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Abstract: The object recognition concept is being widely used a result of increasing CCTV surveillance
and the need for automatic object or activity detection from images or video. Increases in the use
of various sensor networks have also raised the need of lightweight process frameworks. Much
research has been carried out in this area, but the research scope is colossal as it deals with open-
ended problems such as being able to achieve high accuracy in little time using lightweight process
frameworks. Convolution Neural Networks and their variants are widely used in various computer
vision activities, but most of the architectures of CNN are application-specific. There is always a
need for generic architectures with better performance. This paper introduces the Dimension-Based
Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture
generic and provide a dimension-wise selection of various height, width, and depth kernels. This
single unit which uses the separable convolution concept provides multiple combinations using
various dimension-based kernels. This single unit can be used for height-based, width-based, or
depth-based dimensions; the same unit can even be used for height and width, width and depth, and
depth and height dimensions. It can also be used for combinations involving all three dimensions of
height, width, and depth. The main novelty of DBGC lies in the dimension selector block included
in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around
one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield
almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized
kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs.

Sensors 2022, 22, 1780. https://doi.org/10.3390/s22051780 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051780
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8280-1140
https://orcid.org/0000-0001-5247-4572
https://orcid.org/0000-0003-2433-5676
https://orcid.org/0000-0002-4507-1844
https://orcid.org/0000-0001-6462-059X
https://orcid.org/0000-0001-6616-8007
https://orcid.org/0000-0002-0312-6640
https://orcid.org/0000-0002-3703-4904
https://orcid.org/0000-0002-7093-7005
https://orcid.org/0000-0003-2052-1121
https://doi.org/10.3390/s22051780
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051780?type=check_update&version=2


Sensors 2022, 22, 1780 2 of 25

Keywords: CNN; separable convolution; DBGC; dimension-based kernels

1. Introduction

The Convolution Neural Network is a widely used deep learning architecture for
computer vision tasks such as object detection, object segmentation, and object recogni-
tion [1]. The basic building layer of a CNN is its convolution layer. Much research has been
carried out to modify the CNN for various purposes. Several inspirational concepts for
the progress of CNN have been investigated, including alternative activation functions,
regularization, parameter optimization, and architectural advancement [1]. Some of the
related research being carried out is summarized in this section in Table 1.

The main contribution of this paper is in designing a dimension selector module named
DBGC (Dimension-Based Generic Convolution Unit). This module can be added into any
architecture to reduce numbers of FLOPs without affecting accuracy. Two main contribu-
tions of the research lie in developing semi-optimized kernel and optimized kernel methods.
Such methods reduce the number of FLOPs while providing equal or greater accuracy.

Computer vision and image processing have applications in fields such as traffic
surveillance [2,3], object detection and segmentation [4–6], autonomous cars [7], agricul-
ture [8–11], healthcare [12–15], video surveillance systems [16,17], sports [18,19], NLP, and
many other fields. An important task for any computer vision application is to extract cor-
rect features [20]. It is mentioned in paper [21] that fusion methods for extracting features
can be used for better performance. In [1], it is mentioned that there are eight categories
of various kinds of CNN architectures. The proposed DBGC architecture is inspired from
ShuffleNetv2 [22], ESPNetv2 [23], DiCENet [24], and MobileNetv2 [25]. The following
sections explain the basic architectures of each of these networks, and also states their
merits and demerits.

1.1. ShuffleNetv2

ShuffleNetv2 examines the network’s computational complexity using direct measure-
ments such as speed and memory access cost (besides FLOPs, which acts as an indirect
metric). Direct measurements are also evaluated by the target platform. ShuffleNetv2
was introduced in the 2018 paper ShuffleNetv2: Practical Guidelines for Efficient CNN
Architecture Design. The study [24] was co-authored by Ningning Ma, Xiangyu Zhang,
Hai-Tao Zheng, and Jian Sun. FLOPs is the industry standard metric for evaluating a
network’s calculating performance. However, according to a few studies, the FLOPs metric
does not fully expose some underlying realities; networks with similar FLOPs might still
have varying speeds owing to memory access costs, parallelism, target platforms, and other
considerations. Since none of these are fully accounted for with FLOPs, they are neglected.
ShuffleNetv2 addresses these issues by presenting four network modelling principles, as
shown below:

1. When the number of input channels and output channels are in the same proportion
(1:1), memory access costs are minimized.

2. Excessive group convolution raises the cost of memory access: the group number
should not be too large, as this would raise the memory access cost.

3. Fragmentation of the network diminishes the degree of parallelism: fragmentation
decreases the network’s efficiency in performing parallel calculations.

4. Element-by-element procedures are not insignificant: although element-wise opera-
tions have few FLOPs, they can significantly increase memory access time.

To boost network efficiency, all of these principles were incorporated into ShuffleNetv2
design as illustrated in Figure 1.
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Figure 1. Design of ShuffleNetv2.

The channel split operator splits the channels into two groups, one of which is kept
as the identity (third principle). Along the three convolutions, the other branch has an
equal number of input and output channels (first principle). There are no group-wise
convolutions in the 1 × 1 convolutions (second principle). ReLU concatenations and
depth-wise convolutions are element-wise operations that are limited to a single branch
(fourth principle).

1.2. ESPNetv2

ESPNetv1 was created with semantic segmentation in mind [26]. ESPNetv2 expands
on the concepts of v1 and is designed for various computer vision tasks, including language
modeling. The main goal is to separate the dilated convolutions depth-wise. EESP, which
stands for Extremely Efficient Spatial Pyramid, is the new construction block shown in
Figure 2.

ESPNetv1 employs group convolution for the 1 × 1 bottleneck layer (the first GConv-1
in the diagram), similarly to ShuffleNet, except that it does not perform channel shuf-
fle. Instead, the dilated convolution is separated into the following two parts: first, a
3 × 3 depth-wise layer (DDConv-3), which is likewise dilated; and then an 11% point-
wise layer. These concatenate results from the dilated layers and then apply a single
1 × 1 grouped convolution instead of computing K individual 1 × 1 layers (GConv-1 at the
bottom). It is the same as the previous method, but it is more efficient.
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PReLU is the activation function. The whole architecture begins with a stride of two
regular convolution layers [27]. There are the following three phases after that: halving
the spatial dimensions and doubling the number of channels; each stage beginning with a
stride EESP block; the rest of the stage being built of EESP bricks in various shapes and
sizes. After these three phases, there are a few additional convolution layers, global average
pooling, and a fully-connected classifier layer. On dilated convolutions, the strided EESP
has stride 2. Average pooling and concatenation replace the residual connection, doubling
the number of chan·nels (doubling the number of filters in the convolution layers is slower).
They also provide a long-range shortcut connection to the original picture. A depth-wise
separable convolution follows one or more average pooling layers in this new connection.
This long-range link should bring in some extra spatial information that would otherwise
be lost as a result of down sampling. ESPNetv2 provides around 74% of Top1 accuracy for
5.9 M parameters.

1.3. DiCENet

The main idea of DiCENet was to replace regular convolution with dimension-wise
convolution and fusion. As readers may be aware, depth-wise and group convolution slice
the input tensor along the channel dimension, with each convolution filter operating on a
subset of the channels. Why not cut along the width and height measurements as well?
The disadvantage of depth-wise convolution is that it requires 11-layer convolutions to mix
up the channels. All of these point-wise convolutions account for 90% of all operations
in models such as MobileNet, according to DiCENet research. ShuffleNet attempted to
address this by utilizing grouped convolution to speed up the 11 convolutions, but it may
be possible to do better.

Convolution occurs across each dimension of the input data via a dimension-wise
convolution, or “DimConv”. We may do convolution along three possible axes if the tensor
is DHW: this is the well-known depth-wise convolution, abbreviated as HW. The filter
window glides across the spatial dimensions (i.e., across the image’s width and height)
while the input tensor is split along the channel axis. This is a width-wise convolution,
which is DH. The filter window slides over an image of size DH as the input tensor is cut
along the W axis. This is a height-wise convolution, denoted by DW. The filter window
works on an image of size DW, and the input tensor is split along the H axis.

1.4. MobileNetv2

MobileNetv2 is the same as MobileNetv1 and uses depth-wise convolution, but v2
rearranges the blocks as shown in Figure 3: the depth-wise convolution block is in the
middle as per MobileNetv2 architecture. Before the depth-wise layer is a 1 × 1 convolution
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known as the expansion layer. This increases the number of channels. After the depth-wise
layer is another 1 × 1 convolution that reduces the number of channels again, known as
the projection layer or the bottleneck layer.
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There is a residual connection when the number of channels entering into the block
equals the number of channels flowing out (64, as shown in Figure 3). This, like ResNet,
aids in improving gradient flow during the rearward pass. Since it passes between the
bottleneck layers which have a limited number of channels, the authors of MobileNetv2
refer to this as an inverted residual. A standard ResNet residual link, on the other hand,
connects layers with multiple channels. The activation function, as previously mentioned,
is ReLU6. Behind the bottleneck layer, however, there is no activation. As a result, the
paper’s title refers to linear bottlenecks. Since this layer creates low-dimensional data, the
scientists discovered that adding a non-linearity removes important information. All of
these basic elements make up the MobileNetv2 architecture. A standard 1 × 1 convolution,
a global average pooling layer, and a classification layer are then applied as illustrated in
Figure 3.

Table 1 showcases the Top1 and Top5 accuracies of various lightweight CNN architectures.
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Table 1. Comparison of various lightweight architectures.

Architecture Year Parameters Top1 Top5

ShuffleNetv2 [22] 2018 2.3 M 69.4 88.9
MobileNetv2 [25] 2018 3.47 M 71.8 91.0

ESPNetv2 [23] 2019 3.49 M 72.06 90.39
DiCENet [24] 2020 2.65 M 69.05 88.8

In Section 3, DBGC—Dimension-based Generic Convolution block, is proposed in
this paper which requires complete understanding of various concepts such as separable
convolution and various convolution kernels outlined in Section 2 which is subdivided
into two parts: the first part explains the separable convolution method and its types; the
second part explains the various convolutional kernels. Section 4 includes results and
analysis for the proposed DBGC block.

2. Materials and Methods

This section explains required terminologies and their importance for the proposed
DBGC block. This section is divided into separable convolution and depth-wise
separable convolution.

2.1. Introduction to Separable Convolution

The concept of separable convolution was first introduced in the Xception model in
2016 [28]. Researchers provided multiple approaches to make inferential computation more
efficient on smart phones and IoT Devices such as network pruning, parameter compres-
sion, and so on, as deep learning (DL) is increasingly pushing toward edge computing.
Quantization, as one of the primary ways, may effectively offload GPU, allowing DL to run
on a fixed-point pipeline. The popular lightweight MobileNetv1 significantly decreases
parameter size and computation lag using the concept of separable convolution [29].

Separable convolutions are of the following two types: (1) spatial separable convolu-
tion, and (2) depth-wise separable convolution.

2.1.1. Spatial Separable Convolution

Spatial separable convolution is the easier of the two to understand conceptually, and it
clearly demonstrates the concept of splitting one convolution into two [28]. Unfortunately,
spatial separable convolutions have a number of drawbacks, thus they are not widely
employed in deep learning. The “spatial separable convolution” name originates from
the fact that it primarily works with the width and height of an image and kernel [30]
(the number of channels in each image is the other dimension, the “depth” dimension).
Spatial separable convolution separates a kernel into two smaller kernels. The most typical
scenario is to split a 3 × 3 kernel into 3 × 1 and 1 × 3 kernels as shown in Figure 4.
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To accomplish the same result, instead of doing one convolution with nine multipli-
cations, perform two convolutions with three multiplications each which are six in total.
Computational complexity decreases as the number of multiplications decreases, allowing
the network to operate more quickly as shown in Figure 5.
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To accomplish the same result, instead of doing one convolution with nine multipli-
cations, perform two convolutions with three multiplications each which are six in total. 
Computational complexity decreases as the number of multiplications decreases, allow-
ing the network to operate more quickly as shown in Figure 5. 
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The main drawback of a spatial separable kernel is that it may not split all the ker-
nels in two. This becomes tedious during training as it only uses a tiny portion of the
whole network.

2.1.2. Depth-Wise Separable Convolution

This convolution works with kernels that cannot be “factored” into two smaller kernels,
which is the main reason behind the popularity of depth-wise separable convolution. It can
be implemented in keras with keras.layers.SeparableConv2D or tf.layers.separable_conv2d.

The depth-wise separable convolution obtains its name from the fact that it works
with both spatial and depth dimensions (the number of channels) [31] Three channels are
possible in an input image: R, G, and B. A picture may contain numerous channels after a
few convolutions [32]. Each channel may be thought of as a different interpretation of the
image; the “red” channel, for example, interprets the “redness” of each pixel; the “blue”
channel interprets the “blueness” of each pixel; and the “green” channel interprets the
“greenness” of each pixel. A picture with 64 channels can be interpreted in 64 distinct
ways. A depth-wise separable convolution, such as a spatial separable convolution, seper-
ates a kernel into two independent kernels that perform two convolutions: depth-wise
and point-wise.

Depth-Wise Convolution

In depth-wise convolution the input image is provided with convolution kernels
without changing its depth [33]. This task is done using three kernels. Figure 6 provides
an example. Here, a 12 × 12 × 3 image is provided as an input image and three kernels
are used each with shape 5 × 5 × 1. Each 5 × 5 × 1 kernel iterates one channel of the
provided image, provides the scalar products of every 25 (5 × 5) pixel group, and provides
the output with an 8 × 8 × 1 image as shown in Figure 6.
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Figure 6. Depth-wise convolution uses three kernels to produce an 8 × 8 × 1 image from a
12 × 12 × 1 image.

Point-Wise Convolution

The original convolution takes a 12 × 12 × 3 image and generates an image of dimen-
sions 8 × 8 × 256. The depth-wise convolution converts the 12 × 12 × 3 image into an
8 × 8 × 3 image. The number of channels in each image must then be increased.

The point-wise convolution name originates from the fact that it employs a 1 × 1 kernel,
which iterates across every single point. This kernel has a depth equal to the number of
channels in the input picture; for the provided example it will be three [34]. In order to
generate an 8 × 8 × 1 image, a 1 × 1 × 3 kernel iterates across the 8 × 8 × 3 image as
shown in Figure 7.
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Figure 7. Point-wise convolution transforms an image of three channels into an image of one channel.

To check the number of multiplications the computer has to perform in the normal
convolution, which includes 256 kernels (each of size 5 × 5 × 3), and moves 8 × 8 times.
Thus, it yields 256 × (5 × 5 × 3) × 8 × 8 = 1,228,800 multiplications. Meanwhile in
separable convolution there are three 5 × 5 × 1 kernels that move 8 × 8 times, thus in
depth-wise convolution there are 3 × 5 × 5 × 8 × 8 = 4800 multiplications. We have
256 × 1 × 1 × 3 kernels that move 8 × 8 times in the point-wise convolution. Thus, it will
be 256 × 1 × 1 × 1 × 3 × 8 × 8 = 49,152 multiplications. Therefore, finally by adding
4800 + 49,152 it produces 53,952 multiplications altogether. 1,228,800 is a lot more than
53,952. The network can handle more data in less time by performing fewer calculations.

The fundamental difference between standard convolution and depth-wise separable
convolution is that in standard convolution the picture is changed 256 times and each
change needs a total of 4800 multiplications (5 × 5 × 3 × 8 × 8). Meanwhile, in separable
convolution an image is truly altered only once and after that, the altered image is length-
ened to 256 channels. Thus, processing resources are saved. The only demerit of separable
convolution is that it minimizes the number of parameters in a convolution; if a network is
already tiny, it may wind up with too few parameters, causing it to fail to learn effectively
during training. However, when utilized correctly it tends to increase efficiency without
sacrificing efficacy, making it a popular choice.
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2.2. Introduction to Convolution Kernels

Convolution means using a ‘kernel’ to extract certain ‘features’ from an input image.
A kernel is a matrix which is slid across the image and multiplied with the input such that
the output is enhanced in a certain desirable manner as shown in Figure 8. The following
example demonstrates the use of a kernel for making the input image sharpened in the
sense of having the output image represented in the most desirable manner.
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Figure 8. Example of convolution using a kernel.

A kernel is a matrix of weights multiplied by the input to extract important features.
The name of the convolution comes from the dimensions of the kernel matrix. The kernel
matrix in 2D convolutions, for example, is a 2D matrix. A filter, on the other hand, is a
concatenation of numerous kernels, each of which is allocated to a certain input channel.
Filters usually have one more dimension than kernels. Filters in 2D convolutions, for
example, are 3D matrices. The filter dimensions for a CNN layer with kernel dimensions
of h*w and input channels of k are k*h*ws. On the basis of various kernels there are three
types of convolutions: (1) 1D convolution, (2) 2D convolution, and (3) 3D convolution.

2.2.1. 1D Convolution

For time series data processing, 1D convolutions are extensively utilized (since the
input in such cases is 1D). The 1D data input, as previously stated, might include many
channels [35]. Since the filter can only travel in one direction, the output is 1D. A single
channel 1D convolution example is shown in Figure 9.
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Figure 9. 1D convolution.

2.2.2. 2D Convolution

The kernel dimensions in Figure 10 below are 3 × 3 and there are numerous such
kernels in the filter (marked yellow). This is due to the fact that the input has numerous
channels (indicated in blue) and there is one kernel for each channel. Clearly, the filter
may travel in two directions in this case and the final output is two-dimensional. The most
frequent convolutions are 2D convolutions, which are widely utilized in computer vision.
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Figure 10. 2D convolution.

2.2.3. 3D Convolution

Since a 3D filter (which is a 4D matrix) is difficult to visualize, we will only cover
single channel 3D convolution here. As can be seen in Figure 11 below, a kernel in a 3D
convolution can travel in three directions, resulting in 3D output [36]. The majority of
research done on customizing and altering CNN layers has been limited to 2D convolutions.
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3. DBGC—Dimension-Based Generic Convolution Unit

Standard convolutions simultaneously encode spatial and channel-wise information,
but they are computationally intensive. Separable (or depth-wise separable) convolu-
tions are used to increase the efficiency of ordinary convolutions by encoding spatial and
channel-wise information separately using depth-wise and point-wise convolutions, respec-
tively [37]. Although separable convolutions are efficient during factorization, they place a
large computational burden on point-wise convolutions and make them a computational
bottleneck [24].

To encode spatial and dimension-wise information efficiently, the DBGC unit uses
a dimension selector to further reduce any bottleneck issues and also reduce computa-
tional load by introducing the dimension selector module discussed in Section 3.2. It
completes this task using two stages as shown in Figure 8. One stage is a convolution
based on dimension as explained in Section 3.1, and the second stage is a dimension-wise
blend as discussed in Section 3.3. Convolution based on dimension enables the DBGC
unit to use a dimension-wise blend instead of using point-wise convolutions that create
computational bottlenecks.

3.1. Convolution Based on Dimension (ConvDim)

ConvDim block encodes information independently that is height-wise, depth-wise
and width-wise. In order to accomplish this, ConvDim extends depth-wise separable
convolutions to all dimensions of the input tensor I ∈ R H × D ×W, where H, D and W
correspond to height, depth and width of I, respectively. As shown in Figure 12, ConvDim
has three kernels, one for each dimension. They apply various dimension-wise kernels,
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such as H height-wise convolutional kernel KH ∈ R 1 × n × n along height; D depth-wise
convolutional kernel KD ∈ R n × 1 × n along depth; and W width-wise convolutional kernel
KW ∈ R n × n × 1 along width. Those kernels produce outputs denoted as YH, YD and
YW ∈ R H × D ×W which encode information provided in the input tensor. The outputs
of these independent branches are concatenated in the dimension selector block, such
that the first spatial plane of YD, YW, and YH are put together and so on, to produce the
output YDim.
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3.2. Dimension Selector (Ds)

Dimension selector is the block where dimensions can be selected. If an application
is such that only height, or only width, or only depth dimensions are enough for training
then one can set the parameters from this block, Ds ∈ {KD ∪ KW ∪ KH}. It is also possible to
select any two combinations of kernels such that Ds ∈ {KD, KW ∪ KH, KW ∪ KD, KH}, where
Ds is Dimension selector and KD, KH, KW are dimension-based kernels (depth, width, and
height, respectively), Ds ∈ {KD, KW, KH}. So, in Dimension selector there are total of seven
possibilities (only height; only width; only depth; height and width; width and depth;
height and depth; and height and width and depth). Based on the selection of kernels, the
appropriate dimensions will be provided to YDim. Various dimensions can be selected as
shown in Figure 13.

3.3. Dimension-Wise Blends (DimBlend)

Local information from distinct dimensions of the input tensor is encoded by dimension-
wise convolutions, but global information is not captured. Local means each selected
dimension-wise information and global means information collected from each dimen-
sion. A point-wise convolution is a common method for combining information globally
in CNNs [3,7]. In order to combine dimension-wise representations of YDim ∈ R3DXHXW

and create an output Y ∈ R DXHXW, a point-wise convolutional layer applies point-wise
kernels Kp ∈ R 3DX1X1 and executes 3D2HW operations. This takes a lot of time to compute.
However, the dimension-wise blend module allows one to mix representations of YDim
effectively, given DimConv’s capacity to encode spatial and channel-wise information
(though separately). DimBlend factorizes the point-wise convolution in two phases, as
shown in Figure 12: (1) local fusion and (2) global fusion [26].
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Figure 13. Implementation of Convolution based on Dimension (ConvDim): in (a), each kernel is
applied to a pixel (represented by a small dot) independently; in (b), any two kernels are (height-
width, height-depth, and width-depth) applied to a pixel simultaneously by allowing information to
be combined using tensors; finally in (c), all kernels are applied to a pixel simultaneously, allowing
information to be aggregated from the tensor efficiently. Convolutional kernels are highlighted in
color (depth-wise, width-wise, and height-wise).

In local fusion YDim concatenates the output from the dimension selector module.
It concatenates spatial planes of each dimension. DimBlend uses a group point-wise
convolution layer in order to combine dimension-wise information received from YDim. As
shown in Figure 12, Kg operates independently on each dimension group D. This process
is denoted as local fusion.

As indicated in Figure 8, DimBlend learns channel-wise and spatial representation
independently and then propagates channel-wise encodings to spatial encoding by apply-
ing element-wise multiplication in order to effectively encode global information in Yg.
As outlined in [38], spatial dimensions of Yg are squeezed and encoded into channel-wise
presentation by utilizing two FC Layers. The First FC Layer reduces the dimension from
D to D/4 and the second FC Layer expands the dimension from D/4 to D. The ReLU
function is used in between these two FC Layers to make them learn about non-linear
representations. This process is known as global fusion. By combining local and global
fusion in DimBlend, final output Y is produced.

4. Results and Analysis

This section provides detail about implementation of the proposed DBGC block and
further provides results analysis for it.
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4.1. Implementation of DBGC

To implement the DBGC unit in CNN, conventional CNN layers are used. Figure 14
showcases the overall architecture.
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4.1.1. Experimental Setup

By applying the DBGC Block on ESPNetv2 [23] and ShuffleNetv2 [22] architecture, we
evaluated the generic nature of the DBGC unit on the PASCAL VOC dataset explained in
Section 4.2. We integrated the DBGC unit into different architectures as shown in Figure 10
and studied the impact on FLOPs and accuracy. Section 5 explains the analysis of using the
DBGC unit with various architectures.

4.1.2. Dataset Details

To demonstrate the performance of the DBGC unit on various models, a common
dataset was taken in order to have directly comparable results for the same dataset us-
ing different architectures. We used the PASCAL VOC (PASCAL Visual Object Classes
Challenge) dataset for implementation purposes. Aeroplane, bicycle, boat, bus, car, mo-
torcycle, train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat, cow,
dog, horse, sheep, and person are among the 20 object categories in the PASCAL Visual
Object Classes (VOC) 2012 dataset [39]. There are pixel-level segmentation annotations,
bounding box annotations, and object class annotations for each image in this dataset.
Object detection, semantic segmentation, and classification applications have all utilized
this dataset as a standard. The PASCAL VOC dataset is divided into three parts: training
pictures, validation images, and a private testing set.

4.2. Results Analysis

This section describes the results of the two architectures (ESPNetv2 and SHUF-
FLENetv2) used with the DBGC unit. The primary goal was to observe effects on the
accuracy of object detection and semantic segmentation when reducing FLOPs. The ESP-
Netv2 model was used to implement object detection while semantic segmentation was
achieved with ShuffleNetv2. It is important to understand two main terminologies, FLOPs
and FLOPS.

FLOPs refers to what a model will have to execute to determine inference times in
order to compute the total amount of calculations. This is when the term FLOP, or Floating
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Point Operation, emerges [40]. This might be any operation that uses a floating-point
value, such as addition, subtraction, division, or multiplication. FLOPs determine the
model’s complexity.

FLOPS, with a capital S, is Floating Point Operations per Second (FLOPS), and is a
unit of measurement. It is a metric that indicates how good the hardware is. The faster a
model can perform operations per second, the faster it can infer. Equations used to calculate
FLOPs in the proposed model are illustrated in Table 2.

Table 2. Equations to calculate FLOPs of each CNN layer.

Sr. No Layer The Equation to Calculate FLOPs

1 Convolution Layer 2 × No. of Kernel × Kernel’s Shape × Output Shape × Repeat Count (if available)

2 Pooling Layer
(Without stride) Height ×Width × Depth of an input Image

3 Pooling Layer
(With stride) (Height/Stride) × Depth × (Width/Stride) of an input Image

4 Fully Connected Layer
(FC Layer) 2 × Input Size × Output Size

Output shape of Convolution Layer can be determined using following equation, Output Shape = (Input Shape
− Kernel Shape) + 1.

This section is divided into three categories: (a) unoptimized kernel dimensions,
(b) semi-optimized kernel dimensions, and (c) optimized kernel dimensions. Unoptimized
kernel dimensions include only height, only width, and only depth-based kernel selec-
tion during the Dimension selector module. Semi-optimized kernel dimensions include
height-width, width-depth, and depth-height combinations during the dimension selection
phase. Optimized kernel dimensions provide all three dimensions during the dimension
selection phase.

4.2.1. Unoptimized Kernel Dimensions

In unoptimized kernel dimensions, only one kernel dimension for the output channel
is used. It is very clear that this will definitely reduce the accuracy of object detection.
ESPNetv2 architecture was used for object detection purposes and ShuffleNetv2 was used
for semantic segmentation. The PASCAL VOC dataset was used in order to first implement
ESPNetv2 and ShuffleNetv2 as outlined in [24]. Then the same models were used with
proposed DBGC-Kw; that is, the DBGC block was implemented and in the dimension
selector module the width parameter was selected as described in the DBGC architecture
from Section 3. The main aim was to observe differences in FLOPs and to check its Top1
and Top5 accuracies. Tables 3–5 demonstrate the results obtained using only width-based,
height-based, and depth-based kernels, respectively.

Table 3. Only width-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2(DBGC-Kw) PASCAL 224 × 224 24 35.64 43.86

ShuffleNetv2
(DBGC-Kw) PASCAL 224 × 224 21 34.5 39.54
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Table 4. Only height-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2(DBGC-KH) PASCAL 224 × 224 24 33.4 37.66

ShuffleNetv2
(DBGC-KH) PASCAL 224 × 224 21 32.15 36.84

Table 5. Only depth-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2(DBGC-KD) PASCAL 224 × 224 24 33.34 36.62

ShuffleNetv2
(DBGC-KD) PASCAL 224 × 224 21 31.95 35.74

It can be observed from the results that unoptimized kernel dimensions reduce FLOPs
to around one third of the FLOPs required to implement original ESPNetv2 or ShuffleNetv2
architecture. At the same time it can also be noticed that if we use only a single dimension,
accuracy is affected very negatively. Accuracy is reduced by around 30%. It can be easily
recognized from Figures 15–18.
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In order to analyze the results, Figure 18 was created. It denotes that by reducing
dimensions FLOP decreases drastically but at the same time it also negatively effects
accuracy. Reducing dimensions reduces accuracy by around 50%, which is the reason that
this method is not suitable for real-world applications.
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Figure 18. Analysis of unoptimized kernel dimensions.

4.2.2. Semi-Optimized Kernel Dimensions

In semi-optimized kernel dimensions, we used a combination of two kernel dimen-
sions for the output channel. It is very clear that this definitely reduces the number of
FLOPs without affecting the accuracy significantly. ESPNetv2 architecture was used for
object detection purposes and ShuffleNetv2 was used for semantic segmentation. The
PASCAL VOC dataset was used in order to first implement ESPNetv2 and ShuffleNetv2 as
outlined in [24]. Then the same models were used with proposed DBGC-Kwh, DBGC-Kdh
and DBGC-Kwd; that is, the DBGC block was implemented in the dimension selector
modules for width and height, or width and depth, or height and width. Parameters were
selected as described in the DBGC architecture from Section 3. The main aim was to look for
differences in FLOPs and to check Top1 and Top5 accuracies. Tables 6–8 demonstrate the re-
sults obtained using depth + width-based, depth + height-based and height + width-based
kernels, respectively.

Table 6. Depth + width-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2
(DBGC-KDW) PASCAL 224 × 224 48 66.31 71.58

ShuffleNetv2
(DBGC-KDW) PASCAL 224 × 224 42 65.88 69.65

Table 7. Depth + height-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2
(DBGC-KDH) PASCAL 224 × 224 48 65.25 69.63

ShuffleNetv2
(DBGC-KDH) PASCAL 224 × 224 42 65.95 68.53
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Table 8. Height + width-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2
(DBGC-KHW) PASCAL 224 × 224 48 65.85 71.25

ShuffleNetv2
(DBGCKHW) PASCAL 224 × 224 42 64.82 67.43

It can be observed from the results that semi-optimized kernel dimensions reduce
FLOPs to around half of the FLOPs required to implement the original ESPNetv2 or
ShuffleNetv2 architecture. At the same time it can also be noticed that if we use any two
dimensions, DBGC provides good accuracy. The accuracy is almost the same with half
the FLOPs which is a really good indication that decent speeds can be achieved with
almost the same accuracy in object detection, and even 1 or 2% higher accuracy in semantic
segmentation. This can be easily recognized in examining Figures 19–21.
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Figure 21. Height + width-based kernel.

In order to analyze these results, Figure 22 was created. It denotes that by using two
dimensions, FLOP decreases but at the same time accuracy is achieved nearly equal to
that of the original architecture. Thus, it is a positive sign that we were able to reduce
computations as FLOP was reduced without compromising accuracy. Such semi-optimized
kernel dimension mechanisms can be used in mobile networks or even for sensors and in
IoT where there are requirements of low power, low computations, and low storage.
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Figure 22. Semi-optimized kernel dimension.

4.2.3. Optimized Kernel Dimension

In optimized kernel dimensions, we used a combination of all three kernel dimensions
for the output channel. It is very clear that this definitely provided very good accuracy
but with higher numbers of FLOPs also. DBGC-Khwd reduced the number of FLOPs
with better accuracy. ESPNetv2 architecture was used for object detection purposes and
ShuffleNetv2 was used for semantic segmentation. The PASCAL VOC dataset was used in
order to first implement ESPNetv2 and ShuffleNetv2 as outlined in [24]. Then the same
models were used with proposed DBGC-Khwd; that is, the DBGC block was implemented
and in the dimension selector module width, height, and depth parameters were selected as
described in the DBGC architecture from Section 3. The main aim was to look for differences
in FLOPs and to check Top1 and Top5 accuracies. Table 9 and Figure 23 demonstrate the
results obtained using depth + width + height-based kernels parallel.

Table 9. Height + width + depth-based kernel.

Model Dataset Image Size FLOP (In Millions) Top1 Top5

ESPNet v2 PASCAL 224 × 224 86 66.1 70.02

ShuffleNetv2 PASCAL 224 × 224 71 63.9 62.30

ESPNetv2
(DBGC-KHWD) PASCAL 224 × 224 72 70.83 74.56

ShuffleNetv2
(DBGC-KHWD) PASCAL 224 × 224 63 69.92 74.53
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It can be recognized from Figure 20 that by selecting all three dimensions a 4 to
5% increase in accuracy was achieved while reducing FLOPs. Optimized kernels yield the
best results among all three categories of kernel dimensions.

Figures 24 and 25 demonstrate the comparison of all unoptimized, semi-optimized,
and optimized kernel dimensions in ESPNetv2 and ShuffleNetv2, respectively.
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Figure 24. ESPNetv2 versus ESPNetv2 (DBGC).
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Figure 26 shows a box plot of all the methods used for the PASCAL VOC dataset.
“Ev2” is used as the short form of ESPNetv2 and “Sv2” is used for ShuffleNetv2.
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Figure 26. Box plot to show unoptimized, semi-optimized, and optimized kernel performances for
ESPNetv2 versus ESPNetV2 (DBGC) and ShuffleNetv2 versus ShuffleNetV2 (DBGC).

To cross validate the performances of the proposed DBGC it was also used with the MS
COCO dataset [41]. Table 10 shown below displays the performance of unoptimized, semi-
optimized, and optimized kernel for ESPNetv2 versus ESPNetV2 (DBGC) and ShuffleNetv2
versus ShuffleNetV2 (DBGC) using the MS COCO dataset. The chart for the same is
displayed in Figure 27.
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Table 10. Unoptimized, semi-optimized, and optimized kernel performances for ESPNetv2 versus ES-
PNetV2 (DBGC) and ShuffleNetv2 versus ShuffleNetV2 (DBGC) for the PASCAL and COCO datasets.
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using the PASCAL and COCO datasets.

5. Conclusions

The proposed DBGC unit is generic and can be used with any CNN-based network
model. DBGC was used with ESPNetv2 and ShuffleNetv2 architectures. The results were
evaluated on the basis of FLOPs and Top1 and Top5 accuracies. All the practical implemen-
tation was performed on the PASCAL VOC dataset. It can be concluded that the unopti-
mized kernel-based DBGC provides around one third less FLOPs which increases speed
drastically; however, at the same time accuracy is reduced drastically. Semi-optimized
dimension-based kernels provide around half the FLOPS with the same or greater accuracy
in ShuffleNetV2 with DBGC. Optimized dimension-based kernels provide the highest
accuracy with FLOPs reduced by around 5 M.

6. Future Work

In future studies the same architecture could be tested using various datasets. Arith-
metically it could be determined if unoptimized dimension-based kernels applied on
single-dimension data could provide better accuracy. In DBGC, dimensions are selected
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manually but future dimension selector modules could be optimized to select dimensions
based on the particular datasets provided.
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