
sensors

Article

Memcached: An Experimental Study of DDoS Attacks for the
Wellbeing of IoT Applications

Nivedita Mishra 1, Sharnil Pandya 1,* , Chirag Patel 2, Nagaraj Cholli 3, Kirit Modi 4 , Pooja Shah 5,
Madhuri Chopade 5 , Sudha Patel 6 and Ketan Kotecha 7

����������
�������

Citation: Mishra, N.; Pandya, S.;

Patel, C.; Cholli, N.; Modi, K.; Shah,

P.; Chopade, M.; Patel, S.; Kotecha, K.

Memcached: An Experimental Study

of DDoS Attacks for the Wellbeing of

IoT Applications. Sensors 2021, 21,

8071. https://doi.org/10.3390/

s21238071

Academic Editor: Reza Malekian

Received: 16 October 2021

Accepted: 30 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India;
nivedita.mishra.phd2019@sitpune.edu.in

2 Computer Science & Engineering, DEPSTAR, Anand 388421, India; chiragpatel.dce@charusat.ac.in
3 Department of Information Science and Engineering, R. V. College of Engineering, Banglore 560059, India;

Nagaraj.cholli@rvce.edu.in
4 Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar 384315, India;

kjmodi.fet@spu.ac.in
5 Information Technology Department, Gandhinagar Institute of Technology, Ahmedabad 382010, India;

pooja.shah@git.org.in (P.S.); madhuri.chopade@git.org.in (M.C.)
6 SALITR, SAL Campus, Ahmedabad 380060, India; sudha.patel@sal.edu.in
7 Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed) University,

Pune 412115, India; drketankotecha@gmail.com
* Correspondence: sharnil.pandya@sitpune.edu.in

Abstract: Distributed denial-of-service (DDoS) attacks are significant threats to the cyber world
because of their potential to quickly bring down victims. Memcached vulnerabilities have been
targeted by attackers using DDoS amplification attacks. GitHub and Arbor Networks were the
victims of Memcached DDoS attacks with 1.3 Tbps and 1.8 Tbps attack strengths, respectively. The
bandwidth amplification factor of nearly 50,000 makes Memcached the deadliest DDoS attack vector
to date. In recent times, fellow researchers have made specific efforts to analyze and evaluate
Memcached vulnerabilities; however, the solutions provided for security are based on best practices
by users and service providers. This study is the first attempt at modifying the architecture of
Memcached servers in the context of improving security against DDoS attacks. This study discusses
the Memcached protocol, the vulnerabilities associated with it, the future challenges for different IoT
applications associated with caches, and the solutions for detecting Memcached DDoS attacks. The
proposed solution is a novel identification-pattern mechanism using a threshold scheme for detecting
volume-based DDoS attacks. In the undertaken study, the solution acts as a pre-emptive measure for
detecting DDoS attacks while maintaining low latency and high throughput.

Keywords: DDoS attacks; Memcached; amplification attacks; botnet; momentum botnet

1. Introduction

The Internet of Things (IoT) has achieved a broad reach in terms of its applications
in almost every sector of life. In the past, the electronic devices that facilitated various
needs were independent, and other isolated systems functioned to meet the required
objectives. Since systems such as smart homes [1] are now required to provide the user’s
needs remotely, they are prone to cyber attacks, namely, phishing attacks [2], man-in-
the-middle attacks, and DDoS attacks [3]. Such IoT devices have scales for generating
data, from small-scale applications with a few bytes every second to those with several
kilobytes every second, depending upon the addressed application. Various applications
associated with the IoT are latency-critical and involve vast amounts of data [4]. Data
storage and computation requirements pave the way for cloud computing, fog computing,
and edge computing. High reliability with low latency is required for many application
scenarios of IoT networks, viz., remote surgery, smart grids, connected vehicles, smart

Sensors 2021, 21, 8071. https://doi.org/10.3390/s21238071 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4507-1844
https://orcid.org/0000-0001-6462-059X
https://orcid.org/0000-0002-3956-8686
https://orcid.org/0000-0003-2653-3780
https://doi.org/10.3390/s21238071
https://doi.org/10.3390/s21238071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238071
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238071?type=check_update&version=2


Sensors 2021, 21, 8071 2 of 22

homes, and industrial automation [5]. The cache is used mainly to reduce latency, and
vulnerabilities associated with the cache are heavily exploited by DoS attacks, making most
IoT applications a target for such attacks.

A denial-of-service (DoS) attack occurs when the attacker’s target is to disrupt the
victim’s services by utilizing their resources with the help of forged requests [6]. Distributed
denial of services (DDoS) is an amplified DoS attack. In this attack, there are typically many
sources from which requests originate, hence the label ‘distributed’. Due to this property,
it becomes quite challenging to mitigate DDoS attacks. There are many types of DDoS
attacks, namely: TCP SYN flood attacks, teardrop attacks, Smurf attacks, ping-of-death
attacks, and botnets. The classification of DDoS attacks is depicted in Figure 1, based on
the goal of the attacker and the existing solutions for mitigation of the attack.

Figure 1. Classification of DDoS attacks.

DDoS attacks can also be classified as reflection and amplification attacks. In a
reflection attack [7], the sizes of the request and the response are the same, whereas in
an amplification attack [8], the size of the response is many times bigger than that of the
request. An amplification attack is a type of reflection attack with a response that is a
multiplied version of the request. The bandwidth amplification factor (BAF) is defined as
the approximate number of response bytes sent by an amplifier for a request. The BAF
plays a crucial role in defining the severity of an attack. NTP, DNS, and SNMP have widely
used protocols for amplification attacks [9]. Lately, some new attack vectors have been
used for DDoS attacks, such as Apple remote management services (ARMS), the Ubiquiti
discovery protocol, the Constrained Application Protocol (CoAP), Web Services Dynamic
Discovery, HTML5 hyperlink-auditing ping redirection, and Memcached. The BAFs of
commonly used protocols in DDoS attacks are shown in Figure 1. As is evident from
the figure, the BAF of Memcached is several times (≈100 times) greater than that of the
other protocols used as DDoS attack vectors [10]. This high BAF led to the analysis of the
Memcached protocol in the security context.

The Memcached protocol was developed in 2003 [11]. This protocol was introduced
to reduce latency, thereby speeding up dynamic web applications by significantly reducing
the database load, and is widely used by companies such as Facebook, YouTube, Twitter,
and GitHub [12]. The DDoS attack is known for its impact, due to the rate at which it can
be initiated/spread. In the past, attackers have launched an attack on Dyn with a strength
of 1.2 Tbps. It was considered to be one of the most significant attacks to date, and the
malicious actors in the attack were bots. Therefore, botnets were considered a critical aspect
of launching significant DDoS attacks; however, after just two years, in 2018, GitHub came



Sensors 2021, 21, 8071 3 of 22

under a Memcached DDoS attack which did not involve botnets. The capability of this
kind of attack can be understood by the fact that in just a few months, another attack was
launched on Arbor Networks with a strength of 1.7 Tbps [13]. The amplification capacity
and vulnerabilities of the Memcached protocol raise security concerns. Figure 2 represents
the bar-chart representation of various protocols.

Figure 2. Representation of the bandwidth amplification factor of various protocols.

In the undertaken study, an architectural change was proposed for detecting DDoS
attacks. The significant contributions of the proposed work are:

i. An architectural change was proposed to make Memcached more secure.
ii. The solution acts as a pre-emptive measure for detecting DDoS attacks, thus enhancing

system performance at large.
iii. A threshold mechanism was introduced to create an identification pattern for detect-

ing volume-based DDoS attacks, rendering the solution more user-friendly.
iv. A case study for detecting DDoS attacks carried out using a Memcached server was

analyzed and discussed.

2. Related Work

The Memcached protocol has been used for a long time by large companies such as
Facebook and Google to improve the user experience. This protocol is quite useful in web
applications. Still, some vulnerabilities need analysis to save cyberspace from significant
DDoS attacks due to this protocol in the future. These attacks are possible because UDP
services send responses which are much larger than the requests.

Memcached is an open-source, simple, but powerful distributed memory-caching
system. Many researchers have worked on different architectures for Memcached servers.
Lim et al. [14] introduced thin servers with smart pipes by coupling embedded low-power
cores to the Memcached server, making it possible for GET requests to be processed in the
hardware, thus reducing the load on the network and database. Memcached is a single-
point failure mechanism; Lu et al. [15] addressed this issue and proposed R-Memcached,
where caches are replicated in Memcached servers. Blott et al. [16] proposed a hybrid
solution by combining DRAMs and serial-attached flash memory. Zaidenberg et al. [17]



Sensors 2021, 21, 8071 4 of 22

proposed five new algorithms in place of LRU for Memcached. Memcached can work
with single and clustered nodes; Bakar et al. [18] discussed the difference in Memcached
servers’ behavior in both scenarios. Cheng et al. [19] analyzed several factors affecting
the latency. In addition, they provided essential recommendations, such as reducing the
number of keys generated from client requests in place of lowering the cache miss ratio,
which is, anyway, very small. Several architectural modifications for Memcached servers
are recommended in the literature to decrease the latency and reduce the cost. In Table 1,
the architectural changes proposed by researchers in the literature for different problems
are discussed. The issues discussed here are related to latency and provide the basis for the
proposed work.

Table 1. Analysis of architectural changes presented in the literature.

Reference Year Problem Statement Architectural Change Achievement

Lim et al.
[14] 2013 Increased load on the

network and database.

Authors introduced thin servers with smart
pipes by coupling embedded low-power cores

to the Memcached server, enabling GET
requests to be processed in hardware.

Power–performance
trade-off.

Lu et al. [15] 2014 Single-point failure
mechanism of Memcached.

Authors proposed R-Memcached, where caches
are replicated in the Memcached server.

Consistency among
cache replicas.

Blott et al.
[16] 2015

Limited value-store
capacity in in-memory
key-value stores such

as Memcached.

A Hybrid of DRAM and serial-attached flash
drive was proposed for increasing the

value-store capacity.

High throughput
and scalability.

Zaidenberg
et al. [17] 2015 Data-discarding algorithm

for Memcached.

In this work, five new algorithms were
presented in place of the least-recently-used

(LRU) algorithm for discarding data
in Memcached.

Improved hit rate.

Singh et al.
[20] 2018

Flaws in Memcached
architecture and

operations.

The authors identified flaws of Memcached
architecture, and the prevention of DDoS

attacks was also discussed.

Security steps for avoiding
DDoS attacks.

Proposed
work 2021 DDoS attack using

Memcached.

Communication between Memcached servers is
proposed in the undertaken study for detecting

volume-based attacks.

High security from DDoS
attacks while maintaining

throughput latency.

High-bandwidth and low-latency networks suffer from incast congestion, where
many-to-one traffic patterns are observed, i.e., many clients send data to the same re-
ceiver [21]. Web servers tend to communicate with multiple Memcached servers to satisfy
a user request in the real world. This leads to communication by web servers with all
Memcached servers in a short period, causing incast congestion. With the increase in
Memcached servers, the problem of incast congestion increases. The consequence of incast
congestion is Memcached error, and as a result, data requests go to the main memory,
causing increased latency. Memcached also suffers from cold caches, replication, consis-
tency issues, and rigid scale-out features. Nishtala et al. [12] proposed that these challenges
could be dealt with by adapting some trade-offs in the number of Memcached servers, the
window size, and the latency.

For data-intensive applications, edge computing is also used. Caching is essential
at a network’s edge, and researchers are working on efficient caching techniques [22].
However, without any mechanism, the data stored in the cloud are not accessible in a
short period of time. Having many devices connected to the cloud introduces high la-
tency, which is unacceptable in healthcare, firefighting, and similar emergency services [23].
Some Latency-critical IoT applications include factory automation, smart grids, process
automation, and intelligent transport systems [24]. Cloud computing offers resilience and
reliable services, which is the main reason for its prevalent use in IoT applications. How-
ever, the applications assisted by cloud computing are highly prone to DDoS attacks [25].



Sensors 2021, 21, 8071 5 of 22

Caching is a popular technique used to reduce latency in computers. Researchers have
proposed several mechanisms for decreasing latency. These include the caching mecha-
nism proposed by Niyato et al. [26] and the middleware for complex-event processing in
real-time presented by Baptista et al. [27]. Two-phase load balancing for Memcached shows
improvement in both the server and the network load [28]. Chen et al. [29] proposed a
cache and prefetching mechanism to decrease the network load and latency by deploy-
ing caches at first- and second-tier nodes. IoT applications rely heavily on data; locally
storing the data is not advisable. Hence, several techniques are used, such as integrated
edge and cloud computing [30]. An IP traffic bandwidth-control policy was presented by
Foremski et al. [31] to protect networks. Nishtala et al. [32] developed a hybrid approach
for making efficient resource-allocation decisions, utilizing Memcached and web search as
back-end services. For each service, the request generator followed a diurnal load pattern.
Several architectural changes have been proposed by researchers for the efficient use of
Memcached, as seen in the literature. Despite the efforts to improve the architecture of
Memcached, only a few research works were conducted in the domain of Memcached.
Threshold techniques are predominantly used for discriminating between normal traffic
and abnormal traffic [33–36]. The presented work uses the threshold technique for DDoS
attack detection and mitigation in Memcached-based DDoS attacks.

3. Cache Attacks and Internet of Things

The non-standardized growth of the IoT industry has been a major contributor to
DDoS attacks [37]. With the introduction of IoT devices, there has been a contest to turn
everything into a smart format, be it a city or healthcare, agriculture or industry; the IoT
is in almost every sector. These devices generate and keep on storing data on scales from
small to large, according to the demands of the applications. The industrial IoT (IIoT) has
limitless prospects for future industries by analyzing data collected from thousands of
connected sensors. The IIoT has several advantages: higher efficiency, improved accuracy,
network scalability, predictive maintenance, lesser downtime for machines, power savings,
higher security, and optimization. The multiple IoT (MIoT) has vast areas of applicability,
one important example being smart cities [4]. The cache is used in the abovementioned IoT
applications to reduce latency and increase throughput; this makes IoT applications prone
to cache attacks [38]. Memcached is identified in the IoT domain in upcoming industrial
applications where the IoT nodes are not limited in terms of the amount of data that can
be handled due to an application’s nature. Some scenarios in which IoT applications can
become exposed to cache attacks are:

Smart cities: Real-time data are a crucial requirement for many applications within a
smart city, viz., fire detection and firefighting, water management, lighting, traffic man-
agement, and transportation. These kinds of applications are highly critical and require
more attention so that security is kept as a priority and the real-time data requirement
is met. Sun et al. [39] demonstrated that caching needs to be carried out dynamically
to save energy for different IoT applications in smart cities. Naeem et al. [40] projected
periodic caching as a solution for latency-critical smart city applications and considered the
security requirements. However, cache inconsistency and security are two major problems
associated with caching [41].

Smart grids: In smart grids, IoT technology is used in smart devices, networking, and
communication technologies. The latency involved in a smart grid ranges from milliseconds
to subseconds [42]. Yin et al. [43] studied content caching, resource allocation, and energy
cooperation in smart grids; this study showed the extensive need for caching techniques in
smart grids for using energy efficiently. For processing smart-meter data, communication
latency should be lower, and processing rates need to be improved [44]; to achieve this,
software platforms are used, which are vulnerable to Memcached attacks.

Automobile: In the automobile industry, IoT devices are used for location tracking,
the weight measurement of trucks, traffic analysis, and route management. The data
collected from these sensors are vast and stored in the cloud; for the real-time analysis



Sensors 2021, 21, 8071 6 of 22

of the stored data, some mechanism is required. The Society of Automotive Engineers
(SAE) has divided automobile applications into classes A, B, C, and D, with increasing
bandwidth, reliability, and stricter latency constraints. The latency requirements vary
between 50 ms to 150 ms for class A and 2 ms for class D [45]. Cars connected to the IoT
network(CV2X) are called connected cars. In this case, real-time data transmission is also
required to increase the driver’s response time. Five levels have been introduced by SAE
for vehicle automation, starting from driver assistance to full automation [46]. At level five,
very stringent latency is required, along with high reliability. The automotive-maintenance
system is also one of the features that uses IoT sensors for predictive analysis. The IoT
sensors connected to different parts of a car gather data, and these data are further used
to analyze the requirements for the change of the components. Autonomous vehicles
are current sensations in the automobile industry, and the purpose of these vehicles is to
reduce accidents caused by human error. The IoT systems integrated with these vehicles
are used to make real-time decisions, making the caching mechanism a requirement. These
applications in the automobile industry can be a hotbed for attacks such as Memcrashed.

Healthcare: Latency- sensitive IoT applications in healthcare include medical data
collection and the processing of patients, robotic assistance in surgeries, medication delivery,
and dispensing prescriptions [47]. Various healthcare applications cannot be accessed if
the latency is greater than 200 ms. An application achieving a latency of less than 80 ms is
considered suitable for real-time activities [48]. In healthcare systems, DDoS attacks can
take place if internet-enabled medical devices are converted to botnets. As they are IoT
devices, it is entirely possible to do this, and with the use of amplification attacks, such as
Memcrashed, the critical activities of hospitals, such as surgeries, can be controlled [49].
Even worse, if surgeries are in progress and the attacker launches an attack due to insecure
IoT devices, several patients’ lives could be in danger.

Wearables: IoT technology is used to diagnose health conditions by collecting data for
the long term [50]. Wearable devices such as Fitbit smartwatches produce lots of data [51].
While analyzing a sports activity generates, at peak, 25,000 tuples per second of data flow,
an even more significant concern is that the minimum flow of data generated is 10,000 tuples
per second. This kind of data cannot be stored at the edge, as it is resource-limited; fog
computing helps to overcome this issue, as it acts as a bridge between cloud and fog
computing. However, the data are kept somewhere in the cache in all of these computing
techniques to reduce latency, making these devices vulnerable to cache attacks. Silva
et al. [25] described an assessment of solutions based on realistic IoT scenarios, including
the flexibility to meet the heterogeneity issues in IoT applications and the mitigation of
DDoS attacks using IoT protocols as open research problems in the IoT setup.

4. The Necessity of Securing Memcached Architecture

The undertaken study discusses the Memcached protocol widely used in IoT scenarios,
and a detection approach for DDoS attacks using Memcached is proposed. Although the
Memcached attacks that have been launched to date could be evaded by employing best
practices, the attacks’ methodologies are constantly changing; therefore, the vulnerabilities
present in Memcached should be addressed. New vulnerabilities can be found out, and they
may be used for launching DDoS attacks, as seen in the past. The simple architectural model
of Memcached is quite useful for IoT applications; subsequently, Memcached architecture
should be made more secure. There have been several cache attacks launched by attackers,
the most recent being CPDoS [52]. The most notable cache attack to date was carried out
using Memcached, making it our prime focus for further discussion.

4.1. Memcached Architecture

Caching is a technique used quite commonly in computing for reducing latency.
The cache is a storage space that is used for frequently required entries to save time.
Memcached is based on this concept, with some modifications. Memcached is a database-
caching system used to speed up websites’ dynamic databases by caching frequent data in



Sensors 2021, 21, 8071 7 of 22

DRAM. Memcached uses a key-value method to store data, and it solves the problem of
having an extensive data cache [53].

Memcached comprises four components, each of which has a key, an expiration time,
and raw data. These components are:

Client: This is a dynamic web-based application that is provided with a list of Mem-
cached servers. One application has several servers associated with it, and only one server
at a time receives or shares data. Additionally, the Memcached servers do not share data
between themselves.

Client-based hashing algorithm: Typically, there are many clients as well as Mem-
cached servers, so to distribute the load, a hashing algorithm is used to determine which
Memcached server should be used. The client chooses the server based on the key.

Server software: The Memcached server calculates the client key’s second hash key to
find where to store the key and the corresponding value in the internal hash table.

Least-recently-used (LRU) algorithm: Memcached servers keep data in RAM. For
discarding the data, the LRU algorithm is used. This algorithm is quite useful, as it helps
to remove old data and keep the memory free for new requirements.

As is evident from the flow chart shown in Figure 3, Memcached functions in the
following way:

• A client sends a request to the Memcached server for data.
• The Memcached server looks for these data in its cache.
• If the data are present in the cache, the server sends them directly to the client.
• If the data are not present in the cache, then a query is sent to the database, and the

retrieved data are saved in the Memcached server and sent to the client.
• If any data are changed or have expired for any value, the Memcached server updates

the cache, thus providing updated information to the client.

Figure 3. Working of the Memcached server.

From this mechanism, it is clear that Memcached reduces the server load, as the
inclusion of fewer database calls is required. In addition, standard keys can be stored in



Sensors 2021, 21, 8071 8 of 22

the Memcached server to increase the speed of the system. In the case of most probable
events, Memcached can be used to enhance performance.

4.2. Memcached Attack Mechanism and Case study with Momentum Botnet

The threat model for Memcached is represented in Figure 4, which describes the
potential risk elements and vulnerabilities associated with Memcached and the available
defence mechanisms and probable critical assets.

Figure 4. Representation of Memcached attack threat model.

The Memcached mechanism was designed to work internally, but it became exposed
to unauthenticated servers, enabling exploitation via DDoS attacks [53]. A case in which
IoT botnets can be deployed is shown in Figure 5, where vulnerable Memcached servers
are used for launching attacks. Although patches released after the attack ensured that no
attack could occur again using this vulnerability alone if best practices were followed, it
could very well be used as an attack vector for botnets. A small IoT bots network deployed
for this attack could cause a considerable impact. Momentum is a botnet that was recently
caught in the wild [54]. This botnet mainly targets vulnerable Linux devices that are
susceptible to attacks. This botnet uses 36 DDoS attack vectors and Mirai, Bashlite, and
Kaiten as backdoor variants for creating bots by exploiting vulnerable devices.

The 36 attack vectors that are used include the SYN flood, the DNS flood, and the
UDP flood, and, as it is not so common for botnets, it also supports Memcached ampli-
fication. With so many devices connected to the net and with the amplification capa-
bilities of Memcached-type services, this botnet could create many problems, even for
well-resourced victims.

As shown in Figure 6, in a Memcached DDoS attack, the attacker sends a request to the
Memcached server with a spoofed IP of the victim, so that the response is sent to the victim.
Attackers deploy a two-step approach: the first step is finding exploitable Memcached
servers, and the next step is to use them for an amplification attack.



Sensors 2021, 21, 8071 9 of 22

Figure 5. Representation of a Memcached DDoS attack using a botnet.

Figure 6. Process flow diagram of launching a DDoS attack using Memcached.

5. Vulnerabilities of Memcached and Mitigation Techniques

To launch a Memcached DDoS attack, called a Memcrashed, attackers spoof the
victim’s IP address to send queries to Memcached servers. This results in a significant
data response from the Memcached server as it tries to help the victim. Nevertheless, in
this process, all the victims’ resources get flooded by, typically, 50× responses. This server



Sensors 2021, 21, 8071 10 of 22

is designed to work with open connections, and it runs over the TCP/UDP port 11211.
Memcached DDoS attacks can use open TCP and UDP ports at 11211, but the TCP port
11211 is not very vulnerable, as spoofing TCP queries is unreliable. Therefore, this attack
usually exploits vulnerable Memcached servers with UDP enabled. It is considered by far
the most elevated amplification attack.

Common Vulnerabilities and Exposures (CVE) is a system to provide a list of vulner-
abilities and exposures in information security that are disclosed publicly. Some vulner-
abilities that are related to Memcached servers, as published by CVE, are summarized
in Table 2 [55].

Table 2. Detailed vulnerability description of Memcached.

Vulnerability Reference Description

CVE-2020-10931

Insufficient authentication of user input is why this
vulnerability exists in memcached.c when a binary protocol

header is parsed in the try_read_command_binary() function.
DoS attacks can be performed using this vulnerability.

CVE-2019-11596
“lru mode” and “lru temp_ttl” commands were found to be

dereferencing the NULL pointer in Memcached versions before
1.5.14, making it prone to denial of service.

CVE-2019-15026
In Memcached version 1.5.16, while using UNIX sockets in
memcached.c, a buffer over-read was found in conn_to_str,

causing a denial of service.

CVE-2018-1000115

This is the vulnerability caused due to open UDP port at 11211.
In UDP support up to Memcached version 1.5.5, network

message volume could not be controlled sufficiently, making it
vulnerable to denial-of-service attacks. An amplification factor

of 50,000 could be achieved using this.

The vulnerabilities exploited by attackers are as follows:

• UDP ports are enabled by default for Memcached versions up to 1.5.5, and the update
or manual disabling of the port is required in these versions. Even after version 1.5.6,
attackers can generate Memcached DDoS attacks, but the impact is reduced.

• Memcached architecture is such that the servers do not interact with each other; thus,
if many requests are coming from the same source IP to all the servers, then no flags
could be raised.

• In Memcached, there is no authentication of the client, as it only requires a key to
function. This may cause trouble, as a simple key can lead to data stealing, and it also
becomes easier to launch attacks.

• The Memcached server has a user-configurable limit for stored value; by default, this
value is 1 MB. This value is user-configurable when under attack. It can be changed
and exploited.

• Like UDP, unprotected DNS can also be used for amplification attacks, so vulnerabili-
ties in regard to this should also be checked.

• A Memcached DDoS attack tool named Memcrashed is available online [56]; it is
written in Python. These kinds of tools can create havoc, as even an inexperienced
hacker can exploit vulnerabilities. It was seen in the past with Mirai that once the code
was made public, many Mirai variants came into the public domain.

Mitigation Techniques

Many cloud providers have laid down some best practices for users, which can curb
Memcrashed to an extent. For example, the flush all/kill command was given as a solution,
but this was widely rejected, as it contradicts the essence behind using Memcached servers.

• The most common and straightforward approach for this is blocking UDP/TCP port
11211 traffic.



Sensors 2021, 21, 8071 11 of 22

• It has also been recommended not to use UDP frequently, and to keep it disabled
by default.

• While using UDP, the response should be smaller than the request size; otherwise,
there is always a chance of an amplification attack. UDP is a connectionless protocol
and does not require authentication like the three-way handshake mechanism used by
the TCP protocol for communication.

• The use of firewalls can always prevent DDoS attacks.
• Memcached is designed for private network use, so localhost binding with the help of

a firewall can be of great help.

For this type of attack, it is necessary to understand that attackers are continuously
looking for vulnerabilities, against which the system needs to respond quickly. The attack
was first launched in 2018, and very soon, defenders found that several Memcached servers
were exposed to public networks. Memcached was never supposed to be exposed to the
public internet, but several Memcached servers were exposed to the net even after realizing
this issue. To be precise, as revealed by Shodan, there are 77,561 exposed Memcached
servers [57]. Not all of these may be vulnerable to DDoS attacks, but this is a considerable
number. Given the capacity of an amplification factor as large as 51,200, as Cloudflare
stated, even a small number of exploitable Memcached servers can cause a considerable
impact. The proposed solution is applicable for service providers to ensure that such
incidents of DDoS attacks do not take place in future. The solution will be useful for
mitigating attacks regardless of compliance with best practices at the user end. With
technological advancements, it becomes difficult for the user to be up-to-date. In this
scenario, the proposed solution will be of great importance, as it puts the onus on the
service provider.

6. Proposed Solution

Memcached attacks and their aftermath suggest that DDoS attacks using Memcached
are the most critical unexplored cybersecurity dimension. As seen from previous works,
there has been little to no research carried out on this dimension. This became the mo-
tivation behind the proposed method. Memcached is one of the most famous cache
architectures because of its ease of use and flexibility. Some changes have been proposed
to make Memcached architecture more secure. Memcached does not support encryption;
thereby, it does not suffer from added overhead and time delays. This makes it a suitable
choice for IoT nodes, which require a large amount of data to be handled alongside a higher
data throughput. In [58], the authors proposed a new caching mechanism with encryption,
and a 13% overhead was reported. This overhead cannot be accepted for latency-critical
applications like healthcare and automated vehicles.

As depicted in Table 3, several threshold-based mechanisms have been proposed
by researchers in the past for detecting and mitigating DDoS attacks. It is evident from
the literature that threshold mechanisms are efficient for the early detection of DDoS
attacks [33–36]. The present work introduces context-aware computing to calculate the
threshold and is applied to a volume-based DDoS attack. Consequently, to make Mem-
cached secure, architectural change is proposed, so that the throughput is not compromised.
Furthermore, the architectural change is designed with the provision that servers will not
communicate if there is no suspicion of attack to ensure low latency while maintaining a
near-comparable performance to Memcached.



Sensors 2021, 21, 8071 12 of 22

Table 3. Comparative analysis of proposed work with baseline techniques.

Author Year
Applied Technique for
Intrusion Detection in

DDoS Attacks

IDS Applied for
Detecting Attack

Type
Remarks

Alamri et al.
[33] 2020

Bandwidth control
mechanism and

XGBoost algorithm

DDoS attacks in
Software-Defined

Network

Trigger-based detection is applied using an
adaptive-bandwidth-profile-based threshold

where flawed flows are penalized for
preventing bandwidth depletion.

Singh et al. [34] 2020
Threshold and

entropy-based detection
mechanism

Discriminating
flash-crowd events
from DDoS attacks

DDoS attacks on edge routers are detected
using entropy and a threshold-based system.

Baskar et al.
[35] 2021

Real-time
traffic-monitoring
algorithm using a

multi-threshold system

Low-rate DDoS
attacks

Low-rate DDoS attacks are detected using a
multi-threshold traffic-analysis approach.

Jisa et al. [36] 2021
Threshold-based algorithm

using network traffic
parameter

Discriminating
flash-crowd events
from DDoS attacks

Dynamic threshold algorithm is introduced
with less processing time for DDoS

attack detection.

Proposed work 2021
Context-aware

computing-based
threshold mechanism

Memcached-based
DDoS attacks

DDoS attacks using Memcached as an attack
vector are mitigated efficiently by introducing
architectural change in Memcached and using

a context-aware threshold mechanism.

6.1. Architectural Change in Memcached

Memcached attacks are some of the most severe volume-based DDoS attacks, and
the solution for this is to divert the traffic [10]. In the undertaken study, this type of
volume-based attack was detected by identifying a pattern using a threshold mecha-
nism. Furthermore, in the conducted research, a change in the Memcached architecture
is proposed, namely, a mechanism for communication between the servers in the case
of suspicious activity. Usually, multiple requests are sent to many Memcached servers
using the spoofed IP of the victim; so, duplicate requests arriving for a particular IP can be
detected early on by communication between the different servers. Thus, the attack can be
mitigated without a significant impact.

Memcached was designed so that there would be no communication between the
servers, to ensure low latency. Figure 7a represents a familiar scenario, in which there
is no suspicious behavior. In these conditions, Memcached servers behave as originally
designed and do not communicate with each other. The proposed architecture consists of a
threshold for the number of requests beyond which the servers communicate, so that in
typical scenarios, the working of Memcached remains as planned. The Memcached servers
communicate, as depicted in Figure 7b, upon the suspicion of an attack. The suspected
victim, i.e., the Memcached server for which the individual threshold value is crossed, sends
SYN requests to the remaining Memcached servers to figure out whether or not an attack
has occurred. The thresholds are synchronized between the servers, implying that nt is the
same for all Memcached servers. Thus, the latency is only affected to a small extent in DDoS
attack situations, where latency would be affected in any case. Alongside the updated
Memcached server, context-aware computing is proposed to reduce the latency further.
The optimal threshold value is to be decided by the service provider using context-aware
computing, as it varies greatly depending on the service provider’s capabilities.



Sensors 2021, 21, 8071 13 of 22

Figure 7. Architectural diagram for proposed setup, (a) before the threshold nt, (b) after the threshold nt.

In a DDoS attack, malicious actors send requests using IP spoofing to overwhelm the
victim’s resources. The stepwise algorithmic representation is depicted in Figure 8. The
proposed solution is an intrusion detection system (IDS) for raising the alarm at the time
of intrusion. In an IDS, the focus remains on a higher recall rate, as detecting anomalous
behavior is of priority in anomaly detection. The proposed system is able to raise the
alarm for the service provider to take action. Human intervention is required for action;
thus, the proposed solution does not slow down the system performance, in comparison
to an intrusion prevention system (IPS). The solution is effective, as an alarm is raised
even if one server is under attack, thus increasing the chances of mitigating an attack by
early detection.



Sensors 2021, 21, 8071 14 of 22

Figure 8. A detailed process flow of the proposed solution for DDoS attacks using Mem-
cached servers.

Step 1: A request for sending resources to a particular IP address is sent to the server,
the record is kept as n(IPi, τ), where, n is number of requests, IPi is IP address for the ith
client, τ is time.

Step 2: For any Memcached server mk, k ∈ (1, N), where N is the total number
of Memcached servers, suspicion of attack arises if for a particular IP address number of
requests received at time τ is greater than the threshold value set for that Memcached
server, i.e.,

n(IPi, τ) ≥ nt(IPi, τ) (1)

where, nt—Threshold for the number of requests.
where nt is the threshold for the number of requests.
Step 3: If the conditions n(IPi, τ) ≥ nt(IPi, τ) holds good, then a Synchronization

request (SYN) is sent to nearby/all Memcached servers,

SYN (IPi) (2)

Step 4: All Memcached servers receiving SYN request then send the acknowledgement
giving information about the number of requests for the suspected victim IP address for
the said time duration, i.e.,

ACK (n(IPi, τ)) (3)

This scenario is depicted in Figure 7b, where communication between Memcached
servers has been represented. All the variables, i.e., nt, nat, τ are arbitrary and can be
updated according to requirements, thus enabling context-aware computing.



Sensors 2021, 21, 8071 15 of 22

Step 5: The cumulative request count is calculated as the sum of requests sent to
the Memcached server mk for IP address of ith client and acknowledgement of requests
received by other servers for the same client.{

(n(IPi, τ)) mk + ∑i ACK (n(IPi, τ))} (4)

The system is probable to be under attack if,{
(n(IPi, τ)) mk +∑i ACK (n(IPi, τ))} ≥ nat(IPi, τ) (5)

where nat is the cumulative threshold for the number of requests.
In this scenario, the alarm is raised for further investigation for the possibility of

an attack. For any time duration τ, where (τ1 < τ < τ2), if any Memcached server
sends a SYN request, no new SYN request from any other Memcached servers should
be sent. The cumulative threshold is calculated for the whole duration (τ1 < τ < τ2);
subsequently, any spike amounting to the threat coming in any Memcached server for the
said duration will be automatically considered. SYN requests from Memcached servers
can be sent for spikes after τ duration. The approach of sending one SYN request only for
any time duration τ prevents performance degradation and maintains low latency and
high throughput.

6.2. Case Study for Detecting DDoS Attack Using Memcached Servers

The experimental setup was created, as shown in Figure 7, on a Linux-based server
on an Intel Core i7 dual-core processor, 16 GB RAM, 64-bit OS, using a virtual machine
for capturing and storing the dataset. The proposed solution was analyzed using three
Memcached servers with a realistic, representative dataset. As Memcached is intended for
optimizing dynamic web applications, the threshold levels were defined using context-
aware computing to provide optimum service without affecting the server performance.
The effectiveness of the proposed solution is imperative, as it can be seen from the results
that by proper selection of the threshold, pre-emptive action can be taken by raising the
alarm in the case of a DDoS attack. For Memcached server 1, the threshold nt was exceeded
at point a1 at the 100th minute, as shown in Figure 9a; at this stage, the SYN command was
sent to all the Memcached servers for acknowledgement. As seen in Figure 9b, there was
no spike in Memcached server 2. A spike at the 110th minute was seen for Memcached
server 3, i.e., point f1 in Figure 9c, whereas the threshold was not exceeded at the 100th
minute, when the SYN command was sent by Memcached server 1. This implied that
the infiltration did not need to happen at the same time for all the servers. Figure 9d
demonstrates the cumulative results obtained from all the Memcached servers for the
time duration τ1 < τ < τ2. Since there was no SYN request beyond 80 < τ < 120, no
acknowledgement was sent, as is evident from Figure 9d, which shows nothing beyond
this duration. The alarm was also raised at point g1 at the 110th minute, but not at the
100th minute, when the SYN request was raised initially. This implied that the proposed
method avoided false positives and that the latency was not compromised, as the SYN and
ACK requests were required only once for any time duration.



Sensors 2021, 21, 8071 16 of 22

Figure 9. Cont.



Sensors 2021, 21, 8071 17 of 22

Figure 9. Case study of proposed solution for (a) Memcached server 1 with threshold value nt,
(b) Memcached server 2 with threshold value nt, (c) Memcached server 3 with threshold value nt,
and (d) cumulative result for raising the alarm with cumulative threshold value nat.

Before any attack, spurious activities are seen in the network traffic when the attacker
tries to launch the attack. This is when an attack can be mitigated even before it happens,
and before resources are lost. The proposed method can stop the attack before it can
create trouble, if the variables are chosen carefully, as seen in Figure 10. In the figure, two



Sensors 2021, 21, 8071 18 of 22

threshold levels were chosen to indicate the differences between the threshold level choices.
For example, if the threshold was selected to be at 500 Gbps, a1, a2, b1, b2, and c would be
seen as suspicious activities, and an alarm could be raised for these values.

Figure 10. A graphical representation of proposed Memcached solution for multiple threshold levels,
a1, a2, b1, b2, and c.

If 800 Gbps was selected as the threshold, a2, b1, b2, and c would be seen as suspicious
activities, but an alarm would not be raised for a1. In this way, the threshold can be decided
at the client level, and spurious activities are tracked. In the range of 80 to 140 days, several
spikes could have been considered spurious for threshold value of 500 Gbps. Thus, using
the proposed method for expected peak-traffic days, the client can decide to keep a higher
threshold value, hence preventing a higher false-alarm rate. Figure 10 shows that c denoted
an attack which could be stopped if an alarm were raised, using any threshold value. The
proposed solution would not significantly impact the performance, since an SYN request
would be sent to the other servers only once for any time duration if the threshold was
crossed for multiple Memcached servers. This would be accomplished before an actual
attack took place. The solution acts as a pre-emptive measure for detecting attacks; thus, it
will enhance system performance at large.

7. Conclusions

Memcached is a useful model for managing large amounts of data, and it runs on
several nodes with multiple cores. Its simplicity makes it a popular choice when working
with IoT devices. Memcached does not support encryption; thereby, it does not suffer from
added overhead and time delays. Memcached attacks and their aftermath suggest that
DDoS attacks using Memcached are the most critical unexplored cybersecurity dimension.
Devices using the IoT are also highly prone to DDoS attacks, due to the amplification
capacity of Memcached. The kind of DDoS amplification attack (with the amplification
factor being nearly 51,000) possible using Memcached servers makes them high-potential
attack vectors, as already seen in the Momentum botnet attacks.

The possibility of a Memcached attack using botnets was surmised, and an approach
was proposed for the early detection of such an attack. The presented solution consid-
ered architectural changes to the Memcached server to protect network service providers



Sensors 2021, 21, 8071 19 of 22

against DDoS amplification attacks. The methodology was designed so that, even if one
Memcached server was under attack, it could be detected. Moreover, the performance of
the servers would not be compromised by the proposed change. If multiple servers were
suspected of being under attack, only one SYN request would have to be acknowledged by
the other servers, and the attack could be identified. The use of context-aware computing
for deciding the threshold increased the flexibility of the proposed solution.

As a future extension of this work, machine-learning techniques can decide which
algorithm should be used to discard data in a particular application. Usually, LRU is
used in Memcached, but dynamically deciding the data-discarding algorithms for each
application can drastically improve the latency and throughput in diverse scenarios, and
Memcached can work more effectively.

Author Contributions: Conceptualization and formal analysis, N.M. and S.P. (Sharnil Pandya);
collection and assembly of data, N.M. and S.P. (Sharnil Pandya); data curation, N.M., C.P., K.M., P.S.,
M.C., N.C., S.P. (Sharnil Pandya), and K.K.; methodology, N.M. and S.P. (Sharnil Pandya); manuscript
writing, N.M. and S.P. (Sharnil Pandya); manuscript editing, N.M., C.P., K.M., P.S., M.C., N.C., S.P.
(Sudha Patel), and K.K. All authors have read and agreed to the published version of the manuscript.

Funding: Symbiosis institute of technology supported the conducted research work.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Terminology Description
IoT Internet of Things
IIoT Industrial Internet of Things
QoS Quality of service
DDoS Distributed denial of service
CPDoS Cache-poisoned denial of service
IDS Intrusion detection system
BAF Bandwidth amplification factor
CoAP Constrained Application Protocol
ARMS Apple remote management services
TCP Transmission Control Protocol
UDP User Datagram Protocol
DNS Domain name system
SNMP Simple Network Management Protocol
WS-Discovery Web Services Dynamic Discovery
SSDP Simple Service Discovery Protocol
LDAP Lightweight Directory Access Protocol
QOTD Quote of the Day
NTP Network Time Protocol
SOAP Simple Object Access Protocol
RAM Random-access memory
DRAM Dynamic random-access memory
CV2X Cellular vehicle-to-everything
CVE Common Vulnerabilities and Exposures
LRU Least recently used
FIFO First in, first out
TLRU Time-aware least recently used
ACK Acknowledgement
SYN Synchronize
Gbps Gigabits per second



Sensors 2021, 21, 8071 20 of 22

References
1. Huraj, L.; Šimon, M.; Horák, T. Resistance of IoT sensors against DDOS attack in smart home environment. Sensors 2020, 20, 5298.

[CrossRef]
2. Bojjagani, S.; Brabin, D.R.D.; Rao, P.V.V. PhishPreventer: A secure authentication protocol for prevention of phishing attacks in

mobile environment with formal verification. Procedia Comput. Sci. 2020, 171, 1110–1119. [CrossRef]
3. Prabadevi, B.; Jeyanthi, N. A review on various sniffing attacks and its mitigation techniques. Indones. J. Electr. Eng. Comput. Sci.

2018, 12, 1117–1125. [CrossRef]
4. Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A framework for

anomaly detection and classification in multiple IoT scenarios. Future Gener. Comput. Syst. 2021, 114, 322–335. [CrossRef]
5. Ma, Z.; Xiao, M.; Xiao, Y.; Pang, Z.; Poor, H.V.; Vucetic, B. High-reliability and low-latency wireless communication for internet of

things: Challenges, fundamentals, and enabling technologies. IEEE Internet Things J. 2019, 6, 7946–7970. [CrossRef]
6. Mishra, N.; Pandya, S. Internet of things applications, security challenges, attacks, intrusion detection, and future visions:

A systematic review. IEEE Access 2021, 9, 59353–59377. [CrossRef]
7. Hussain, S.; Atallah, R.; Kamsin, A. DDoS reflection attack based on IoT: A case study. In Proceedings of the Computer Science

Online Conference, Zlin, Czech Republic, 25 April 2018; Springer: Cham, Switzerland, 2019; pp. 44–52.
8. Colella, A.; Colombini, C.M. Amplification DDoS attacks: Emerging threats and defense strategies. In Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland,
2014; Volume 8708, pp. 298–310.

9. Wu, H.; Han, H.; Wang, X.; Sun, S. Research on artificial intelligence enhancing internet of things security: A survey. IEEE Access
2020, 8, 153826–153848. [CrossRef]

10. Azaria, J.; Zawoznik, A. Inside a New DDoS Amplification Attack Vector via Memcached Servers. Imperva. 2018. Available
online: https://www.imperva.com/blog/new-ddos-amplification-attack-vector-via-memcached-servers/ (accessed on 29
November 2021).

11. Dormando. Memcached-a Distributed Memory Object Caching System. Available online: https://memcached.org/ (accessed on
15 November 2021).

12. Nishtala, R.; Fugal, H.; Grimm, S.; Kwiatkowski, M.; Lee, H.; Li, C.H.; McElroy, R.; Paleczny, M.; Peek, D.; Saab, P.; et al. Scaling
memcache at facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation,
NSDI, Lombard, IL, USA, 2–5 April 2013; pp. 385–398.

13. Subramani, K.; Perdisci, R.; Konte, M. Detecting and measuring in-the-wild DRDoS attacks at IXPs BT-detection of intrusions and
malware, and vulnerability assessment. In Proceedings of the International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Saclay, France, 14 July 2021; pp. 42–67.

14. Lim, K.; Meisner, D.; Saidi, A.G.; Ranganathan, P.; Wenisch, T.F. Thin servers with smart pipes: Designing soc accelerators for
memcached. ACM SIGARCH Comput. Archit. News 2013, 41, 36–47. [CrossRef]

15. Lu, Y.; Sun, H.; Wang, X.; Liu, X. R-Memcached: A consistent cache replication scheme with Memcached. In Proceedings of the
Posters & Demos Session, Bordeaux, France, 8–12 December 2014; pp. 29–30.

16. Blott, M.; Liu, L.; Karras, K.; Vissers, K. Scaling out to a single-node 80 gbps memcached server with 40 terabytes of memory.
In Proceedings of the 7th USENIX Workshop on Hot Topics in Storage and File Systems, Santa Clara, CA, USA, 6–7 July 2015;
pp. 1–5.

17. Zaidenberg, N.; Gavish, L.; Meir, Y. New caching algorithms performance evaluation. In Proceedings of the 2015 International
Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), San Diego, CA, USA, 26–29
July 2015; pp. 1–7.

18. Bakar, K.A.; Shaharill, M.H.M.; Ahmed, M. Performance evaluation of a clustered memcache. In Proceedings of the 3rd
International Conference on Information and Communication Technology for the Moslem World (ICT4M), Jakarta, Indonesia,
13–14 December 2010; pp. E54–E60.

19. Cheng, W.; Ren, F.; Jiang, W.; Zhang, T. Modeling and Analyzing Latency in the Memcached system. In Proceedings of the 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 538–548.

20. Singh, K.; Singh, A. Memcached DDoS exploits: Operations, vulnerabilities, preventions and mitigations. In Proceedings of
the 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS), Kathmandu, Nepal, 25–27
October 2018; pp. 171–179.

21. Wu, H.; Feng, Z.; Guo, C.; Zhang, Y. ICTCP: Incast congestion control for TCP in data-center networks. IEEE ACM Trans. Netw
2012, 21, 345–358.

22. Hasan, K.; Jeong, S.H. Efficient caching for data-driven IoT applications and fast content delivery with low latency in ICN. Appl.
Sci. 2019, 9, 4730. [CrossRef]

23. Hasslinger, G.; Heikkinen, J.; Ntougias, K.; Hasslinger, F.; Hohlfeld, O. Optimum caching versus LRU and LFU: Comparison and
combined limited look-ahead strategies. In Proceedings of the 2018 16th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Shanghai, China, 7–11 May 2018; pp. 1–6.

24. Ghayvat, H.; Nitin Pandya, S.; Bhattacharya, P.; Zuhair, M.; Rashid, M.; Hakak, S.; Dev, K. CP-BDHCA: Blockchain-based
Confidentiality-privacy preserving big data scheme for healthcare clouds and applications. IEEE J. Biomed. Health Inform. 2021, 1.
[CrossRef] [PubMed]

http://doi.org/10.3390/s20185298
http://doi.org/10.1016/j.procs.2020.04.119
http://doi.org/10.11591/ijeecs.v12.i3.pp1117-1125
http://doi.org/10.1016/j.future.2020.08.010
http://doi.org/10.1109/JIOT.2019.2907245
http://doi.org/10.1109/ACCESS.2021.3073408
http://doi.org/10.1109/ACCESS.2020.3018170
https://www.imperva.com/blog/new-ddos-amplification-attack-vector-via-memcached-servers/
https://memcached.org/
http://doi.org/10.1145/2508148.2485926
http://doi.org/10.3390/app9224730
http://doi.org/10.1109/JBHI.2021.3097237
http://www.ncbi.nlm.nih.gov/pubmed/34260362


Sensors 2021, 21, 8071 21 of 22

25. Silva, F.S.D.; Silva, E.; Neto, E.P.; Lemos, M.; Venancio Neto, A.J.; Esposito, F. A taxonomy of DDoS attack mitigation approaches
featured by SDN technologies in IoT scenarios. Sensors 2020, 20, 3078. [CrossRef] [PubMed]

26. Niyato, D.; Kim, D.I.; Wang, P.; Song, L. A novel caching mechanism for Internet of Things (IoT) sensing service with energy
harvesting. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27
May 2016; pp. 1–6.

27. Baptista, G.; Carvalho, F.; Colcher, S.; Endler, M. A middleware for data-centric and dynamic distributed complex event processing
for iot real-time analytics in the cloud. In Proceedings of the 34th Brazilian Symposium on Computer Networks and Distributed
Systems (SBRC’2016), Salvador, Brazil, 30 May–3 June 2016; pp. 1–14.

28. Trajano, A.F.R.; Fernandez, M.P. Two-phase load balancing of in-memory key-value storages using network functions virtualiza-
tion (NFV). J. Netw. Comput. Appl. 2016, 69, 1–13. [CrossRef]

29. Chen, T.J.; Sheu, J.P.; Kuo, Y.C. Prefetching and caching schemes for IoT data in hierarchical edge computing architecture. Int. J.
Ad Hoc Ubiquitous Comput. 2020, 33, 109–121. [CrossRef]

30. Fu, J.S.; Liu, Y.; Chao, H.C.; Bhargava, B.K.; Zhang, Z.J. Secure data storage and searching for industrial IoT by integrating fog
computing and cloud computing. IEEE Trans. Ind. Inform. 2018, 14, 4519–4528. [CrossRef]

31. Foremski, P.; Nowak, S.; Fröhlich, P.; Hernández-Ramos, J.L.; Baldini, G. Autopolicy: Automated traffic policing for improved iot
network security. Sensors 2020, 20, 4265. [CrossRef]

32. Nishtala, R.; Carpenter, P.; Petrucci, V.; Martorell, X. Hipster: Hybrid task manager for latency-critical cloud workloads.
In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX,
USA, 4–8 February 2017; pp. 409–420.

33. Alamri, H.A.; Thayananthan, V. Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-
defined networks against DDoS attacks. IEEE Access 2020, 8, 194269–194288. [CrossRef]

34. Singh, K.; Dhindsa, K.S.; Nehra, D. T-CAD: A threshold based collaborative DDoS attack detection in multiple autonomous
systems. J. Inf. Secur. Appl. 2020, 51, 102457. [CrossRef]

35. Baskar, M.; Ramkumar, J.; Karthikeyan, C.; Anbarasu, V.; Balaji, A.; Arulananth, T.S. Low rate DDoS mitigation using real-time
multi threshold traffic monitoring system. J. Ambient Intell. Humaniz. Comput. 2021, 1–9. [CrossRef]

36. David, J.; Thomas, C. Discriminating flash crowds from DDoS attacks using efficient thresholding algorithm. J. Parallel Distrib.
Comput. 2021, 152, 79–87. [CrossRef]

37. Tourani, R.; Torres, G.; Misra, S. PERSIA: A PuzzlE-based InteReSt FloodIng Attack Countermeasure. In Proceedings of the 7th
ACM Conference on Information-Centric Networking, Montreal, QC, Canada, 29 September–1 October 2020; pp. 117–128.

38. Nguyen, H.V.; Iacono, L.L.; Federrath, H. Your cache has fallen: Cache-poisoned denial-of-service attack. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 1915–1930.

39. Sun, X.; Ansari, N. Dynamic resource caching in the IoT application layer for smart cities. IEEE Internet Things J. 2018, 5, 606–613.
[CrossRef]

40. Naeem, M.A.; Ali, R.; Kim, B.S.; Nor, S.A.; Hassan, S. A periodic caching strategy solution for the smart city in information-centric
Internet of Things. Sustainability 2018, 10, 2576. [CrossRef]

41. Li, R.; Asaeda, H.; Li, J.; Fu, X. A verifiable and flexible data sharing mechanism for information-centric IoT. In Proceedings of the
2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7.

42. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE. 2019, 8, 1655–1674. [CrossRef]
43. Yin, F.; Zeng, M.; Zhang, Z.; Liu, D. Coded caching for smart grid enabled HetNets with resource allocation and energy

cooperation. IEEE Trans. Veh. Technol. 2020, 69, 12058–12071. [CrossRef]
44. Bera, S.; Misra, S.; Rodrigues, J.J.P.C. Cloud computing applications for smart grid: A survey. IEEE Trans. Parallel Distrib. Syst.

2015, 26, 1477–1494. [CrossRef]
45. Huo, Y.; Tu, W.; Sheng, Z.; Leung, V.C. A survey of in-vehicle communications: Requirements, solutions and opportunities

in IoT. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015;
pp. 132–137.

46. Payalan, Y.F.; Guvensan, M.A. Towards Next-Generation Vehicles Featuring the Vehicle Intelligence. IEEE Trans. Intell. Transp.
Syst. 2019, 21, 30–47. [CrossRef]

47. Bibani, O.; Mouradian, C.; Yangui, S.; Glitho, R.H.; Gaaloul, W.; Hadj-Alouane, N.B.; Morrow, M.; Polakos, P. A demo of iot
healthcare application provisioning in hybrid cloud/fog environment. In Proceedings of the 2016 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Luxembourg, Germany, 12–15 December 2016; pp. 472–475.

48. Shukla, S.; Hassan, M.F.; Jung, L.T.; Awang, A.; Khan, M.K. A 3-tier architecture for network latency reduction in healthcare
internet-of-things using fog computing and machine learning. In Proceedings of the ACM International Conference Proceeding
Series, New York, NY, USA, 19–21 February 2019; pp. 522–528.

49. Djenna, A.; Saïdouni, D.E. Cyber attacks classification in IoT-based-healthcare infrastructure. In Proceedings of the 2018 2nd
Cyber Security in Networking Conference (CSNet), Paris, France, 24–26 October 2018; pp. 1–4.

50. Jovanov, E. Wearables meet IoT: Synergistic personal area networks (SPANs). Sensors 2019, 19, 4295. [CrossRef]
51. Cortés, R.; Bonnaire, X.; Marin, O.; Sens, P. Stream processing of healthcare sensor data: Studying user traces to identify challenges

from a big data perspective. Procedia Comput. Sci. 2015, 52, 1004–1009. [CrossRef]

http://doi.org/10.3390/s20113078
http://www.ncbi.nlm.nih.gov/pubmed/32485943
http://doi.org/10.1016/j.jnca.2016.04.024
http://doi.org/10.1504/IJAHUC.2020.105463
http://doi.org/10.1109/TII.2018.2793350
http://doi.org/10.3390/s20154265
http://doi.org/10.1109/ACCESS.2020.3033942
http://doi.org/10.1016/j.jisa.2020.102457
http://doi.org/10.1007/s12652-020-02744-y
http://doi.org/10.1016/j.jpdc.2021.02.019
http://doi.org/10.1109/JIOT.2017.2764418
http://doi.org/10.3390/su10072576
http://doi.org/10.1109/JPROC.2019.2921977
http://doi.org/10.1109/TVT.2020.3011518
http://doi.org/10.1109/TPDS.2014.2321378
http://doi.org/10.1109/TITS.2019.2917866
http://doi.org/10.3390/s19194295
http://doi.org/10.1016/j.procs.2015.05.093


Sensors 2021, 21, 8071 22 of 22

52. Metongnon, L.; Sadre, R. Prevalence of IoT protocols in telescope and honeypot measurements. J. Cyber Secur. Mobil. 2019, 8,
321–340. [CrossRef]

53. Blaise, A.; Bouet, M.; Conan, V.; Secci, S. Detection of zero-day attacks: An unsupervised port-based approach. Comput. Netw.
Elsevier 2020, 180, 107391. [CrossRef]

54. Zahravi, A. Momentum Botnet’s Newest DDoS Attacks and IoT Exploits. Trend Micro. 2020. Available online: https://www.
trendmicro.com/en_in/research/19/l/ddos-attacks-and-iot-exploits-new-activity-from-momentum-botnet.html (accessed on
13 November 2021).

55. CVE Details, CVE Security Vulnerability Database. Available online: https://www.cvedetails.com/ (accessed on 13 November 2021).
56. Memcrashed DDoS Exploit Tool. GitHub. 2018. Available online: https://github.com/649/Memcrashed-DDoS-Exploit/

(accessed on 12 November 2021).
57. Shodan. Available online: https://www.shodan.io/ (accessed on 13 November 2021).
58. Chen, L.; Li, J.; Ma, R.; Guan, H.; Jacobsen, H.A. EnclaveCache: A secure and scalable key-value cache in multi-tenant clouds using

Intel SGX. In Proceedings of the 20th International Middleware Conference, Davis, CA, USA, 9–13 December 2019; pp. 14–27.

http://doi.org/10.13052/jcsm2245-1439.832
http://doi.org/10.1016/j.comnet.2020.107391
https://www.trendmicro.com/en_in/research/19/l/ddos-attacks-and-iot-exploits-new-activity-from-momentum-botnet.html
https://www.trendmicro.com/en_in/research/19/l/ddos-attacks-and-iot-exploits-new-activity-from-momentum-botnet.html
https://www.cvedetails.com/
https://github.com/649/Memcrashed-DDoS-Exploit/
https://www.shodan.io/

	Introduction 
	Related Work 
	Cache Attacks and Internet of Things 
	The Necessity of Securing Memcached Architecture 
	Memcached Architecture 
	Memcached Attack Mechanism and Case study with Momentum Botnet 

	Vulnerabilities of Memcached and Mitigation Techniques 
	Proposed Solution 
	Architectural Change in Memcached 
	Case Study for Detecting DDoS Attack Using Memcached Servers 

	Conclusions 
	References

