Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Authors = Shahid Ali ORCID = 0000-0001-6517-320X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6025 KiB  
Article
Solar-Activated Titanium-Based Cu4O3/ZrO2/TiO2 Ternary Nano-Heterojunction for Rapid Photocatalytic Degradation of the Textile Dye Everzol Yellow 3RS
by Saira, Wesam Abd El-Fattah, Muhammad Shahid, Sufyan Ashraf, Zeshan Ali Sandhu, Ahlem Guesmi, Naoufel Ben Hamadi, Mohd Farhan and Muhammad Asam Raza
Catalysts 2025, 15(8), 751; https://doi.org/10.3390/catal15080751 - 6 Aug 2025
Abstract
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption [...] Read more.
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption onto natural or modified clays and zeolites, and no photocatalytic pathway employing engineered nanomaterials has been documented to date. This study reports the synthesis, characterization, and performance of a visible-active ternary nanocomposite, Cu4O3/ZrO2/TiO2, prepared hydrothermally alongside its binary (Cu4O3/ZrO2) and rutile TiO2 counterparts. XRD, FT-IR, SEM-EDX, UV-Vis, and PL analyses confirm a heterostructured architecture with a narrowed optical bandgap of 2.91 eV, efficient charge separation, and a mesoporous nanosphere-in-matrix morphology. Photocatalytic tests conducted under midsummer sunlight reveal that the ternary catalyst removes 91.41% of 40 ppm EY-3RS within 100 min, markedly surpassing the binary catalyst (86.65%) and TiO2 (81.48%). Activity trends persist across a wide range of operational variables, including dye concentrations (20–100 ppm), catalyst dosages (10–40 mg), pH levels (3–11), and irradiation times (up to 100 min). The material retains ≈ 93% of its initial efficiency after four consecutive cycles, evidencing good reusability. This work introduces the first nanophotocatalytic strategy for EY-3RS degradation and underscores the promise of multi-oxide heterojunctions for solar-driven remediation of colored effluents. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

11 pages, 1887 KiB  
Proceeding Paper
Experimental Evaluation of Coefficient of Friction for Fretting Regimes
by Shumaila Fatima, Shahid Mehmood, Muhammad Awais Hamza, Atta Ur Rahman, Hafiz Samama Sumair, Soban Ullah, Muhammad Ammar Nasir, Muhammad Ehtisham and Husnain Zulfiqar Ali
Mater. Proc. 2025, 23(1), 9; https://doi.org/10.3390/materproc2025023009 - 31 Jul 2025
Abstract
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially [...] Read more.
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially rose rapidly, stabilizing after about 5 million load cycles, indicating steady-state behavior. The friction ratio (FR) surged early, peaking between 0.7 and 1.0, before declining to stable values, suggesting a shift from adhesive to stable frictional interaction. The minimal slip amplitude confirmed the predominance of the stick regime. Conversely, in oil-lubricated conditions, displacement amplitude stabilized after an initial increase, achieving higher amplitudes than in dry tests. The FR started below 0.2, gradually increasing to a peak around 10,000 load cycles for higher oscillation amplitudes (e.g., 15 µm), reflecting the lubricant’s role in reducing metal-to-metal contact. COF curves in lubricated tests showed smoother transitions and lower peak values compared to dry tests. These findings highlight the lubricant’s effectiveness in minimizing adhesion and enhancing sliding efficiency, offering insights for optimizing material performance in engineering applications. Full article
Show Figures

Figure 1

1 pages, 123 KiB  
Retraction
RETRACTED: Cui et al. Effects of Cr2O3 Content on Microstructure and Mechanical Properties of Al2O3 Matrix Composites. Coatings 2021, 11, 234
by Kunkun Cui, Yingyi Zhang, Tao Fu, Shahid Hussain, Tahani Saad Algarni, Jie Wang, Xu Zhang and Shafaqat Ali
Coatings 2025, 15(7), 797; https://doi.org/10.3390/coatings15070797 - 8 Jul 2025
Viewed by 249
Abstract
This journal retracts the article titled “Effects of Cr2O3 Content on Microstructure and Mechanical Properties of Al2O3 Matrix Composites” [...] Full article
33 pages, 5065 KiB  
Article
Comparative Evaluation of Diagnostic Tests for Brucellosis in Humans and Animals: A Meta-Analytical Approach
by Shahid Nazir, Muhammad Farooq, Raheel Khan, Aman Ullah Khan, Ali Husnain, Muhammad Ali Hassan, Hosny El-Adawy and Heinrich Neubauer
Vet. Sci. 2025, 12(7), 638; https://doi.org/10.3390/vetsci12070638 - 3 Jul 2025
Viewed by 1882
Abstract
Brucellosis is a highly contagious, neglected, and re-emerging zoonotic bacterial disease that poses significant health and economic challenges globally for both humans and animals. Extensive literature is available for various diagnostic strategies; however, no comprehensive meta-analysis comparing the diagnostic tests used has been [...] Read more.
Brucellosis is a highly contagious, neglected, and re-emerging zoonotic bacterial disease that poses significant health and economic challenges globally for both humans and animals. Extensive literature is available for various diagnostic strategies; however, no comprehensive meta-analysis comparing the diagnostic tests used has been published. The present study aimed to estimate the relative risk (RR) of diagnostic tests used in humans and animals published between 2013 and 2023. Four databases were systematically searched, and the articles were screened using predefined inclusion and exclusion criteria. Ultimately, the screening process resulted in a total of 135 studies, including 328 comparisons of relevant data of 19,921 humans and 64,145 animals. The data from these studies were extracted, and the subgroup meta-analyses were conducted using the METABIN procedure in the “meta” package of the R statistical software (version 4.4.1). The forest plots were generated to estimate RR, and the funnel plots were used to assess publication and report bias. The subgroup analysis revealed that primary binding assays had higher comparative detection rates than the Rose Bengal plate test (RBPT) for brucellosis in humans [RR = 1.75 (95% CI: 1.35–2.26), I2 = 73%]. Slow agglutination tests had lower detection rates than the RBPT, both in humans [RR = 0.68 (95% CI: 0.48–0.96), I2 = 90%] and cattle [RR = 0.41 (95% CI: 0.25–0.68), I2 = 96%]. Similarly, the complement fixation test (CFT) had a lower detection rate than the RBPT for brucellosis both in cattle [RR = 0.97 (95% CI: 0.94–0.99), I2 = 9%] and sheep [RR = 0.97 (95% CI: 0.95–0.99), I2 = 0%]. This meta-analysis demonstrated that, for the screening of brucellosis in both humans and animals, primary binding assays are the preferred diagnostic tools, followed by the RBPT and slow agglutination tests. However, their effective implementation requires context-specific diagnostic strategies and combined testing approaches to enhance accuracy and reliability. Full article
Show Figures

Figure 1

18 pages, 2131 KiB  
Article
Numerical Study of a Dual-Mode Optical Sensor for Temperature and Refractive Index Sensing with Enhanced Temperature Range
by Muhammad Favad Qadir, Muhammad Zakwan, Saleem Shahid, Ahsan Sarwar Rana, Muhammad Mahmood Ali and Wolfgang Bösch
Sensors 2025, 25(13), 3999; https://doi.org/10.3390/s25133999 - 26 Jun 2025
Viewed by 337
Abstract
This study presents a photonic integrated optical sensor based on a dual-polarization microring resonator with angular gratings on a silicon-on-insulator (SOI) waveguide, enabling simultaneous and precise refractive index (RI) and temperature measurements. Due to the distinct energy distributions for transverse electric (TE [...] Read more.
This study presents a photonic integrated optical sensor based on a dual-polarization microring resonator with angular gratings on a silicon-on-insulator (SOI) waveguide, enabling simultaneous and precise refractive index (RI) and temperature measurements. Due to the distinct energy distributions for transverse electric (TE) and transverse magnetic (TM) modes in SOI waveguides, these modes show distinct sensitivity responses to the variation in ambient RI and temperature. Simultaneous measurements of both temperature and RI are enabled by exciting both these transverse modes in the microring resonator structure. Furthermore, incorporating angular gratings into the microring resonator’s inner sidewall extends the temperature measurement range by mitigating free spectral range limitations. This work presents a novel approach to dual-polarization microring resonators with angular gratings, offering an enhanced temperature measurement range and detection limit in optical sensing applications requiring an extended temperature range. The proposed structure is able to yield a simulated temperature measurement range of approximately 35 nm with a detection limit as low as 2.99×105. The achieved temperature sensitivity is 334 pm/°C and RI sensitivity is 13.33 nm/RIU for the TE0 mode, while the TM0 mode exhibits a temperature sensitivity of 260 pm/°C and an RI sensitivity of 76.66 nm/RIU. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 3131 KiB  
Article
Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
by Akeel Qadir, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu and Yiting Yu
Nanomaterials 2025, 15(13), 985; https://doi.org/10.3390/nano15130985 - 25 Jun 2025
Viewed by 276
Abstract
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically [...] Read more.
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed H2O to effectively dope the graphene. In contrast, when graphene is supported on the silicon substrate, water molecules can effectively dope the graphene by modifying the silicon’s impurity bands and their hybridization with graphene. This humidity-induced doping leads to a significant modulation of the Schottky barrier at the graphene–silicon interface, which serves as the core sensing mechanism. We investigate the current–voltage (I–V) characteristics of these devices as a function of trench width and relative humidity. Our analysis shows that humidity influences key device parameters, including the Schottky barrier height, ideality factor, series resistance, and normalized sensitivity. Specifically, larger trench widths reduce the graphene density of states, an effect that is accounted for in our analysis of these parameters. The sensor operates under both forward and reverse bias, enabling tunable sensitivity, high selectivity, and low power consumption. These features make it promising for applications in industrial and home safety, environmental monitoring, and process control. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

24 pages, 8335 KiB  
Article
Contamination, Ecotoxicological Risks, and Sources of Potentially Toxic Elements in Roadside Dust Along Lahore–Islamabad Motorway (M-2), Pakistan
by Ibrar Hayat, Wajid Ali, Said Muhammad, Muhammad Nafees, Abdur Raziq, Imran Ud Din, Jehanzeb Khan and Shahid Iqbal
Urban Sci. 2025, 9(6), 225; https://doi.org/10.3390/urbansci9060225 - 13 Jun 2025
Viewed by 1334
Abstract
The Lahore–Islamabad Motorway (M-2) is a critical transportation corridor in Pakistan, where contamination in roadside dust by potentially toxic elements (PTEs) presents potential environmental and health concerns. This study evaluates the concentration, spatial distribution, and ecological risks of PTEs (Mn, Ni, Cr, Cu, [...] Read more.
The Lahore–Islamabad Motorway (M-2) is a critical transportation corridor in Pakistan, where contamination in roadside dust by potentially toxic elements (PTEs) presents potential environmental and health concerns. This study evaluates the concentration, spatial distribution, and ecological risks of PTEs (Mn, Ni, Cr, Cu, Pb, Zn, Cd, Ag, Fe) in road dust along the M-2. PTE concentrations were determined using standard protocols and by analysis using an atomic absorption spectrometer. The findings indicate substantial variability in metal concentrations, with Fe (CV% = 9.35%) and Pb (CV% = 7.06%) displaying the highest consistency, whereas Ni exhibited the greatest fluctuation (CV% = 168.80%). Contamination factor analysis revealed low to moderate contamination for Ni and Fe, while Zn contamination was significant in 60% of samples. Cr and Cd exhibited persistently high contamination, and Pb was uniformly elevated across all locations. Ecological risk assessment categorized Ni, Zn, and Cu as low-risk elements, while Pb posed a substantial risk. Cd concentrations indicated high to extreme ecological hazards, emphasizing the necessity for urgent mitigation measures. Factor analysis suggested an interaction of various sources, including industrial, vehicular emissions, and construction materials. Strengthened pollution control strategies and systematic monitoring are essential for mitigating contamination and ensuring environmental sustainability along the motorway. Full article
Show Figures

Figure 1

2 pages, 761 KiB  
Correction
Correction: Ahmad et al. Spread Spectrum Induced Polarization (SSIP) Survey for the Qiushuwan Copper–Molybdenum Deposits in Southern Henan Province, China. Minerals 2024, 14, 934
by Jawad Ahmad, Rujun Chen, Ijaz Ahmed, Muhammad Yaseen, Shahid Ali Shah, Osama Abdul Rahim, Farid Ullah, Shah Fahad and Li Rui
Minerals 2025, 15(6), 617; https://doi.org/10.3390/min15060617 - 9 Jun 2025
Viewed by 193
Abstract
In the published publication [...] Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 4

23 pages, 5905 KiB  
Article
Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch
by Bowei Chen, Huaixue Chu, Bin Lv, Yile Guo, Zihui Zhang, Tianxu Zhang, Qingyi Xie, Menghan Hao, Shahid Ali, Wei Zhou, Liping Zhao, Zan Jiang, Min Wang and Linan Xie
Forests 2025, 16(6), 943; https://doi.org/10.3390/f16060943 - 4 Jun 2025
Viewed by 548
Abstract
The AT-hook motif nuclear localized (AHL) gene family encodes transcription factors pivotal in regulating plant growth, development, and responses to abiotic stimuli, including low temperature, salinity, darkness, and drought. In this study, we systematically identified 21 BpAHL genes in birch and [...] Read more.
The AT-hook motif nuclear localized (AHL) gene family encodes transcription factors pivotal in regulating plant growth, development, and responses to abiotic stimuli, including low temperature, salinity, darkness, and drought. In this study, we systematically identified 21 BpAHL genes in birch and characterized their sequence features, evolutionary relationships, and expression dynamics. Phylogenetic analysis classified BpAHLs into two clades (Clade-A and Clade-B) and three types (Type-I, -II, and -III), based on PPC domain and AT-hook motifs. Chromosomal mapping revealed an even distribution across nine chromosomes and one contig, with dispersed duplication events recognized as the major driver of BpAHL family expansion. Tissue-specific expression profiling uncovered striking divergence: Type-I BpAHLs displayed root-predominant expression, whereas Type-II/III BpAHLs were highly expressed in plant flowers and leaves. Notably, Type-II/III BpAHL genes in leaves showed distinct expression patterns in response to cold and heat stresses, while Type-I BpAHLs in roots were down-regulated under salt stress. This study provides a comprehensive phylogenomic and functional analysis of the AHLs in birch, providing insights into their roles in enhancing abiotic stress resilience in forest trees. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

9 pages, 3787 KiB  
Proceeding Paper
Powder-Mixed Micro Electrical Discharge Machining-Assisted Surface Modification of Ti-35Nb-7Zr-5Ta Alloy in Biomedical Applications
by Altair Kossymbayev, Shahid Ali, Didier Talamona and Asma Perveen
Eng. Proc. 2025, 92(1), 71; https://doi.org/10.3390/engproc2025092071 - 16 May 2025
Cited by 1 | Viewed by 327
Abstract
One of the most popular alloys for biomedical applications is TiAl6V4. Even though TiAl6V4 is widely used, it faces several challenges. Firstly, TiAl6V4 is prone to stress shielding caused by the difference in Young’s moduli of the alloy (110 GPa) and human bones [...] Read more.
One of the most popular alloys for biomedical applications is TiAl6V4. Even though TiAl6V4 is widely used, it faces several challenges. Firstly, TiAl6V4 is prone to stress shielding caused by the difference in Young’s moduli of the alloy (110 GPa) and human bones (20–30 GPa). Secondly, there is the presence of cytotoxic elements, aluminum and vanadium. Researchers have proposed Ti-35Nb-7Zr-5Ta (TNZT) alloy to overcome these disadvantages, an excellent substitute for natural human bones. This alloy offers a lower elastic modulus (up to 81 GPa), much closer to human bones than TiAl6V4 alloy. Also, TNZT alloy contains no cytotoxic elements and has excellent biocompatibility and high corrosion resistance. Given the positive outcomes on powder-mixed micro electro-discharge machining (PM-μ-EDM) of Ti alloy using hydroxyapatite (HA) powder, we studied the machinability of TNZT alloy using HA powder mixed-μ-EDM by changing the HA powder concentration (0, 5, and 10 g/L), gap voltage (90, 100, and 110 V), and capacitance (10, 100, and 400 nF) according to the Taguchi L9 method. Machining performance metrics such as material removal rate (MRR), overcut, and circularity were examined using a tungsten carbide tool of 237 µm diameter. The results showed an overcut of 10.33 µm, circularity of 8.47 µm, and MRR of 6030.89 µm3/s for the lowest energy setup. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

29 pages, 982 KiB  
Article
Exploring the Gender Preferences for Healthcare Providers and Their Influence on Patient Satisfaction
by Felician Andrew Kitole, Zaiba Ali, Jiayi Song, Muhammad Ali, Mochammad Fahlevi, Mohammed Aljuaid, Petra Heidler, Muhammad Ali Yahya and Muhammad Shahid
Healthcare 2025, 13(9), 1063; https://doi.org/10.3390/healthcare13091063 - 5 May 2025
Viewed by 1277
Abstract
Background: Patient satisfaction is a key indicator for improving healthcare delivery, yet the influence of gender preferences on healthcare providers remains underexplored. Cultural norms and gender perceptions often shape the patient preferences, affecting access to care, patient–provider relationships, and overall satisfaction. Thus, this [...] Read more.
Background: Patient satisfaction is a key indicator for improving healthcare delivery, yet the influence of gender preferences on healthcare providers remains underexplored. Cultural norms and gender perceptions often shape the patient preferences, affecting access to care, patient–provider relationships, and overall satisfaction. Thus, this study investigates the patients’ gender preferences and their impact on satisfaction in Tanzania. Methods: The study utilized a cross-sectional design, collecting data from five health centres: Mikongeni, Konga, Mzumbe, Tangeni, and Mlali. A total of 240 randomly selected respondents participated in the study. Gender preferences were categorized as male, female, and both, and determinants were analyzed using a multivariate probit model (MPM), while satisfaction was analyzed using an ordered logit model (OLM). Results: Results reveal that female providers were preferred for empathy (58.30%), intimate care (50.00%), and receptionist roles (50.00%), while males were favored for surgery (50.00%), professionalism (0.86), and IT roles (41.70%). Professionalism (0.75) and communication (0.70) had the strongest positive effects on very high satisfaction. Male provider preference was strongly linked to higher satisfaction (0.84), while female preference showed a mild effect (0.23). Insurance (0.32) and care at Tangeni Health Centre (0.70) boosted satisfaction, while consultation fees (−0.26) reduced it. Conclusions: The study recommends that healthcare systems address gender stereotypes by equipping all providers with both technical and relational care skills, regardless of gender. It also highlights the need for culturally and religiously sensitive care practices that acknowledge how societal norms shape patient preferences and satisfaction. To enhance patient-centered care, policies should promote affordability, broaden insurance coverage, and integrate patient feedback on gender preferences into healthcare delivery models. Full article
Show Figures

Figure 1

26 pages, 2251 KiB  
Article
Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives
by Muhammad Usman Shahid and Majid Ali
Sustainability 2025, 17(9), 4129; https://doi.org/10.3390/su17094129 - 2 May 2025
Cited by 1 | Viewed by 1323
Abstract
The expansion of the construction sector in order to meet infrastructure demands is generating millions of tons of solid waste. This waste threatens resource sustainability and increases environmental challenges. Adopting a circular economy (CE) through waste minimization (WM) offers a solution, but policy [...] Read more.
The expansion of the construction sector in order to meet infrastructure demands is generating millions of tons of solid waste. This waste threatens resource sustainability and increases environmental challenges. Adopting a circular economy (CE) through waste minimization (WM) offers a solution, but policy guidelines are very limited in developing countries, especially in the context of Pakistan. The global body of knowledge lacks a comparative analysis of the influence of the perception of stakeholders when developing such guidelines. Therefore, the purpose of the current study is to identify enablers for the development of a policy framework and to provide a comparative analysis of the perception of stakeholders. In this regard, Saunders’s research onion model and purposive sampling methods were used for the selection of research variables and respondents, respectively. Data were gathered through semi-structured interviews. Thematic analysis, including word frequency and cluster analyses using the NVivo 15 software, was performed. The key findings indicated an 80% agreement and a 60% disagreement among consultant–contractor and contractor–regulator relationships, respectively. Overall, financial support (14.6%) and awareness programs (11.2%) at the macro level, the use of BIM (5%), the clarity of specifications (4.1%), the segregation of onsite waste (2%), and the adoption of reuse and recycling practices (2%) at the micro level were found to be major policy measures. This study concludes with practical implications for sustainable development. Full article
Show Figures

Figure 1

19 pages, 3195 KiB  
Article
Postharvest Quality and Biochemical Changes in Blood Orange Fruit Exposed to Various Non-Chilling Storage Temperatures
by Fariborz Habibi, Muhammad A. Shahid, Talia Jacobson, Cătălin Voiniciuc, Jeffrey K. Brecht and Ali Sarkhosh
Horticulturae 2025, 11(5), 493; https://doi.org/10.3390/horticulturae11050493 - 30 Apr 2025
Viewed by 634
Abstract
Blood oranges grown in subtropical and tropical regions have low anthocyanin levels and a pale internal color at the point of commercial maturity. Since blood oranges are cold-dependent and can enhance anthocyanin during postharvest storage, the effects of various non-chilling storage temperatures (10, [...] Read more.
Blood oranges grown in subtropical and tropical regions have low anthocyanin levels and a pale internal color at the point of commercial maturity. Since blood oranges are cold-dependent and can enhance anthocyanin during postharvest storage, the effects of various non-chilling storage temperatures (10, 15, and 20 °C) on ‘Moro’ blood orange fruit quality and biochemical changes over a period of up to 42 days were investigated for total anthocyanin concentration (TAC), total phenolic content (TPC), total antioxidant activity (TAA), juice attributes, and physical qualities. Fruit weight and firmness losses increased during storage, with the lowest losses occurring at 10 °C. Titratable acidity (TA) decreased, with the lowest values recorded at 20 °C. Total soluble solids (TSSs) and the TSS/TA ratio increased, with the highest values observed at 20 °C. The sucrose content showed slight changes, while glucose and fructose levels increased during storage, with the highest concentrations of glucose and fructose noted at 20 °C. TAC, TPC, and TAA significantly increased during storage, with the highest values recorded at 10 °C, suggesting upregulation of the fruit antioxidant system and associated bioactive components in response to the lower temperature. Throughout the storage period, peel color parameters, such as L*, b*, C*, and h°, decreased at all temperatures, whereas a*, citrus color index (CCI), and total color difference (ΔE) increased. This study concludes that a storage temperature of 10 °C proved effective in enhancing TAC, TPC, and TAA during storage, as well as in maintaining the other physicochemical attributes. Full article
Show Figures

Figure 1

26 pages, 1904 KiB  
Review
Large Language Models in Genomics—A Perspective on Personalized Medicine
by Shahid Ali, Yazdan Ahmad Qadri, Khurshid Ahmad, Zhizhe Lin, Man-Fai Leung, Sung Won Kim, Athanasios V. Vasilakos and Teng Zhou
Bioengineering 2025, 12(5), 440; https://doi.org/10.3390/bioengineering12050440 - 23 Apr 2025
Viewed by 2791
Abstract
Integrating artificial intelligence (AI), particularly large language models (LLMs), into the healthcare industry is revolutionizing the field of medicine. LLMs possess the capability to analyze the scientific literature and genomic data by comprehending and producing human-like text. This enhances the accuracy, precision, and [...] Read more.
Integrating artificial intelligence (AI), particularly large language models (LLMs), into the healthcare industry is revolutionizing the field of medicine. LLMs possess the capability to analyze the scientific literature and genomic data by comprehending and producing human-like text. This enhances the accuracy, precision, and efficiency of extensive genomic analyses through contextualization. LLMs have made significant advancements in their ability to understand complex genetic terminology and accurately predict medical outcomes. These capabilities allow for a more thorough understanding of genetic influences on health issues and the creation of more effective therapies. This review emphasizes LLMs’ significant impact on healthcare, evaluates their triumphs and limitations in genomic data processing, and makes recommendations for addressing these limitations in order to enhance the healthcare system. It explores the latest advancements in LLMs for genomic analysis, focusing on enhancing disease diagnosis and treatment accuracy by taking into account an individual’s genetic composition. It also anticipates a future in which AI-driven genomic analysis is commonplace in clinical practice, suggesting potential research areas. To effectively leverage LLMs’ potential in personalized medicine, it is vital to actively support innovation across multiple sectors, ensuring that AI developments directly contribute to healthcare solutions tailored to individual patients. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Complex Diseases)
Show Figures

Figure 1

31 pages, 2682 KiB  
Review
The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions
by Ali Mujtaba Shah, Huiling Zhang, Muhammad Shahid, Huma Ghazal, Ali Raza Shah, Mujahid Niaz, Tehmina Naz, Keshav Ghimire, Naqash Goswami, Wei Shi, Dongxu Xia and Hongxia Zhao
Animals 2025, 15(8), 1184; https://doi.org/10.3390/ani15081184 - 21 Apr 2025
Cited by 1 | Viewed by 2100
Abstract
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities [...] Read more.
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities worldwide, and these residues can be used in the diet of the animals to reduce the feed production cost and sustainability. In this review, we found that the use of treated crop residues in the diet of animals increased the production performance without causing any side effects on their health. Additionally, we also noticed that using these crop residues also mitigates the methane production in ruminants and feed costs, particularly for harvesting the feed crops. Traditionally, these materials have often been underutilized or even disposed of improperly, leading to wastage of valuable nutrients and potential environmental pollution. By incorporating these materials into animal feed formulations, livestock producers can benefit from several key advantages. The review further discusses the challenges and considerations involved in the effective utilization of these alternative feed resources, such as variability in nutrient composition, anti-nutritional factors, and the need for appropriate preprocessing and formulation strategies. Emerging technologies and innovative approaches to optimize the integration of crop residues and by-products into sustainable livestock production systems and also reduce global warming, particularly methane, CO2 and other particles that affect the environment after burning these crop residues, are also highlighted. By synthesizing the current knowledge and exploring the multifaceted benefits, this review underscores the vital roles that agricultural crop residues and agro-industrial by-products can play in fostering the sustainability and resilience of livestock production, ultimately contributing to global food security and environmental stewardship. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

Back to TopTop