detection without any background modeling was presented in [28–30],
and the detailed procedure is given below.

First, an average filter is applied on video sequence I(m, n, t) of size X × Y for a particular time t.
The moving object detection performance of the method is depicted in Figures 2 and 3 for

two different video sequences. The first column shows the snapshot from two different videos.
A saliency map is shown in the second column, and a silhouette creation is done using morphological
operation and shown in third column. The detected moving objects are shown in the fourth column.

Iavg = I(m, n, t)⊗ A(X, Y), (1)

where A represents the avg filter of mask size X × Y, and ⊗ represents the convolution between two
images. Next, a Gaussian filter is employed on the image,

Igaussian = I(m, n, t)⊗ G(h, σ) (2)

The Gaussian low-pass filter is represented as G. The saliency value calculated at each pixel (m, n)
is given as

dist[Igaussian(m, n), Iavg(m, n)] = [Igaussian(m, n)− Iavg(m, n)] (3)

S(m, n) = dist[Igaussian(m, n), Iavg(m, n)] (4)

The distance between the respective images is represented as dist. S(m, n) contains the moving
object obtained from specific video. In the proposed approach, moving object detection is performed as

FG(m, n) = [|I(m, n, t)− I(m, n, t− 1)| > Threshold] (5)



Sensors 2020, 20, 7299 5 of 32

where FG(m, n) defines the moving object from the video sequence I. Therefore, the moving object
detection is faster and computationally efficient, as the method is background-independent. In other
words, the time-consuming process of updating the background at regular intervals is not needed.

(a) (b) (c) (d)
Figure 2. Moving Object Detection: (a) Video Sequence. (b) Saliency Map. (c) Silhouette Creation.
(d) Segmented Object Image.

(a) (b) (c) (d)
Figure 3. Moving Object Detection: (a) Video Sequence. (b) Saliency Map. (c) Silhouette Creation.
(d) Segmented Object Image.

3.2. Feature Extraction

The procedure for extracting feature descriptors from a segmented object is shown in Figure 4,
which represents action in a compact three-dimensional space associated with an object, background
scene, and variation that appears in the object over time. After detecting and segmenting moving
objects from each video sequence, compact features are extracted. In the proposed approach, we
calculate the following features.

• HOG over 10 non-overlapping frames (HOGAVG10):
Here, we have used HOG, which was proposed by Dalal and Trigg [31] in 2005 and is still a
highly effective human detection feature. The segmented object is converted to a fixed size
(e.g., 128 × 64). HOG features extracted from the resized segmented object (per frame) have a
dimensionality of 3780 as explained in Figure 4. Each video has 120 frames; therefore, the final
descriptor for each video having one action is 3780 × 120. Feature descriptors contain redundant
data; thus, the computational cost for learning and testing is excessive. In the proposed approach,
we have calculated HOG features over a window size of 10 non-overlapping frames (HOGAVG10)
because the object does not change considerably over the frames as shown in Figure 5 . Thus,
there is a considerable reduction in the redundant data by using 10 frames.

• Displacement in Object Position (OBJ_DISP):
To evaluate the displacement of an object, the centroid (or center of mass) of the silhouette
corresponding to the object is calculated by taking the (arithmetic) mean of the pixels is denoted by

µ(xi , yj, t) =
1

nm

n

∑
i=1

m

∑
j=1

C(xi , yj) (6)

Suppose that the centroid of the present frame is C(xt, yt, t) and the past frame is
C(xt−1, yt−1, t− 1). Then, the displacement (OBJ_DISP) D(xt, yt, t) can be approximated using

OBJ_DISP(xt, yt, t) =
√
(xt − xt−1)2 + (yt − yt−1)2 (7)

• Velocity of Object (OBJ_VELO):
Similar to the displacement features, the extraction of velocity features also requires the centroid
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of the detected moving object. The displacement and velocity features are used to estimate the
motion of the moving object as they increase the inter-class distance which subsequently increases
the accuracy of the overall proposed framework.
Velocity OBJ_VELO(xt, yt, t) of object is estimated using

OBJ_VELO(xt, yt, t) =
OBJ_DISP(xt, yt, t)

∆t
, (8)

where ∆t = ti+10 − ti (for example, ∆t = 10 for our proposed approach) and OBJ_DISP refers
to Displacement.

• Regional Features from Fourier HOG [32] (R_FHOG):
In this work, we extended the Regional Features from Fourier HOG proposed in [32] for
action recognition. In Cartesian coordinate system, two-dimensional function is represented
by f (x, y) ∈ R2. The polar coordinate representation of same function is defined as [r, θ], as r is
frequency in radius and angle θ. The relation between polar and Cartesian coordinate is defined as

r =‖ f ‖=
√

x2 + y2, (9)

and
θ = arctan(y, x) ∈ [0, 2π). (10)

In the polar coordinate system, the Fourier transform is combination of radial and angular parts.
The basis function B for Fourier transform in polar coordinate systems is defined as

Bk,m(r, θ) =
√

kJm(kr)Φm(θ), (11)

where k is non-negative value, and its also defines the scale of the pattern; Jm(kr) is a mth-order
Bessel function; and Φm = 1

2 eimΦ. k can be continuous or discrete value, depending on whether
the region is infinite or finite. Transform considering finite region r ≤ a, the basis function is
reduced to

Bn,m(r, θ) =
√

kRnm(r)Φm(θ), (12)

where,

Rnm(r) =
1√

N(m)
n

Jm(knmr). (13)

The basis function (13) is orthogonal and orthonormal in nature. For Bn,m(r, θ), m is number of
cycles in angular direction and n− 1 is defined as number of zero crossing in radial direction.

As the values of m and n increase, finer details can be extracted from the image.
Generally, the evaluation of HOG features involves three steps namely gradient orientation binning,
spatial aggregation, and magnitude normalization, which are followed in the Fourier domain as well.

Step 1: Gradient Orientation Binning:

The gradient of image I(x, y) ∈ R2 is defined as G(x, y) = [Gx, Gy], and its polar representation is
defined as

Fm(r, θ) = ‖G‖e−i∠G, (14)

where ‖G‖ =
√

G2
x + G2

y and ∠G = arctan(Gy, Gx) ∈ [0, 2π). Gradient orientation are stored in bins
of histogram using distribution function h at each pixel. Suppose that the gradient of any image is
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resented as G = [GxGy] ∈ R2. The angular part of G is Φ(G), and the distribution function h for each
pixel should be Dirac function gain with ‖ G ‖

h(θ) =‖ G ‖ δ(θ −Φ(G)). (15)

In this work, Fourier basis has been replaced with Fourier coefficient ˆfm

ˆfm = 〈h, eimφ〉 = ‖G‖e−imφ(G). (16)

In HOG, for each gradient vector, its magnitude contribution is split into three closest bins.
Therefore, it can be considered a triangular interpolation. In Fourier space, to build a HOG feature,
a 1D triangular kernel can be employed to implement the gradient orientation binning. However,
the execution of this particular step does not affect the results. Therefore, this step has not been
considered in the proposed work.

Step 2: Spatial Aggregation:

To achieve spatial aggregation, convolution operation is performed on a Gaussian Kernel or an
isotropic kernel and Fourier coefficients obtained.

Step 3: Local Normalization:

An isotropic kernel is convolved with Fourier coefficient to achieve normalization of gradient
magnitude. Steps 2 and 3 are performed using two kernels. The first kernel for spatial aggregation is
K1 : R2 → R and the second kernel K2 : R2 → R is used for local normalization. Finally, Fourier HOG
is accomplished using

F̃m =
Fm ∗ K1√
‖ G ‖2 ∗K2

. (17)

Regional descriptor using Fourier HOG:

To obtain the regional descriptor, a convolution operation is performed using the Fourier basis (in
polar representation) function. Bn,m(r, θ).

Rn,m = Bn,m(r, θ) ∗ F̃m. (18)

The graphical illustration of calculation of R_FHOG features is provided in Figure 6. Figure 7
depicts the positive result by showing R_FHOG (i.e., Rn,m) for the segmented object. To speed up the
process, we have not considered non-redundant data. Therefore, we have selected region features
which give a maximum response on a human region. The formation of the final template from region
features considers a value of scale ∈ {1}, order ∈ {1,−1}, and degree ∈ {1, 2}. Template has been
shown in Figure 8.

Figure 4. Proposed feature extraction technique: (a) Original video sequence. (b) Detected moving
object. (c) Resize detected moving object into 128 × 64 size. (d) Histogram oriented gradient (HOG)
feature extraction.
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Figure 5. Proposed feature calculation scheme.
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Figure 6. The generation process of the Region Feature Description.
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Figure 7. The generation process of the Region Feature Descriptor for segmented moving object:
The value below each descriptor image is defined as the scale (k), order (m), and degree (n) of the
Basis function Bn,m(r, θ).

Figure 8. R_FHOG template.
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3.3. Fusion of Features

The motivation behind fusing features is to increase diversity within classes and thus
improve classification.

• HOGAVG10 + OBJ_DISP:
Here, we fuse HOGAVG10 with OBJ_DISP. The importance of this parameter is to differentiate
between actions performed at a static location (e.g., boxing, hand waving, and hand clapping)
and actions performed at a dynamic location (e.g., walking, jogging, and running). Therefore, we
gain inter-class discriminative power by combining these two features.
The position of an object does not change drastically; thus, we propose to employ the window
concept to investigate the object motion over that period. In addition, we take the average of the
positions to reduce the feature set. This feature is important as it provides the inter-frame offset
corresponding to the object position. The displacement values for all classes are shown in Table 1.

• HOGAVG10 + OBJ_VELO:
Actions with smaller interclass distances such as walking, jogging and running can be
distinguished using velocity features. Therefore, we propose to fuse HOGAVG10 with OBJ_VELO.

• HOGAVG10 + OBJ_DISP + OBJ_VELO:
The HOGAVG10 + OBJ_DISP feature combination can differentiate actions performed at
static/dynamic locations, whereas the HOGAVG10 + OBJ_VELO feature combination can effectively
differentiate classes with similar actions. Therefore, we propose to combine HOGAVG10 + OBJ_DISP
+ OBJ_VELO to effectively classify similar actions performed at static/dynamic locations present
in KTH and Weizmann datasets. The velocity values of persons performing actions are reported in
Table 2.

• R_FHOG + HOGAVG10 + OBJ_DISP+ OBJ_VELO:
The R_FHOG feature is effective at splitting the frequency gradient into bands, subsequently
emphasizing the human action region. In other words, R_FHOG represents crucial information
regarding boundaries and smoothed shapes. R_FHOG also provides information regarding the
spatial context of a human subject.

Table 1. Displacement for all classes.

Non-Zero Displacement Action Type Zero Displacement Action Type

Action Walking Jogging Running Side Skip Jump Boxing Handclapping Handwaving Bend Jack Pjump

Displacement 15 21.33 64 34 42 51 0 0 0 0 0 0

Table 2. Velocity for all classes.

Non-Zero Velocity Action Type Zero Velocity Action Type

Action Walking Jogging Running Side Skip Jump Boxing Handclapping Handwaving Bend Jack Pjump

Velocity 37.5 53.325 160 85 105 127.5 0 0 0 0 0 0

3.4. Formal Description

This section presents the proposed fusion techniques in detail. Fusion techniques are performed
at both feature and classifier level, referred to as early and late fusion techniques, respectively.

3.4.1. Early Fusion

The task Feature Fusion is performed using basic techniques such as concatenating features one
after another as shown in Figure 9.
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3.4.2. Late Fusion

Late combination is utilized in this work to accomplish combination at classifier level. The two
distinctive late combination approaches utilized in the current investigation are Decision Combination
Neural Network (DCNN) and Sugeno Fuzzy Integral.

Decision Combination Neural Network (DCNN)

Decision Combination of Neural Network (DCNN) [33] is neural network architecture with no
concealed layers. Accordingly, DCNN characterizes the straight connection between the input and
output nodes. The most elevated reaction of a specific output layer node is characterized as choice or
class mark for action recognition. Details of the DCNN follow.

As shown in Figure 10, this neural network organization contains two layers: input layer (S) and
output layer (Z) individually. M classifier’s outputs are taken care of corresponding to the input layer
and there are N inputs nodes related with the class. The connection between units (/nodes) of the
input layer and output layer are between associated by weights w. Each input node gets a score sik,
where i characterizes ith classifier and k characterizes kth class. On the off chance that sik of input
is associated with output node j, the weight of this connection is characterized as wijk. The greatest
reaction at the output layer node is characterized as the choice of action recognition.
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Figure 10. Proposed Late Fusion Technique using Decision Combination Neural Network (DCNN).

The sigmoid activation function is used in each node, the reaction of this proposed late
combination approach is characterized as

hj(S1, . . . , SM) =
M

∑
i=1

N

∑
j=1

wijksik, (19)
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DCNN(S1, . . . , SM) =
1

1 + e−hj(S1,...,SM)
. (20)

Sugeno’s Fuzzy Integral

The supposition of a basic weighted normal system is that all classifiers are not commonly
reliant. In any case, classifiers are connected. To take out a requirement for such presumption, the
possibility of fuzzy integral was actualized by the authors of [34,35] and is a nonlinear mapping
function characterized with a fuzzy measure. A fuzzy integral is the fuzzy normal of classifier scores.
Definitions are given underneath thinking about fuzzy and fuzzy integral, separately.

Definition 1. Let X be a finite set defined as {x1, x2 . . . xn}. A fuzzy measure µ defined on X is a set of function
µ : X → [0, 1] satisfying with

1. µ(φ) = 0, µ(X) = 1,
2. A ⊆ B, µ(A) ≤ µ(B).

The fuzzy measure we adopt in this work is the Sugeno integral.

Definition 2. Let µ be a fuzzy measure on X. The discrete Sugeno integral of function f : X → [0, 1] with
respect to µ is defined as

Sµ( f (x1), f (x2) . . . f (xn)) , ∨n
i=1( f (xi) ∧ µ(A(i)) (21)

where, .(i) shows the indices have been permuted so that 0 ≤ f (x1) ≤ f (x2) . . . f (xn) ≤ 1. Moreover,
A(i) := {x(i) . . . x(n)} and f (x(0)) = 0.

Fuzzy measure µ is a µλ-fuzzy measure and is calculated by using Sugeno’s λ measure. The value
of µ(A(i)) is calculated recursively as

µ(A(1)) = µ({x(1)}) = µ1 (22)

µ(A(i)) = µi + µ(A(i−1)) + λµiµ(A(i−1)) f or 1 < i ≤ n. (23)

the value of λ is calculated by solving the equation

λ + 1 =
n

∏
i=1

(1 + λµi) (24)

where λ ∈ (−1,+∞) and λ 6= 0. This can be easily computed by calculating an (n − 1)st degree
polynomial and determining the distinct root greater than −1. The fuzzy integral is characterized
in proposed work as late combination method for consolidating classifiers scores. Assume that
C = {c1, c2 · · · cn} is a bunch of action classes of interest. Let X = {x1, x2 . . . xn} be a bunch of classifiers
and A be an input pattern considered for action recognition. Let fk : X → [0, 1] be the assessment of
the object A for class ck, for example, fk(xi) is sign of guarantee in the characterization of the input
pattern A for class ck utilizing the classifier xi. Value 1 for fk(xi) is characterizing outright guarantee
of input pattern A in class ck and 0 shows supreme uncertainty that the object is in ck.

Knowledge of the density function is needed to figure the fuzzy integral and µi, ith density is
considered as the level of significance of the source xi towards a ultimate choice. A maximal evaluation
of comprehension between the evidence and desire is spoken to as fuzzy integral. In the proposed
approach, the density function µ is approximated via preparing information gave to the classifier.
The calculation in the proposed algorithm characterizes the late combination approach for choice
combination. The Algorithm 1 defines the late fusion approach for decision fusion.
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Algorithm 1 Late fusion (decision fusion) using fuzzy integral.

procedure FUZZY –INTEGRAL

Calculate λ;
for each action class ck do

for each classifier xi do
Compute fk(xi)

Determine µk({xi})
end for
Calculate fuzzy integral for the action class

end for
Find out the action class label

end procedure

3.5. Classifier

Various classifiers have been used to evaluate the performance of proposed approach. The parameters
and their respective values are summarized in Table 3. We have considered the parameters kernel function
with degree (d), Gamma in Kernel Function (γ), and Regularization Parameter (c). Polynomial and Radial
basis kernel functions have been used.

Table 3. Parameters setting for SVM and their respective levels evaluated in experimentation [36].

Parameters Levels Levels
(Polynomial Kernel) (Radial Basis)

Degree of Kernel Function (d) 1; 2; 3; 4 -

Gamma in Kernel Function (γ) - 0.5, 1.0, 1.5, · · · , 5.0, 10.0

Regularization Parameter (c) 0.5, 1, 5, 10, 100 0.5, 1, 5, 10

The parameters of the ANN are hidden layer neurons (n), the value of the learning rate (lr),
momentum constant (mc), and number of epochs (ep). To find out the values of these parameters
efficiently, ten levels of n, nine levels of mc, and ten levels of ep are evaluated in the parameter setting
experiments. The value of lr is initially fixed at 0.1. The values of these parameters and their respective
levels are evaluated in Table 4.

Table 4. Parameters setting for neural network and their respective levels evaluated in experimentation [36].

Parameters Level(s)

Hidden Layer Neurons (n) 10, 20, · · · , 100

Number of Epochs (ep) 1000, 2000, · · · , 10,000

Momentum Constant values (mc) 0.1, 0.2, · · · , 0.9

learning Rate Value (lr) 0.1

3.5.1. Meta-Cognitive Neural Network (McNN) Classifier

Neural network provides a self-learning mechanism, whereas the meta-cognitive phenomenon
comprises self-regulated learning. Self-regulation makes the learning process more effective. Therefore,
there is need of jump from single or simple learning to collaborative learning. The collaborative learning
can be achieved using the cognitive component, which interprets knowledge, and the meta-cognitive
component, which represents the dynamic model of the cognitive component.

Self-regulated learning is a key factor of meta-cognition. It is threefold mechanism: it plans,
monitors, and manages the feedback. According to Flavell [37], meta-cognition is awareness and
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knowledge of the mental process for monitoring, regulate, and direct the desired goal. We present
here Nelson and Naren’s meta-cognitive model [38]. The cognitive component and meta-cognitive
component are prime entities of McNN. A detailed architecture of the Meta-cognitive Neural network
is shown in Figure 11.

Table 4: Parameters setting for Neural Network and Their Respective Levels evaluated in
Experimentation [36]

Parameters Level(s)

Hidden Layer Neurons (n) 10,20,· · · ,100
Number of Epochs (ep) 1000, 2000,· · · , 10000

Momentum Constant values (mc) 0.1, 0.2,· · · , 0.9
learning Rate Value (lr) 0.1
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3.5.2. Cognitive Component

The cognitive component includes three-layered feedforward radial basis function network.
It comprises an input layer, an output layer, and an intermediate hidden layer. The activation
function for hidden neurons is Gaussian whereas, for output neurons, it is a linear activation function.
Hidden layer neurons are built by the meta-cognitive algorithm. The predicted output ŷ of the McNN
classifier with k Gaussian neurons from i− 1 training samples is

ŷi
j = αj0 +

K

∑
k=1

αjkφk(xi), j = 1, 2, . . . , n, (25)

where αj0 = bias to jth output neuron, αjk is weight connecting the kth neuron to the jth output neuron,
and φk(xi) is the output of kth Gaussian neuron to the excitation x is represented as

φk(xi) = exp

(
−‖x

i − µl
k‖

2

(σl
k)

2

)
, (26)

where µl
k is the mean, σl

k is the variation in the mean value of the kth hidden neuron, and l represents
the hidden layer class.

3.5.3. Meta-Cognitive Component

Measures:

The meta cognitive component of McNN uses four parameters for regulation learning:
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1. Estimated class label:
Estimated class label ĉ can be calculated from predicted output ŷi as

ĉ = arg maxj∈1,2,...n ŷi
j. (27)

2. Maximum hinge error:
Hinge error estimates posterior probability more precisely than mean square error function,
and, eventually, the error between the predicted output ŷi and actual output yi hinge error loss
defined as

ej =

{
0 i f ŷi

jy
i
j > 1

ŷi
j − yi

j otherwise,
j = 1, 2, . . . , n (28)

The maximum absolute hinge error E is as follows,

E = maxj∈1,2,...n |ej|. (29)

3. Confidence of classifier:
The classifier confidence is given as

p̂(c/xi) =
min(1, max(−1, ŷi

j)) + 1

2
. (30)

4. Class-wise significance:
The input feature is mapped to higher dimensional S using Gaussian activation function applied
to hidden layer neurons. Therefore, it is considered to be on hyper-dimensional sphere. The
feature space S is described by the mean µ and σ variation in the mean value of Gaussian neurons.
Moreover, steps are shown in [39] for the calculation of potential ψ, which is given as

ψ ≈ − 2
K

K

∑
k=1

φ(xi, µl
k). (31)

In the classification problem, each class distribution is considered crucial and eventually affect
the accuracy of the classifier, significantly. Therefore, a measure of the spherical potential of new
training data x belongs to class c with respect to neurons belongs to same class has been utilized,
i.e., l = c. Class-wise significance ψc is calculated as

ψc =
1

Kc

Kc

∑
k=1

φ(xi, µc
k), (32)

where Kc is the number of neurons associated with class c. The sample contains relevant
information or not depends on ψc, the lowest value of it denotes sample consider novelty.

Learning Strategy:

Based on various measures, the meta-cognitive component has different learning strategies, which
deal with the basic rules of self-regulated learning. These strategies manage sequential learning process
by utilizing one of them for new training sample.

1. Sample Delete Strategy:
This strategy reduces the computational time consumed by learning the process. It reduces the
redundancy in training samples, i.e., it prevents similar samples being learnt by the cognitive
component. The measures used for this strategy are predicted class label and confidence level.
When actual class label and predicted class label of the new training data is equal and the
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confidence score is greater than expected value, it indicates that new training data training data
provides redundancy.

2. Neuron growth strategy:
New hidden neuron should be added to the cognitive component or not is decided by this
strategy. When new training sample include substantial information and the estimated class
label is different from an actual class label, new hidden neuron should be added to adopt
the knowledge.

3. Parameter update strategy:
Parameters of the cognitive component are updated in this strategy from new training sample.
The value of parameters change when an actual class label is same as the predicted class of sample
and maximum hinge loss error is greater than a threshold set for adaptive parameter updation.

4. Sample reverse strategy:
Fine tuning of parameters of the cognitive component has been established by new training
samples, which are having some information but not much relevant.

The parameters are updated in McNN, when the desired class is equal to the actual class. The value
of maximum hinge error E for neuron growth and the parameter update strategy is between 1.2 and
1.5, and 0.3 and 0.8, respectively. For parameter update strategy, If the value is close to 1, it will avoid
system to use any sample. The value is close to 0 cause all samples to be used in updation. In neuron
addition strategy, the value 1 lead of E lead to misclassification of all samples and the value 2 causes
few neurons will be added. Other parameters are selected accordingly and the range of values of
parameters have been shown in Table 5.

Table 5. Parameter settings for McNN classifier.

Parameter Strategy-Wise Threshold

Sample Delete Neuron Growth Parameter Update Sample Reverse

Estimated class label ĉ

maximum hinge error E [1.2–1.5] [0.3–0.8]

Confidence of classifier p̂(c/xi) [0.85–0.95]

Class-wise significance ψc [0.4–0.8]

4. Performance Evaluation

A performance evaluation of the proposed work has been done using a sufficient set of performance
parameters through extensive experiments on standard datasets, which is described as follows.

4.1. Database Used

The proposed approach was applied to two datasets: the KTH [40] and Weizmann datasets [41].
These datasets are popular benchmarks for action recognition in constrained video sequences.
These datasets incorporate only one action in each frame with the static background.

4.1.1. KTH Dataset

The KTH dataset contains action clips with variations in the background, object, and scale, and
was thus useful for determining the accuracy of our proposed method. The video sequences contain
six different types of human actions (i.e., walking, jogging, running, boxing, hand waving, and hand
clapping) performed several times by 25 subjects in four different scenarios: outdoors, outdoors with
scale variation (zooming), outdoors with different clothes (appearance), and indoors, as illustrated
below. Static and homogeneous backgrounds are considered in all sequences, where the frame rate
is 25 frames per second. The resolution of these videos is 160 × 120 pixels, and the duration of the
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videos is four seconds on average. There are 25 videos for each action in the four different categories.
Certain snapshots of video sequences from the KTH dataset are shown in Figure 12.

Figure 12. Video sequences from KTH datasets.

4.1.2. Weizmann Dataset

The Weizmann database [41] is a collection of 90 low-resolution (180× 144, de-interlaced 50 frames
per second) video sequences. The dataset contains nine different humans, each one performing ten
natural actions: run, walk, skip, jumping-jack (or shortly jack), jump forward on two legs (or jump),
jump in place on two legs (or pjump), gallop sideways (or side), wave two hands (or wave2), wave one
hand (or wave1), or bend. Snapshots of the Weizmann dataset are shown in Figure 13.



Sensors 2020, 20, 7299 17 of 32

Figure 13. Video sequences from Weizmann datasets.

4.1.3. UCF11 Dataset

The UCF11 dataset [42] considered 11 human action with 1600 videos. These videos comprise
youtube videos defining real human actions. The actions are performed by 25 various human objects
under challenging conditions like large changes in viewpoint change, object scale, object appearance
and pose, camera motion, cluttered background, illumination variation, etc. There are 11 action
categories in UCF11: basketball shooting (Shoot), biking/cycling (Bike), diving (Dive), golf swinging
(Golf ), horse back riding (Ride), soccer juggling (Juggle), swinging (Swing), tennis swinging (Tennis),
trampoline jumping (Jump), volleyball spiking (Spike), and walking with a dog (Dog).

4.1.4. HMDB51 Dataset

The HMDB51 dataset [43] is built up using videos, adopted from YouTube, movies, and various
other sources for managing unconstrained environment. The datasets have the variety of 6849 video
clips and 51 action categories. Each class has the at least 101 clips.

4.1.5. UCF101 Dataset

UCF101 is a dataset [44] of 13,320 videos including 101 different action classes. This dataset
reflects the large diversity in terms of human appearance performing the action, scale, and viewpoint
of the object, background clutter, and illumination variation, resulting in the most challenging dataset.
This dataset is bridging path to real-time action recognition.

4.2. The Testing Strategy

The KTH dataset contains 600 video samples of 6 types of human actions. The dataset is divided
into two parts: 80% and 20%. We have used a 10-fold leave-one-out cross-validation scheme on the 80%
part and left out 20% for testing. In this experiment, nine splits are used for training, with the remaining
split being used for the validation set, which optimizes the parameters of each classifier. The same
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testing strategy has been implemented for Weizmann dataset. Leave-One-Group-Out cross-validation
has been used for the UCF11 dataset. A cross-validation strategy used for the HMDB51 dataset, the
same as in [43]. The whole dataset is divided into three portions. Each includes 70 training and 30
testing video clips. The training strategy used for UCF101 is three split technique evaluated for training
and testing.

4.3. Experimental Setup

Experiments were performed on an Intel(R) Core(TM) i5 (2nd Gen) 2430M CPU @ 2.5 GHz with
6 GB of RAM and a 64-bit operating system. The names of the parameters and the values used
in this proposed work are listed in Tables 3 and 4, respectively. In this section, we examine the
performance of our proposed approach and compare it with the state-of-the-art methods. We also
compare different classifier performances with our feature extraction technique for the proposed
framework. All confusion matrices address the average accuracy of all features for the SVM classifier
with different kernel functions, as well as for the ANN with different numbers of hidden layers.

In this experiment, we have also considered different types of fusion techniques, i.e., early and
late have been considered for experimentation. We have employed five various fusion strategies in the
proposed work. Figures 14–19 present the various models of the early fusion and late fusion techniques
used in our experiments. In Figure 14, early fusion has been applied to features and fed to ANN
classifier, and some early fusion of features are fed to SVM classifier as shown in Figure 15. Features are
provided to MKL with base learner as ANN, and MKL with base learner as SVM, these strategies are
defined in Figures 16 and 17, respectively. Figure 18 shows a combination of classifiers scores using
late fusion techniques, where we have used SVM classifier in this technique. Meta-cognitive Neural
network has been used with all proposed features as shown in Figure 19.

Fusion of
Features

HOGAVG10

OBJ_DISP

OBJ_VELO

R_FHOG

Classifier
(ANN)

Class
Label

Figure 14. Early fusion with ANN.

Fusion of
Features
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OBJ_DISP

OBJ_VELO

R_FHOG

Classifier
(SVM)
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Figure 15. Early fusion with SVM.
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Figure 16. MKL with ANN.
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Figure 17. MKL with SVM.
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Figure 18. Late fusion.
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Figure 19. Meta-cognitive neural network.

4.4. Empirical Analysis

The confusion matrix is shown in Tables 6 and 7 for different combinations of feature extraction
and classifier techniques for the KTH dataset. Tables 8–10 show the results with the Weizmann dataset.
We have considered linear, polynomial, and radial basis kernel functions for the SVM classification.
The results demonstrate that we obtain the good result (97%) with the radial basis function SVM
and best result 99.98% with the late fusion using fuzzy integral approach compare to other proposed
approaches. Ambiguity arises from the classes like boxing, hand waving and hand clapping actions.
Furthermore, running, walking and jogging are misclassified by all classifiers.
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Table 6. Confusion matrix for SVM classifier with different kernel functions for KTH dataset.

Linear SVM Polynomial SVM Radial Basis Function SVM
aaaaaaaaaa

Actual
Class

Predicted
Class Box Jog Run Walk Wave Clap Box Jog Run Walk Wave Clap Box Jog Run Walk Wave Clap

box 91.50 0.0 0.0 0.0 5.25 3.25 96.46 0.0 0.0 0.0 2.20 1.34 97.46 0.0 0.0 0.0 1.68 0.86
jog 0.0 78.67 15.53 5.8 0.0 0.0 0.0 95.71 3.25 1.04 0.0 0.0 0.0 97.18 2.24 0.58 0.0 0.0
run 0.0 14.82 81.48 3.7 0.0 0.0 0.0 2.48 96.04 1.48 0.0 0.0 0.0 2.16 97.28 0.56 0.0 0.0

walk 0.0 7.63 10.0 82.37 0.0 0.0 0.0 2.28 2.73 94.99 0.0 0.0 0.0 1.60 1.40 97 0.0 0.0
wave 4.82 0.0 0.0 0.0 89.67 5.51 2.73 0.0 0.0 0.0 95.23 2.04 0.58 0.0 0.0 0.0 97.94 1.48
clap 5.47 0.0 0.0 0.0 1.36 93.17 3.27 0.0 0.0 0.0 1.35 95.38 1.29 0.0 0.0 0.0 1.68 97.03

Table 7. Confusion matrix for Neural Network with different number of Hidden layer for KTH dataset.

Neural Network with 1 Hidden Layer Neural Network with 2 Hidden Layer
aaaaaaaaaa

Actual
Class

Predicted
Class Box Jog Run Walk Wave Clap Box Jog Run Walk Wave Clap

box 97.10 0.0 0.0 0.0 1.46 1.44 92.27 0.0 0.0 0.0 4.98 2.75
jog 0.0 85.63 9.09 5.28 0.0 0.0 0.0 83.40 11.65 4.95 0.0 0.0
run 0.0 6.49 88.67 4.34 0.0 0.0 0.0 10.84 84.93 4.23 0.0 0.0

walk 0.0 6.68 7.35 85.97 0.0 0.0 0.0 8.41 9.36 82.23 0.0 0.0
wave 5.82 0.0 0.0 0.0 88.37 5.81 5.71 0.0 0.0 0.0 86.71 7.58
clap 8.64 0.0 0.0 0.0 5.26 86.10 8.23 0.0 0.0 0.0 4.59 87.18

Table 8. Confusion matrix for SVM classifier with different kernel functions for Weizmann dataset.

Linear SVM Polynomial SVM
aaaaaaaaaa

Actual
Class

Predicted
Class Bend jack Jump Sjump Run Side Skip Walk Wave1 Wave2 Bend Jack Jump Sjump Run Side Skip Walk Wave1 Wave2

bend 91.64 5.46 2.5 0.4 0 0 0 0 0 0 93.75 2.45 0 3.1 0.7 0 0 0 0 0
jack 0 86.23 3.21 3.54 0 0 0 0 0 0 0 90.37 7.25 2.38 0 0 0 0 0 0

jump 0 0 88.58 3.73 0 0 2.604 0 0 0 0 3.36 91.04 5.1 0 0 0 0 0 0
sjump 0 4.62 11.23 84.15 0 0 0 0 0 0 0 0 9.53 87.34 3.03 0 0 0 0 0

run 0 0 0 0 89.20 2.13 0 3.67 0 0 0 0 0 3.79 91.39 0 0 4.32 0 0
side 0 0 0 0 0 91.97 1.69 6.34 0 0 0 0 0 0 0 93.42 1.93 4.6 0 0
skip 0 0 1.32 2.79 1.96 0 93.43 0 0 0 0 0 0 1.72 1.63 2.30 94.30 0 0 0
walk 0 0 0 2.9 7.35 0 0 87.23 0 0 0 0 0 2.21 7.59 0 0 90.32 0 0

wave1 0 0.25 0 0.75 0 0 0 0 94.76 4.24 0 0 0 0.64 0 0 0 0 95.38 3.93
wave2 0 0 0 0 0 0 0 0 3.75 96.25 0 0 0 0 0 0 0 0 2.36 97.14
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Table 9. Confusion matrix for SVM classifier with different kernel functions for Weizmann dataset.

Radial Basis Function SVM
aaaaaaaaaa

Actual
Class

Predicted
Class Bend Jack Jump Sjump Run Side Skip Walk Wave1 Wave2

bend 100 0 0 0 0 0 0 0 0 0
jack 0 99.24 0.76 0 0 0 0 0 0 0

jump 0 0 98.37 1.63 0 0 0 0 0 0
sjump 0 0 1.33 98.67 0 0 0 0 0 0

run 0 0 0 1.68 98.32 0 0 0 0 0
side 0 0 0 0 0 99.54 0 0.46 0 0
skip 0 0 0 0 0 0 100 0 0 0
walk 0 0 0 0 0.72 0 0 99.28 0 0
wavel 0 0 0 0 0 0 0 0 100 0
wave2 0 0 0 0 0 0 0 0 0 100

Table 10. Confusion matrix for Neural Network with different number of Hidden layer for Weizmann dataset.

Neural Network with 1 Hidden Layer Neural Network with 2 Hidden Layer
aaaaaaaaaa

Actual
Class

Predicted
Class Bend Jack Jump Sjump Run Side Skip Walk Wave1 Wave2 Bend Jack Jump Sjump Run Side Skip Walk Wave1 Wave2

bend 91.42 5.23 3.35 0 0 0 0 0 0 0 93.73 4.16 2.11 0 0 0 0 0 0 0
jack 0 93.21 2.37 4.42 0 0 0 0 0 0 0 94.34 4.51 1.15 0 0 0 0 0 0

jump 0 2.79 91.08 6.13 0 0 0 0 0 0 0 1.68 92.47 5.85 0 0 0 0 0 0
sjump 0 0 3.71 96.29 0 0 0 0 0 0 0 0 2.17 97.23 0 0 0 0 0 0

run 0 0 0 0 89.68 0.54 0 9.78 0 0 0 0 0 0 90.35 1.01 0 8.64 0 0
side 0 0 0 0 0 85.38 8.45 6.17 0 0 0 0 0 0 0 89.78 7.36 2.86 0 0
skip 0 0 0 0 0 9.37 84.65 5.98 0 0 0 0 0 0 0 9.84 86.47 3.67 0 0
walk 0 0 0 0 0 1.72 8.26 90.02 0 0 0 0 0 0 0 1.03 7.38 91.59 0 0

wave1 0 0 0 0 0 0 0 0 86.73 13.27 0 0 0 0 0 0 0 0 89.58 10.42
wave2 0 0 0 0 0 0 0 0 8.66 91.34 0 0 0 0 0 0 0 0 6.11 93.89
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The confusion matrix with Radial basis function SVM (RBF SVM) for the UCF11 dataset is shown
in Table 11. We accomplished 77.05% accuracy in this proposed approach for UCF11 dataset with
previously mentioned parameters SVM classifier as in Table 4. Tables 12–14 shows the confusion
matrix for KTH,Weizmann & UCF11 dataset using McNN. The UCF11 dataset has unconstrained
environments and contains various challenges in video sequences; the proposed feature extraction
technique is not adequate for describing the action performed by the human object. Therefore, we can
see that a lot of actions are misclassified into other actions like Shoot is misclassified as Swing, etc.

Table 11. Confusion matrix for RBF SVM for UCF11 dataset.

Shoot Bike Dive Golf Ride Juggle Swing Tennis Jump Spike Dog
Shoot 81.3 0 0 0 0 0 13.5 0 0 5.2 0
Bike 0 79.7 0 0 16.7 0 0 0 0 0 3.6
Dive 13.6 0 83 0 0 0 0 0 0 3.4 0
Golf 3.2 0 8.6 85.6 0 1.4 1.2 0 0 0 0
Ride 0 15.9 0 0 78.2 0 0 0 0 1.8 4.1

Juggle 0 0 0 4.8 0 75.8 0 19.4 0 0 0
Swing 0 7.9 0 0 0 0 68.3 0 23.8 0 0
Tennis 0 0 0 14.6 0 9.8 0 71.9 0 3.7 0
Jump 0 0 0 0 5.7 9.9 0 0 84.4 0 0
Spike 0 0 18.5 0 0 0 0 10.9 0 70.6 0
Dog 9.3 0 10.8 0 0 11.2 0 0 0 0 68.7

Table 12. Confusion matrix of McNN for KTH dataset.

Neural Network with 1 Hidden Layer
aaaaaaaaaa

Actual
Class

Predicted
Class Box Jog Run Walk Wave Clap

box 100 0.0 0.0 0.0 0 0
jog 0.0 100 0 0 0 0
run 0.0 0 100 0 0 0

walk 0.0 0 0 100 0.0 0.0
wave 0 0.0 0.0 0.0 100 0
clap 0 0.0 0.0 0.0 0 100

Table 13. Confusion matrix of McNN for Weizmann dataset.

aaaaaaaaaa

Actual
Class

Predicted
Class Bend Jack Jump Sjump Run Side Skip Walk Wave1 Wave2

bend 100 0 0 0 0 0 0 0 0 0
jack 0 100 0 0 0 0 0 0 0 0

jump 0 0 100 0 0 0 0 0 0
sjump 0 0 0 100 0 0 0 0 0 0

run 0 0 0 0 100 0 0 0 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 0 0 0 0 100 0 0 0
walk 0 0 0 0 0 0 0 100 0 0
wavel 0 0 0 0 0 0 0 0 100 0
wave2 0 0 0 0 0 0 0 0 0 100

Table 14. Confusion matrix of McNN for UCF11 dataset.

Shoot Bike Dive Golf Ride Juggle Swing Tennis Jump Spike Dog
Shoot 81.3 0 0 0 0 0 13.5 0 0 5.2 0
Bike 0 79.7 0 0 16.7 0 0 0 0 0 3.6
Dive 13.6 0 83 0 0 0 0 0 0 3.4 0
Golf 3.2 0 8.6 85.6 0 1.4 1.2 0 0 0 0
Ride 0 15.9 0 0 78.2 0 0 0 0 1.8 4.1

Juggle 0 0 0 4.8 0 75.8 0 19.4 0 0 0
Swing 0 7.9 0 0 0 0 68.3 0 23.8 0 0
Tennis 0 0 0 14.6 0 9.8 0 71.9 0 3.7 0
Jump 0 0 0 0 5.7 9.9 0 0 84.4 0 0
Spike 0 0 18.5 0 0 0 0 10.9 0 70.6 0
Dog 9.3 0 10.8 0 0 11.2 0 0 0 0 68.7
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Accuracy obtained for KTH dataset using late fusion using DCNN is 99.19% and late fusion using
fuzzy integral is 99.98% i.e. effectiveness of fuzzy integral technique compared to DCNN technique as
late fusion is higher as shown in Table 15.

Moreover, the performance of five broad groups is evaluated in this work using the particular
model as shown in Figure 20. Recognition rate has been calculated for all group categories. A Large
portion of performance has been gain from sports category. Even all other categories are performing
impressively.

Tables 15 and 16 compare our results with the state-of-the-art methods. Table 15 compares our
proposed approach with 21 other approaches that used the KTH dataset. Our approach obtained
an accuracy of 100%, which is outperformed to those of the state-of-the-art methods. The proposed
approach is compared with the state-of-the-art methods for the Weizmann dataset, which is shown
in Table 16. The result shows that our method outperforms the other methods. These comparisons
demonstrate that the proposed approach is effective and superior in classifying actions.

Table 15. State-of-the-Art Comparison of Accuracy of Proposed Approaches for KTH dataset.

Method Accuracy

Heng et al. 2011 [11] 94.2

Liu et al. 2016 [15] 95.3

Beaudry et al. 2016 [17] 95

Zheng et al. 2018 [20] 94.58

Schuldt et al. 2004 [40] 71.72

Jingen et al. 2009 [42] 91.8

Dollar et al. 2005 [45] 80

Jiang et al. 2006 [46] 84.44

Juan et al. 2008 [47] 83.33

Chuohao et al. 2006 [48] 86

Ke et al. 2007 [49] 81

Kim et al. 2007 [50] 95.33

Jhuang et al. 2007 [51] 91.6

Laptev et al. 2008 [52] 91.83

Rapantzikos et al. 2009 [53] 88.30

Bregonzio et al. 2009 [54] 93.17

Klaser et al. 2008 [55] 91.4

Fathi et al. 2008 [56] 90.50

Le et al. 2011 [57] 93.9

Kovashka et al. 2010 [58] 94.53

Yeffet et al. 2009 [59] 90.1

Wang et al. 2013 [60] 95.3

Early Fusion using ANN 84.12

Early Fusion using SVM 92.32

MKL with ANN 93.03

MKL with SVM 95.85

Late Fusion using DCNN 96.19

Late Fusion using 98.98
Fuzzy Integral

McNN 100
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Table 16. State-of-the-Art Comparison of Accuracy of Proposed Approaches for Weizmann dataset .

Method Accuracy

Liu et al. 2016 [15] 100

Lena et al. 2009 [41] 88.2

Bregonzio et al. 2009 [54] 96.66

Klaser et al. 2008 [55] 84.3

Grundmann et al. 2008 [61] 96.39

Weinland et al. 2008 [62] 93.33

Nguyen et al. 2011 [63] 87.7

Ballan et al. 2009 [64] 92.41

Yang et al. 2009 [65] 97.2

Chen et al. 2009 [66] 100

Vezzani et al. 2010 [67] 86.7

Dhillon et al. 2009 [68] 88.5

Lin et al. 2009 [69] 100

Natarajan et al. 2010 [70] 99.5

Yan et al. 2009 [71] 99.4

Early Fusion using ANN 91.943

Early Fusion using SVM 94.34

MKL with ANN 92.09

MKL with SVM 93.89

Late Fusion using DCNN 95.25

Late Fusion using 97.97
Fuzzy Integral

McNN 100
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Figure 20. Accuracy comparison of different models on UCF101 dataset action categories.

Tables 17–19 show the state-of-the-art comparison for UCF11 dataset, HMDB-51 dataset and
UCF101 dataset, respectively. Our results are achieving very good classification rate compared to other
approaches, but humbler than the state-of-the-art results. Compare to early fusion and intermediate
fusion techniques, late fusion techniques are superior. In late fusion techniques, fuzzy integral is
performing better than DCNN late fusion technique for UCF11 dataset.
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Table 17. State-of-the-Art Comparison of Accuracy of Proposed Approaches for UCF11 dataset .

Method Accuracy

Wang et al. 2011 [11] 84.2

Liu et al. 2009 [72] 71.2

Ikizler et al. 2010 [73] 75.2

Mota et al. 2013 [74] 72.7

Sad et al. 2013 [75] 72.6

Wang et al. 2013 [60] 89.9

Figueiredo et al. 2014 [76] 59.5

Hasan et al. 2014 [77] 54.5

Kihl et al. 2014 [78] 86.0

Maia et al. 2015 [79] 64.0

Patel et al. 2016 [80] 89.43

Early Fusion using ANN 69.96

Early Fusion using SVM 74.05

MKL with ANN 75.07

MKL with SVM 78.38

Late Fusion using DCNN 79.88

Late Fusion using 82.12
Fuzzy Integral

McNN 89.93

Table 18. State-of-the-Art Comparison of Accuracy of Proposed Approaches for HMDB-51 dataset .

Method Accuracy

Liu et al. 2009 [72] 71.2

Kuehne et al. 2011 [43] 23.0

Kliper et al. 2012 [81] 29.2

Wang et al. 2013 [60] 46.6

Wang et al. 2013 [12] 57.2

Can et al. 2013 [82] 39.0

Ni et al. 2015 [13] 66.7

Lan et al. 2015 [14] 65.1

Liu et al. 2016 [15] 48.4

Hongyang et al. 2016 [16] 60.3

Beaudry et al. 2016 [17] 49.6

Liu et al. 2016 [83] 58.1

Ahsan et al. 2018 [19] 28.5

Lin et al. 2018 [21] 63.0

Lan et al. 2017 [84] 75

Zhu et al. 2018 [85] 74.8

Zhu et al. 2018 [84] 78.7

Carreira et al. 2018 [85] 80.2

Early Fusion using ANN 44.68

Early Fusion using SVM 49.32

MKL with ANN 52.43

MKL with SVM 54.19

Late Fusion using DCNN 55.02

Late Fusion using 55.89
Fuzzy Integral

McNN 67.03
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Table 19. State-of-the-Art Comparison of Accuracy of Proposed Approaches for UCF101 dataset .

Method Accuracy

Wang et al. 2013 [12] 86

Simonyan et al. 2014 [86] 88

Karpathy et al. 2014 [87] 65.4

Donahue et al. 2015 [88] 82.66

Sun et al. 2015 [89] 88.1

Lan et al. 2015 [14] 89.1

Feichtenhofer et al. 2016 [90] 92.5

Zhang et al. 2016 [91] 86.4

Cherian et al. 2017 [92] 94.6

Seo et al. 2017 [93] 85.74

Shi et al. 2017 [94] 92.2

Wang et al. 2017 [95] 91.32

Zheng et al. 2018 [20] 95.1

Ahsan et al. 2018 [19] 67.1

Zheng et al. 2018 [20] 95.1

Lin et al. 2018 [21] 91.5

Lan et al. 2017 [84] 95.3

Zhu et al. 2018 [85] 95.8

Zhu et al. 2018 [84] 97.1

Carreira et al. 2018 [85] 97.9

Early Fusion using ANN 64.23

Early Fusion using SVM 79.87

MKL with ANN 81.93

MKL with SVM 89.32

Late Fusion using DCNN 91.87

Late Fusion using 93.15
Fuzzy Integral

McNN 94.59

In Table 20, we compare our approach with various convolutional neural network architectures.
For this comparison, the average accuracy has been calculated over three splits as is the original
setting. For the UCF101 dataset, we find that our McNN with proposed features performed well
compared with state-of the-art methods. For UCF101, we get a 1% improvement in classification
accuracy. However, our result for HMDB51 dataset is not the best result, but the improvement in
resultant accuracy is considerable.
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Table 20. Classification accuracy against the state-of-the-art on HMDB51 and UCF101 datasets averaged
over three splits with CNN architectures.

Method UCF101 HMDB51

Two Stream CNN [86] 88 59.4

Slow Fusion CNN [87] 65.4 -

EMV+RGB-CNN [91] 86.4 -

Spatio-temporal CNN [89] 88.1 59.1

Very Deep Two Stream Fusion [90] 93.5 69.2

Generalized Rank Pooling [92] 93.5 72.0

Frame Skipping + Trajectories Rejection [93] 85.74 58.91

Three-stream sDTD [94] 92.2 65.2

Order Pooling [95] 91.32 67.35(Dyn. Flow+RGB+(S)Op.Flow+IDT-FV)

Deep Feature [84] 95.3 75

End-to-End video [85] 95.8 74.8

Two Stream CNN [96] 97.1 78.7

Kinetics [97] 97.9 80.2

Proposed Approach (McNN) 94.59 67.03

5. Conclusions

In this paper, we have employed a HAR-based novel feature fusion approach. HOG, R_FHOG,
displacement, and velocity features are combined to prepare the feature descriptor in this approach.
The classifiers used to classify human action are an ANN, a SVM, MKL, late fusion approach, and
McNN. The experimental results demonstrate that this proposed approach can easily recognize actions
such as running, walking, and jumping. The McNN outperforms other classifiers. The proposed
approach performs reasonably well compared with the majority of existing state-of-the-art methods.
For the KTH dataset, our proposed approach outperforms existing methods, and for the Weizmann
dataset our approach performs similarly to standard available methods. We have also checked the
system performance with unconstrained UCF11 dataset, HMDB51 dataset, and UCF101 dataset, and
its performance is approximate to the state-of-the-art method.

In the future, an overlapping window can be utilized for the feature extraction technique to
increase the accuracy of the proposed method. Here, the proposed work focuses only on a constrained
video; however, we can also use this proposed feature set for an unconstrained video, where more
than one object is present in the video performing the same action or in the video performing multiple
actions. The traditional neural network can be replaced by the convolutional neural network for further
enhancements. We can conclude that fusion of features is a vital idea to enhance the performance of
the classifier, where a large complex set of features available. Late fusion was found to be better than
early fusion as features are used by multiple classifiers because of their competitiveness for late fusion.
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