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Abstract: Air pollution has been an vital issue throughout the 21st century, and has also significantly
impacted the agricultural community, especially farmers and yield crops. This work aims to review
air-pollution research to understand its impacts on the agricultural community and yield crops,
specifically in developing countries, such as India. The present work highlights various aspects of
agricultural damage caused by the impacts of air pollution. Furthermore, in the undertaken study, a
rigorous and detailed discussion of state-wise and city-wise yield-crop losses caused by air pollution
in India and its impacts has been performed. To represent air-pollution impacts, the color-coding-
based AQI (Air Quality Index) risk-classification metrics have been used to represent AQI variations
in India’s agrarian states and cities. Finally, recent impacts of air pollution concerning AQI variations
for May 2019 to February 2020, Seasonal AQI variations, impacts of PM2.5, and PM10 in various
agrarian states and India cities are presented using various tabular and graphical representations.

Keywords: air-pollution analysis; impact analysis; crops; agricultural damage; agricultural community;
farmers; advanced data analytics

1. Background and Motivation

Several scientists are actively involved in the environmental monitoring field due to
their concern over this critical problem. In [1], the authors conducted a detailed review of
acute respiratory infections due to burning from an Indian perspective using satellite and
national-health survey data. The primary purpose of this study was to analyze economic
and health-related costs in Northern India. In [2], the authors highlighted that respiratory
diseases are considered as the leading causes of deaths of farmers. The study focused on
the respirable air particles released by agricultural crop-residue burning (ACRB) and found
the burdens caused by it. The statistics gathered point to a large investment gap in the
agriculture sector. Stopping farmers from burning stubble and finding alternative crop-
residue disposal solutions is the key, eventually catering to an improvement in population-
level respiratory health. This study shows how large an impact wrongful crop-burning
techniques have on farmer mortality and general-population mortality rates. The effects of
air pollution on the world community are well established. However, it can significantly
affect food crop yields and their nutritional quality and safety, which are essential for food
security crops. In developing countries such as India, air pollution halved the yield of
wheat and rice crops. Recently, cultural and adversarial actions have led to a new peak
in pollution levels around the globe and specifically in India, which has spread toward
rural areas where primary agricultural activities are conducted, affecting farmers’ lifespans.
The cause of air pollution is mainly emissions from industrial sources, power generation,
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waste disposal, the operation of internal combustion engines, and the burning of stubbles
and paddies. Air pollutants, such as particulate matter and liquid and solid wastes, can
cause health hazards, such as sinusitis, asthma, organic dust toxic syndrome, nasal irritation,
central nervous system symptoms, and death [3–8]. Approximately 2.5 million farmers on
the Indo-Gangetic plain grow two crops per year in India: rice and wheat. Rice is grown in
such a manner that its water needs are met by the rainy season, such that in a short period
of 10 to 20 days, the fields are cleared of wheat. One of the critical issues in this situation is
the domestic burning of biofuels, which causes more deaths than deaths due to industrial
outages [9–12].

Figure 1a,b represent the impact that air pollution has on farming land and crops. With
farmers forced to burn the stubble of their harvested crops each year, the agriculture sector
contributes equally, if not more, to the pollution that affects the country [13]. Farmers must
burn paddy fields to dispose of stubble after harvesting because they have no other option.
Farmers resort to burning stubble as it is easy and requires minimal costs. Hiring combine
harvesters is an option, but most farmers reject this to avoid any extra costs. Stubble burning
renders the soil less fertile, such that farmers compensate for this loss of fertility by using
more fertilizers, water, and power for the same area [14]. This creates a chain reaction of
more pollution, less fertile land, zero technological improvements, and increased mortality
and morbidity rates. If more sustainable production methods are used, agriculture’s adverse
effects on the environment can be seen. In fact, in some cases, agriculture plays a vital role
in repelling them, for example, by storing carbon in the soil, increasing water infiltration,
and preserving rural landscapes and biodiversity [15]. Livestock accounts for 40 percent of
global emissions, mineral fertilizers 16 percent, and biomass burning and crop residues
18 percent. Burning plant biomass is another primary air-pollutant source, including carbon
dioxide, nitrous oxide, and smoke particles. Humans are estimated to burn 90 percent of
the biomass, primarily through deforestation and deforestation, by deliberately burning
down forest vegetation with forage residues [6,16,17].

(a) (b)

Figure 1. The impacts of air pollution on (a) farming land, (b) crops.

Therefore, drafting communication strategies that involve access to information on
no-burn alternatives is necessary. Due to prolonged exposure to pesticides and fertil-
izers, airborne emissions emitted by the air cause numerous health-related issues for
these farmers [18]. Therefore, the loss of biodiversity is not limited to the land-clearing
phase of agricultural development but may persist for a very long time. The most com-
mon respiratory diseases in farmers are acute bronchitis (for swine confinement workers),
asthma exacerbation, chronic obstructive pulmonary disease (COPD) (chronic exacer-
bation), mucous membrane irritants (sick-building syndrome), and organic dust toxic
syndrome (ODTS). These infections are the result of exposure to gases, such as nitrogen
dioxide (NO2), hydrogen sulfide (H2S), ammonia (NH3), carbon dioxide (CO2), methane
(CH4), and sulfur dioxide (SO2) [19,20]. India is an agricultural economy, which indicates
that it relies heavily on the agricultural industry for its surplus and its main component
of producing agricultural land. Livestock farming and crop production are the main
agricultural activities in India. Agro-industry input mainly focuses on the raw materials
used in agricultural production, including the input of native and chemical components,
agricultural fields, and equipment [21–23]. Various types of chemical applications, such
as chemical fertilizers, pesticides, and food additives, in agricultural production exhibit
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different agricultural outcomes. The use of pesticides and fertilizers plays a significant
role in increasing agricultural production and ensuring agricultural products. Fertilizer
provides a variety of nutrients needed for crop growth and increases production. Pesti-
cides reduce the economic costs of pests, plant diseases, and weeds during agricultural
production. However, numerous scientists have reported on the harmful residues from
agricultural chemicals in the air, soil, water, and even in human blood and adipose tis-
sue [24–30]. Previous studies have shown that the excessive use of inorganic fertiliz-
ers causes the accumulation of pollutants, such as As, Cd, F, Pb, and Hg, in soils [31].
This is consistent with findings showing that external pesticide use significantly impacts
air pollution within agricultural communities [32], shown in Toxic Air reports, (https:
//www.greenpeace.org/southeastasia/press/3594/toxic-air-the-price-of-fossil-fuels/, ac-
cessed on 4 September 2022).

As the fifth-largest cause of death in India, with an estimated death toll of approxi-
mately 620,000, we must emphasize external pollution as an important factor [33]. External
pollution kills more people every year than household pollution and affects the overall
pollution index [34–38]. The highest level of pollution from the agricultural sector is de-
rived from methane, ammonia, and carbon dioxide. Agricultural activities that generate
ammonia in the atmosphere accounted for 83% of the total air pollution from agriculture in
2015. The agricultural sector is polluting the environment, where grain and oil crops appear
to be the culprit [39]. This can be explained by extensive agricultural practices and process
machinery (i.e., gasoline, fuel, oil, and preparation). The resulting pollution in agriculture
can affect people in different professions, and living or working in neighboring towns or
cities, typical for India’s northern regions. With the agricultural climate and harvesting in
Uttar Pradesh, Haryana, and Punjab, there are significant changes in the Air Quality Index
of Delhi, which is due to fluctuations in the average CH4 and NO2 concentrations of the
atmosphere. This leads to bad air quality for people living in these areas. Thus, external
air quality has become a significant concern for the public and policymakers [40]. Table 1
represents a list of terminologies used in the conducted experiments.

Table 1. A list of used terminologies.

Risk Classification AQI Values

AQI Air Quality Index

PM2.5 Particulate matter 2.5

PM10 Particulate matter 10

NO2 Nitrogen dioxide

CH4 Methane

H2S Hydrogen sulphide

O3 Ozone

As Arsenic

Cu Copper

HG Mercury

SO2 Sulfur dioxide

WHO World Health Organization

2. Related Work

Fatmi et al. [41] analyzed black carbon’s impacts on urban atmospheres in Southeast
Asia regions. Cristina et al. [42] discussed the diverse impacts of black carbon on the
surrounding environment and its health-related risks in various Thailand regions. This
study shows black carbon, a heavy pollutant in the region, causing a much larger problem.
Similarly, in India, PM2.5 and PM10 have been the major pollutants, which have their health-

https://www.greenpeace.org/southeastasia/press/3594/toxic-air-the-price-of-fossil-fuels/
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related risks. A review on paddy and wheat stubble blazing has been conducted for various
regions of India. Marks et al. [43] revealed that the burning of biomass not only affects
climate conditions, but it also damages plant nutrients. In this study, the environmental
cost of paddy straw burning in northwest India was calculated. The west is the country’s
major crop producer and contributes to India’s rising pollution problems. This study
helps us focus on India’s major cities and gives the statistical information about the cost-
effectiveness of current crop-burning techniques. In conclusion, we find how the social
cost of burning per annum in the region is extreme. The ecosystem there is deprived
of other important improvements due to incorrect burning techniques. Zhang et al. [44]
reviewed livestock- and cropland-related data to reduce the effects of agriculture-based
pollution in China. North et al. [45] conducted a review which discusses the benefits of
excretion nitrogen on human health and food security. The review also discussed the ways
of mitigating agricultural pollution using excretion nitrogen. Daxini et al. [45] reviewed
farmer characteristics to identify good health practices for farmers’ wellbeing. The review
also describes how better nutrient management can mitigate the risk of nutrient loss to
the surrounding environment. This study, performed in Ireland, focuses on optimizing
resource use efficiency. Improper management of agricultural production can lead to
an increased risk of the loss of natural resources in the environment; this study helps
us establish important future directions for the use of this review paper (CPCB reports,
https://cpcb.nic.in/about-namp/, accessed on 4 September 2022). Zhang and Cao [2]
proposed methods to manage PM2.5 pollution due to biomass burning in China. This study
also revealed that the China government has taken proactive steps in rural and urban
regions to mitigate biomass-burning emissions. The study also discussed the negative
impacts of biomass burning in increasing local and regional pollution risks in China.
Chin et al. [46] found that China and India have a common major pollutant, PM2.5, and this
study covers multiple solutions, which can be used in India after PM2.5 concentration levels
are controlled. Chen et al. [47,48] analyzed the effects of air pollution in China and its
impact on health and stroke mortality. The undertaken study focused on the impacts of
PM10 in eight cities of China. Christidis et al. [49] analyzed the impacts of PM2.5 in the
surrounding environment and mortality analysis of the Canadian community. He et al. [50]
discussed the impacts of a particular matter (PM2.5) in various Canadian regions and deaths
due to air pollution. Chen et al. [3] reviewed PM2.5 concentrations and their impacts, as well
as performing a mortality analysis of cardiovascular diseases. This study also proposed a
component-adjustment approach to estimate and measure the impacts of PM2.5 on people’s
health. This study also discussed the causes of air-pollution-related cardiovascular diseases.
Amsalu et al. [51] performed a detailed analysis of air-pollution-related deaths and diseases.

All these studies have a common major pollutant, PM2.5. Considering the impacts
it has had on people’s health in other countries, India should take this as a warning and
focus on mitigating these issues. These studies set a bar for our review work, focusing
on the ultimate goal, mortality analysis, and health impacts due to air pollution on the
global community and India. Lasko and Vandrevu [52] conducted air-quality assessments
in Vietnam by considering rice-residue-burning emissions estimates. The Atlan Reports
(https://blog.atlan.com/announcements/tracking-air-pollution-in-delhi/, accessed on 4
September 2022) reveal that the rice residues are burned to prepare the agricultural field for
the upcoming season after completing the hand-harvesting process. This study highlighted
that rice-residue burning directly impacts the air pollution in the Southern part of Asia
and Vietnam. Cambra-Lopez et al. [53] conducted a review of airborne particulate matter
originating from livestock materials. Beckett et al. [54] investigated vegetation and urban
woodlands’ roles in mitigating air pollution’s particulate matter effects. Pani et al. [55]
reviewed seasonal air-pollution impacts and Rico et al. [56] conducted a detailed review
of various risks involved with cage farming in Thailand. Zanobetti et al. [57] examined
the association between ozone and mortality in 20 countries. The global impact of air
pollution is determined in this study. With the 20 countries being the major producers of
crops in their respective regions, the air pollution created is primarily due to agricultural

https://cpcb.nic.in/about-namp/
https://blog.atlan.com/announcements/tracking-air-pollution-in-delhi/
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disadvantages. Brown et al. [58] performed a detailed study of PM2.5 and mortality of
Indian citizens. This study measures PM2.5 in North Indian regions and proves how India’s
citizens are exposed to higher PM2.5 levels than advised. The study concludes that India has
disproportionately high mortality and disease burden due to air pollution. This burden is
usually higher in lower SDI studies in northern India. Reducing the inevitable fatalities and
deaths from disease burden from this great environmental disaster is based on the rapid
implementation of a cohesive policy across India coupled with the severity of air pollution
in each province. Huang et al. [59,60] investigated the mortality of U.S. citizens, as well as
performing a risk analysis of non-accidental and heart-related problems. Swaminathan [61]
discussed the concept of biodiversity to mitigate environmental pollution.

Agudelo-Castaneda et al. [62] analyzed the effects of hydrocarbons on urban envi-
ronments and respiratory health risks. Mills and Lee [63] analyzed threats associated
with carbapenem bacteria in surrounding environments and reservoir contamination.
With advancements in wireless sensor networks, sensing technology, and the Internet
of Things, previous studies attempted to implement air-quality monitoring systems to
measure various air-quality parameters. Al-Haija et al. [64] and Kularatna and Sudantha [4]
implemented a microcontroller-based system using general-purpose gas sensors. The Envi-
ronmental Air Pollution Monitoring System (EAPMS) developed here uses semiconductor
sensors to measure the concentration of gases CO, NO, SO, and O. In addition, EAPMS
can provide warnings when pollution levels exceed predetermined maxima. The system
can be translated to a lower version for developing countries. Al-ali et al. [65] and De-
varakonda et al. [7] established and tested a distributed pollution monitoring system using
the general packet radio services (GPRS) public network. Pollution data from various mo-
bile sensor arrays were transmitted to a central local server. SocialCops is a data intelligence
company located in India that has developed a project to measure Delhi’s air pollution.
This project module comprises sensors, a global positioning system (GPS) shield, and a
GPRS shield. Using this approach, data is transmitted on the GPRS network. Abraham
and Li [66] developed a system that measures indoor levels of CO, ozone, and CO2 using
the ZigBee mesh network. Kumar et al. [67], Ferdoush and Li [68], and Bacco et al. [69] all
implemented monitoring systems of air-pollution parameters. A gas sensor-based embed-
ded system was developed. In this approach, the CNT-based gas sensor was developed,
and the MSP430 controller was used to detect ammonia. Tiwari et al. [70] developed a
system to monitor methane, temperature, and humidity using Raspberry Pi, which com-
municates received data to a local webserver. This approach was implemented at the Bits
Pilani research lab in India. Marques et al. [71] developed an air-quality monitoring system
for ambient assisted living. The system is designed to monitor liquified petroleum gas
(LPG) using an MQ6 sensor connected to a data transmission laptop. Dhingra et al. [72],
Huang et al. [60], and Sun and Zhu [73] proposed designs for wireless mobile air-pollution
monitoring applications using cloud-based services to acquire data cost-effectively with
low-cost sensors. In India, the Central Pollution Control Board has implemented a na-
tionwide program known as the National Air Quality Monitoring Programme (NAMP
Reports, http://cpcbenvis.nic.in/airpollution/finding.html, accessed on 4 September 2022)
for ambient air-quality monitoring. This program manages a network consisting of 779
fixed operating stations across various cities of India. The Indian government encourages
and funds projects related to air-quality pollution in light of the alarming situations in
cities such as Delhi, Ahmedabad, Kolkata, Mumbai, and Pune. The Indian government
has also developed a portal (www.aqi.in, accessed on 4 September 2022) that provides
real-time monitoring of the AQI, PM2.5, and PM10 parameters. This article is organized
as follows. Section 3 presents a review of the state-of-the-art methodologies. Section 4
discusses the results and discussions about air-pollution impacts on yield crops, agrarian
states, and cities; Section 5 presents our concluding remarks and future recommendations.

http://cpcbenvis.nic.in/airpollution/finding.html
www.aqi.in
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3. Materials and Methods
3.1. Layered Architecture of an IoT-Based Air-Quality Monitoring System for
Agricultural Communities

Figure 2 represents the layered architecture of the IoT-based air-pollution monitoring
system framework for the agricultural community. The layered architecture has been
classified into five layers: a (i) sensing layer, (ii) communication and networking layer,
(iii) cloud services layer, (iv) processing layer, and (v) application layer. The data collection
was carried out between May 2019 and February 2020.

Sensors 

Capture the
information

Node
MCU Communication &

Networking LayerSensing
Layer

Cloud Serviced Leyer

Authentication

Storage Pr
oc

es
si

ng

Transfer the
data using
Channel

Data enters
into cloud for

services

Data Preprocessing Layer

The data is preprocessed
using ML Techniques 

Import Data
Set Trainning Prediction 

Application Layer

Figure 2. Layered architecture of IoT-based air-quality monitoring system for agricultural community.

3.2. Physical Sensing Layer

The sensing layer contains a variety of sensing units such as a SDS021 Particulate
Matter Sensor and DTH11 Temperature and Humidity Sensor. The SDS021 sensing unit
can measure dust particles present in the surrounding environments such as PM2.5 and
PM10. The DHT11 sensing unit can detect the temperature and humidity values of a
particular location [74,75]. These sensing units are embedded with the NodeMCU(esp8266)
micro-controller. These sensing units are placed to acquire the pollution-related updates of
agricultural states and cities of India. Figure 3a–c, represents the design and experimental
setup of IoT-based air-quality monitoring system for the agricultural community.

(a) (b) (c)

Figure 3. Design and experimental setup of IoT-based air-quality monitoring system for agri-
cultural communities (a) SDS021 sensing unit, (b) DHT11 sensing unit, (c) NodeMCU(esp8266)
microcontroller.

3.3. Communication and Networking Layer

The communication and networking layer is responsible for establishing a connection
between a sensing layer, a cloud broker architecture (an MQTT broker), a pollution-data
storage server, and a web interface. The Wi-Fi access point is essential for transmitting
pollution data acquired by pollution sensing units via a cloud broker via the Internet.
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3.4. Cloud Services Layer

The cloud services layer is responsible for storing various pollution data such as PM2.5,
PM10, temperature, and humidity in the form of .csv files. This layer is also responsible
for publishing the acquired air-quality data to the web interface via a cloud MQTT broker.
This layer is also responsible for providing data privacy and security via third party SLAs
(service level agreements) [76–78].

3.5. Processing Layer

The pollution-data processing layer analyses the received pollution data from various
sensing units and generates different graphical results such as AQI analysis [79,80], PM2.5,
and PM10 comparisons of India’s agragarian states and cities as described in Section 4.

Application Layer: the application layer provides real-time AQI monitoring updates
of India’s agricultural states and cities via a GUI-based web interface.

The AQI is an essential and useful unitless color-coded index used by countries
such as Europe, Canada, and Malaysia. The AQI metric is used worldwide to measure
pollution conditions at a given point of time at a particular location (Source: http://
www.wamis.org/agm/; accessed on 1 October 2020). The classification risk metric is
employed in the conducted experiments to compute the AQI of a particular pollutant such
as PM2.5 and PM10. As shown in Table 2, the risk classification of pollution conditions
is represented in various classification categories. Categorizes include good, moderate,
unhealthy, very unhealthy, and hazardous. The Average AQI coefficient can be given by
(Source: https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf;
accessed on 1 October 2020 [81]).

AQI coefficient of a particular pollutant =

[
(APPobs − APPmin(PAQLmax − PAQImin)

POLLmax − POLLmin

]
(1)

where APPobs = average measured concentration of a particular pollutant in 24 h in mg/m3,
APPmin = the minimum concentration of an AQI of a particular pollutant calculated based
on the risk classification metric, and PAQImin = minimum AQI values of a specific pollu-
tant calculated based on the risk classification metric. Where Pobs = average measured
concentration in 24 h in mg/m3, PAQImax = the maximum concentration of an AQI of
a particular pollutant calculated based on the risk classification metric, POLLmin = the
minimum concentration of an AQI of a particular pollutant calculated based on the risk
classification metric, and POLLmax = the maximum concentration of an AQI of a par-
ticular pollutant calculated based on the risk classification metric. Section 3.1 discusses
the detailed impacts of air pollution on yield crops. Section 3.2 presents India’s top pol-
luted agrarian states’ in-depth investigation regarding AQI variations and PM2.5 and
PM10 levels. Section 3.3 discusses the impact assessment of the AQI, PM2.5, and PM10
for India’s top cities affected by air pollution and its effects. The molecular conversion
coefficient (MC) to convert a pollutant from ppb to µg/m3 can be given by (Source:
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf; accessed
on 10 December 2020),

CMC
(
µg/m3

)
=

[(ppb)× mw]

mv
(2)

where mw = molecular weight, and mv = molecular volume. The molecular volume (mv) can
be given by (Source: https://www.epa.gov/sites/production/files/2014-05/documents/
zell-aqi.pdf; accessed on 10 December 2020),

mv(in litres) =
[22.41 × T × 1013]

(273 × p)
(3)

where T = temperature (K) and P = atmospheric pressure (hPa (hectopascal)).

http://www.wamis.org/agm/
http://www.wamis.org/agm/
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf
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Table 2. A risk classification analysis of the Air Quality Index of India’s agrarian states (Source:
https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf; accessed on 1
October 2020.

Risk Classification AQI Values Color-Coding

Good 0–50 Green

Moderate 51–100 Yellow

Unhealthy for Sensitive Groups 101–150 Orange

Unhealthy 151–200 Red

Very Unhealthy 201–300 Purple

Hazardous 300 and above Brown

4. Results and Discussions
4.1. Impacts of Air Pollution on Yield Crops

Figure 4 represents the state-wise wheat loss (in million tons) in India due to increased
ozone levels. It indicates a high wheat loss in crop-yielding states such as Rajasthan,
Madhya Pradesh, Gujarat, and some regions of Himachal Pradesh. Variations in wheat loss
are represented with red, yellow, green, and red colors on the scale of 0 to 70 million tons,
as shown in Figure 4. The mass production of different types of crops throughout the
year, in one place, increases the loss of crop yield, as well as increasing pollution due to its
burning. Figure 5 represents the state-wise rice loss in India due to increased ozone levels.
It also represents a significant wheat loss in Punjab, West Bengal, and Andhra Pradesh.
Likewise, rice loss variations are represented with red, yellow, green, and white colors on
the scale of 0 to 70 million tons, as shown in Figure 5.

Figure 4. Wheat loss map of India (variations in wheat loss are represented with red, yellow, green,
and white colors on the scale of 0 to 70 Million tons) (Source: http://www.wamis.org/agm/; accessed
on 1 October 2020).

https://www.epa.gov/sites/production/files/2014-05/documents/zell-aqi.pdf
http://www.wamis.org/agm/
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Figure 5. Rice loss map of India (variations in rice loss are represented with red, yellow, green,
and white colors on the scale of 0 to 70 Million tons) (Source: http://www.wamis.org/agm/; accessed
on 1 October 2020).

Figure 6 compares the loss of rice and wheat produced in India in million tons. Due
to this loss, the amount of VOCs generated is higher than the number of NOx gases
generated. Variations in NOx such as nitric oxide (NO) and nitrogen dioxide (NO2) and
variation in volatile organic compounds (VOCs), and total are represented using red, blue,
and green colors. Rice does not produce nitrogen oxide during its loss, wheat produces
nitrogen-oxide variants, and when VOCs are mixed with nitrogen oxides in the air, they
form smog. Totaling to almost 6 million tons of crop loss, the effects these practices and
errors have on the climate and health conditions of people living nearby are immeasurable.
Again, variations in NOx such as nitric oxide (NO) and nitrogen dioxide (NO2) and
variation in volatile organic compounds (VOCs) and total are represented using red, blue,
and green colors.

A similar color scheme is applied to the rest of the figures. Figure 7 represents the state-
wise wheat loss in India. Among all states, Uttar Pradesh tops the list with 0.6 million tons
of wheat yield loss, followed by Madhya Pradesh, whereas Uttaranchal has achieved
the bottom position with wheat loss of 0.040 million tons lost. Figure 8 represents the
state-wise rice loss in India. Punjab has the most loss, with almost 0.9 million tons of
rice yield lost, followed by Andhra Pradesh, whereas Tamil Nadu is the lowest, with
approximately 0.020 million tons lost. It can be observed that Punjab faces a significant
issue of rice burning, and, as mentioned previously, farmers in this region tend to burn
significant amounts of rice to get the fields ready for the future wheat yield. While Punjab
follows this trend the most, other states such as Andhra Pradesh, Uttar Pradesh, and West
Bengal also face the same issues: mass-producing their crops on the same clock as Punjab.

http://www.wamis.org/agm/
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Figure 6. A bar-chart representation of comparison of rice and wheat loss of India concerning
variation in NOx such as a nitric oxide (NO) and nitrogen dioxide (NO2) (in red color) and variation
in volatile organic compounds (VOCs) (purple color), total (in green color) (Source: http://www.
wamis.org/agm/; accessed on 1 October 2020).

Figure 7. State-wise wheat loss bar-chart representation of India concerning variations in NOx such
as a nitric oxide (NO) and nitrogen dioxide (NO2) (in red color) and variation in volatile organic
compounds (VOCs) (purple color), total (in green color) (Source: http://www.wamis.org/agm/;
accessed on 1 October 2020).

Figure 8. A bar-chart representation of state-wise rice loss of India concerning variation in NOx such
as a nitric oxide (NO) and dioxide (NO2) (in red color) and variation in volatile organic compounds
(VOCs) (purple color), total (in green color) (Source: http://www.wamis.org/agm/; accessed on 1
October 2020).

http://www.wamis.org/agm/
http://www.wamis.org/agm/
http://www.wamis.org/agm/
http://www.wamis.org/agm/
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4.2. Air-Pollution Statistics (AQI) of Top Agrarian States of India

In this study, we used available pollution data provided by the Indian government on
their official portal (www.aqi.in, accessed on 4 September 2022). Table 3 lists a statistical
analysis of the AQI values of agrarian states in India. Based on this analysis, Uttar Pradesh
and Punjab are the most and second-most polluted states of India with AQI values of
249 and 235. Haryana remains the third most polluted state of India, with an AQI of 235.
This analysis also indicates that all agriculture-dominated states can be considered more
polluted Indian states than non-agricultural states. Table 3 also compares the PM2.5 and
PM10 indices, as well as the variations in temperature and humidity for agrarian states
with the highest AQI indices. According to a source appointment survey by TERI (TERI
Reports, 2018), 17% of the PM10 and 19% of the PM2.5 emissions in NCR Delhi derive from
agricultural burning in nearby states Uttar Pradesh and Haryana. Therefore, agricultural
burning in Delhi NCR has a 36% contribution to the total pollution, which is only based on
PM2.5 and PM10 measurements.

Figure 9 represents a pollution map of India’s pollution-affected regions concerning
PM2.5 levels. The most polluted agricultural states of India that exceed a hundred AQI
index are represented by the red color. Figure 10a–c, depicts graphical analyses of the
top three most polluted agrarian states of India between May 2019 and February 2020.
Different colors are used for the following categories to represent the pollution impact
analysis: (i) unhealthy for sensitive groups (orange), (ii) moderate (yellow), (iii) good
(green), (iv) hazardous (dark pink), (v) very unhealthy (purple), and (vi) unhealthy (red).
Based on the observations, seasonal changes have significantly impacted variations in the
AQI. For Uttar Pradesh, we observe that AQI values have remained below the rudimentary
level during autumn (September 2019 to January 2019). However, we also observe that the
AQI has increased drastically in Uttar Pradesh, which is categorized as “unhealthy and very
unhealthy” conditions during spring (February 2020 to May 2020) based on Indian weather
conditions. This change’s primary reason is routine agricultural activities conducted by
farmers, such as soil preparation, planting, and harvesting. These activities are at their peak
during the spring. As part of this process, most farmers intentionally burn the remaining
stubble (i.e., the components that remain after grain collection), such as wheat and paddies.
Stubble burning has a severe impact on the surrounding environment and the farmers’
health. Similar practices are followed in agrarian states, such as Punjab and Haryana. This
is also an alarming issue for urban cities adjacent to these agrarian states, such as Delhi,
India’s capital. Recently, the inhabitants of Delhi have faced issues related to continuously
degrading air quality. During the last year, Delhi’s AQI levels have exceeded 1000, which is
unbearable for its civilians. Furthermore, in states such as Haryana and Punjab, AQI values
have remained at peak values from December 2019 to April 2020. The AQI values have also
increased significantly in the last several years. Air pollution has significantly affected the
agricultural community and agrarian states, especially farmers, due to air-pollution-related
health and environmental issues.

Table 3. An analysis of the AQI, PM2.5 (µg/m3) and PM10 (µg/m3) concentrations, temperature (°C),
and humidity (%) in agrarian states of India (Source: www.aqui.in; accessed on 1 October 2020).

State AQI PM2.5 (µg/m3) PM10 (µg/m3) Temperature (°C) Humidity (%)

Uttar Pradesh 249 240 145 34 80

Punjab 235 239 109 36 58

Haryana 235 227 122 32 74

Bihar 130 162 82 41 76

Assam 110 140 79 42 78

www.aqi.in
www.aqui.in
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Figure 9. A pollution analysis map of India’s affected regions (Source: www.aqui.in; accessed on 1
October 2020).

(a)

(b)

(c)

Figure 10. Air-pollution statistics (AQI) of top agrarian states of India (from May 2019 to Febru-
ary 2020) (a) Uttar Pradesh (b) Haryana, and (c) Punjab (Source: www.aqui.in; accessed on 1
October 2020).

www.aqui.in
www.aqui.in
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4.3. Analysis of Air-Pollution Affected Cities of India

We presented the pollution risk classification analysis of the agrarian pollution-affected
Indian cities concerning the AQI values and PM2.5 and PM10 concentration. Table 4
provides a real-time AQI analysis of these cities based on available pollution data (i.e.,
the www.aqi.in, accessed on 4 September 2022). This analysis also indicates that Delhi
has achieved the premier position due to massive air-pollution impacts in recent years.
Furthermore, Ghaziabad and Meerut are recently characterized by AQI values above 100.
Table 4 also describes the impact analysis of the agrarian Indian cities concerning the PM2.5
and PM10 concentrations and the variations in temperature and humidity levels, where
the highest PM2.5 and PM10 concentrations occurred in India’s capital city. As discussed
previously, one of the primary reasons for these high values and concentrations is the
burning of stubble and paddies in adjacent agriculture states, such as Haryana and Uttar
Pradesh. Figure 11a–c presents an AQI seasonal analysis of the top most polluted cities
of India between May 2019 and February 2020. Again, we used the same pollution risk
metric classification analysis with six categories and colored graphical representations used
previously for India’s agrarian states. Based on our observations, we find that seasonal
changes have significantly impacted AQI variations in India’s top cities. As discussed
previously, Delhi has remained the most polluted city of India, which has frequently faced
challenging situations, such as low air quality and high PM2.5, PM10, and AQI levels.
In January 2020, officials recorded an alarming pollution situation with high pollution
levels in more than 90% of Delhi’s areas. All the schools and colleges were completely
shut down for nearly a month due to air-pollution-related issues. Delhi’s pollution levels,
Ghaziabad and Meerut, can be categorized as “very unhealthy” and “unhealthy” from
2019–2020.

(a)

(b)

(c)

Figure 11. Analysis of air-pollution-affected cities of India (from May 2019 to February 2020): (a) Delhi,
(b) Ghaziabad, (c) Meerut (Source: www.aqui.in; accessed on 1 October 2020)

www.aqi.in
www.aqui.in
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Table 4. A city-wise analysis of the AQI, PM2.5 (µg/m3) and PM10 (µg/m3) concentrations, tempera-
ture (°C), and humidity (%) (Source: www.aqui.in; accessed on 1 October 2020).

City AQI PM2.5 (µg/m3) PM10 (µg/m3) Temperature (°C) Humidity (%)

Delhi 159 81 94 23 61

Ghaziabad 125 78 86 36 58

Meerut 120 57 58 32 74

5. Conclusions and Future Enhancements

Air pollution has become an important issue of the 21st century and significantly con-
tributed to fatalities, especially in agricultural communities living in developing countries,
such as India. Our analysis’s unique feature is the color-coding-based AQI risk-metric
classification of the impacts of air pollution on India’s agrarian states and cities. We ana-
lyzed India’s most polluted agrarian states and cities in terms of AQI variations and PM2.5,
and PM10 concentrations. The empirical study of the seasonal impacts of air pollution on
the agrarian states and cities was presented for May 2019 to February 2020. Based on our
results, we obtained several significant observations:

1. Higher AQI, PM2.5, and PM10 levels were found in agriculturally dominated states
such as Uttar Pradesh, Punjab, and Haryana.

2. Among all the cities, India’s capital is the most polluted city and has faced significant
challenges, such that it may experience alarming pollution levels in the future.

3. The average AQI values fluctuate in various areas of the cities such as Delhi, where the
AQI value in certain regions can vary by more than 500 on the AQI index. In the end,
recent impacts of air pollution concerning AQI variations for May 2019 to February
2020, seasonal AQI variations, impacts of PM2.5 and PM10 in various agrarian states
and Indian cities are presented using various color-coding-based graphical and tabular
representations.

In the future, scientists may conduct extensive analyses of the impacts that air pollution
has on critical resources, such as water and soil, and these scientists can investigate air
pollution’s global, country, state, and city impacts.
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