Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Sangram Ganguly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5103 KiB  
Article
Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS
by Vesta Afzali Gorooh, Subodh Kalia, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Sangram Ganguly and Ramakrishna R. Nemani
Remote Sens. 2020, 12(2), 316; https://doi.org/10.3390/rs12020316 - 18 Jan 2020
Cited by 31 | Viewed by 7013
Abstract
Satellite remote sensing plays a pivotal role in characterizing hydrometeorological components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR) on the Polar Orbiting CloudSat satellite has provided a unique dataset to characterize cloud types. However, data from this nadir-looking [...] Read more.
Satellite remote sensing plays a pivotal role in characterizing hydrometeorological components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR) on the Polar Orbiting CloudSat satellite has provided a unique dataset to characterize cloud types. However, data from this nadir-looking radar offers limited capability for estimating precipitation because of the narrow satellite swath coverage and low temporal frequency. We use these high-quality observations to build a Deep Neural Network Cloud-Type Classification (DeepCTC) model to estimate cloud types from multispectral data from the Advanced Baseline Imager (ABI) onboard the GOES-16 platform. The DeepCTC model is trained and tested using coincident data from both CloudSat and ABI over the CONUS region. Evaluations of DeepCTC indicate that the model performs well for a variety of cloud types including Altostratus, Altocumulus, Cumulus, Nimbostratus, Deep Convective and High clouds. However, capturing low-level clouds remains a challenge for the model. Results from simulated GOES-16 ABI imageries of the Hurricane Harvey event show a large-scale perspective of the rapid and consistent cloud-type monitoring is possible using the DeepCTC model. Additionally, assessments using half-hourly Multi-Radar/Multi-Sensor (MRMS) precipitation rate data (for Hurricane Harvey as a case study) show the ability of DeepCTC in identifying rainy clouds, including Deep Convective and Nimbostratus and their precipitation potential. We also use DeepCTC to evaluate the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) product over different cloud types with respect to MRMS referenced at a half-hourly time scale for July 2018. Our analysis suggests that DeepCTC provides supplementary insights into the variability of cloud types to diagnose the weakness and strength of near real-time GEO-based precipitation retrievals. With additional training and testing, we believe DeepCTC has the potential to augment the widely used PERSIANN-CCS algorithm for estimating precipitation. Full article
(This article belongs to the Special Issue Earth Monitoring from A New Generation of Geostationary Satellites)
Show Figures

Graphical abstract

18 pages, 3219 KiB  
Article
Multi-Scale Association between Vegetation Growth and Climate in India: A Wavelet Analysis Approach
by Dawn Emil Sebastian, Sangram Ganguly, Jagdish Krishnaswamy, Kate Duffy, Ramakrishna Nemani and Subimal Ghosh
Remote Sens. 2019, 11(22), 2703; https://doi.org/10.3390/rs11222703 - 18 Nov 2019
Cited by 24 | Viewed by 6519
Abstract
Monsoon climate over India has high degree of spatio-temporal heterogeneity characterized by the existence of multi-climatic zones along with strong intra-seasonal, seasonal, and inter-annual variability. Vegetation growth of Indian forests relates to this climate variability, though the dependence structure over space and time [...] Read more.
Monsoon climate over India has high degree of spatio-temporal heterogeneity characterized by the existence of multi-climatic zones along with strong intra-seasonal, seasonal, and inter-annual variability. Vegetation growth of Indian forests relates to this climate variability, though the dependence structure over space and time is yet to be explored. Here, we present a comprehensive analysis of this association with quality-controlled satellite-based remote sensing dataset of vegetation greenness and radiation along with station based gridded precipitation datasets. A spatio-temporal time-frequency analysis using wavelets is performed to understand the relative association of vegetation growth with precipitation and radiation at different time scales. The inter-annual variation of forest greenness over the Tropical India are observed to be correlated with the seasonal monsoon precipitation. However, at inter and intra-seasonal scales, vegetation has a strong association with radiation in regions of high precipitation like the Western Ghats, Eastern Himalayas, and Northeast hills. Forests in Western Himalayas were found to be correlated more on the winter precipitation from western disturbances than the south west monsoon precipitation. Our results provide new and useful region-specific information for dynamic vegetation modelling in the Indian monsoon region that may further be used in understanding global vegetation-land-atmosphere interactions. Full article
(This article belongs to the Special Issue Remote Sensing of Tropical Phenology)
Show Figures

Graphical abstract

17 pages, 8922 KiB  
Article
Conditional Generative Adversarial Networks (cGANs) for Near Real-Time Precipitation Estimation from Multispectral GOES-16 Satellite Imageries—PERSIANN-cGAN
by Negin Hayatbini, Bailey Kong, Kuo-lin Hsu, Phu Nguyen, Soroosh Sorooshian, Graeme Stephens, Charless Fowlkes, Ramakrishna Nemani and Sangram Ganguly
Remote Sens. 2019, 11(19), 2193; https://doi.org/10.3390/rs11192193 - 20 Sep 2019
Cited by 60 | Viewed by 10519
Abstract
In this paper, we present a state-of-the-art precipitation estimation framework which leverages advances in satellite remote sensing as well as Deep Learning (DL). The framework takes advantage of the improvements in spatial, spectral and temporal resolutions of the Advanced Baseline Imager (ABI) onboard [...] Read more.
In this paper, we present a state-of-the-art precipitation estimation framework which leverages advances in satellite remote sensing as well as Deep Learning (DL). The framework takes advantage of the improvements in spatial, spectral and temporal resolutions of the Advanced Baseline Imager (ABI) onboard the GOES-16 platform along with elevation information to improve the precipitation estimates. The procedure begins by first deriving a Rain/No Rain (R/NR) binary mask through classification of the pixels and then applying regression to estimate the amount of rainfall for rainy pixels. A Fully Convolutional Network is used as a regressor to predict precipitation estimates. The network is trained using the non-saturating conditional Generative Adversarial Network (cGAN) and Mean Squared Error (MSE) loss terms to generate results that better learn the complex distribution of precipitation in the observed data. Common verification metrics such as Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Bias, Correlation and MSE are used to evaluate the accuracy of both R/NR classification and real-valued precipitation estimates. Statistics and visualizations of the evaluation measures show improvements in the precipitation retrieval accuracy in the proposed framework compared to the baseline models trained using conventional MSE loss terms. This framework is proposed as an augmentation for PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network- Cloud Classification System) algorithm for estimating global precipitation. Full article
(This article belongs to the Special Issue Earth Monitoring from A New Generation of Geostationary Satellites)
Show Figures

Graphical abstract

22 pages, 6797 KiB  
Article
Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate
by Hirofumi Hashimoto, Ramakrishna R. Nemani, Govindasamy Bala, Long Cao, Andrew R. Michaelis, Sangram Ganguly, Weile Wang, Cristina Milesi, Ryan Eastman, Tsengdar Lee and Ranga Myneni
Climate 2019, 7(2), 27; https://doi.org/10.3390/cli7020027 - 1 Feb 2019
Cited by 12 | Viewed by 5564
Abstract
We qualitatively and quantitatively assessed the factors related to vegetation growth using Earth system models and corroborated the results with historical climate observations. The Earth system models showed a systematic greening by the late 21st century, including increases of up to 100% in [...] Read more.
We qualitatively and quantitatively assessed the factors related to vegetation growth using Earth system models and corroborated the results with historical climate observations. The Earth system models showed a systematic greening by the late 21st century, including increases of up to 100% in Gross Primary Production (GPP) and 60% in Leaf Area Index (LAI). A subset of models revealed that the radiative effects of CO2 largely control changes in climate, but that the CO2 fertilization effect dominates the greening. The ensemble of Earth system model experiments revealed that the feedback of surface temperature contributed to 17% of GPP increase in temperature-limited regions, and radiation increase accounted for a 7% increase of GPP in radiation-limited areas. These effects are corroborated by historical observations. For example, observations confirm that cloud cover has decreased over most land areas in the last three decades, consistent with a CO2-induced reduction in transpiration. Our results suggest that vegetation may thrive in the starkly different climate expected over the coming decades, but only if plants harvest the sort of hypothesized physiological benefits of higher CO2 depicted by current Earth system models. Full article
(This article belongs to the Special Issue Climate Variability and Change in the 21th Century)
Show Figures

Figure 1

21 pages, 905 KiB  
Review
An Interplay between Photons, Canopy Structure, and Recollision Probability: A Review of the Spectral Invariants Theory of 3D Canopy Radiative Transfer Processes
by Weile Wang, Ramakrishna Nemani, Hirofumi Hashimoto, Sangram Ganguly, Dong Huang, Yuri Knyazikhin, Ranga Myneni and Govindasamy Bala
Remote Sens. 2018, 10(11), 1805; https://doi.org/10.3390/rs10111805 - 14 Nov 2018
Cited by 13 | Viewed by 5111
Abstract
Earth observations collected by remote sensors provide unique information to our ever-growing knowledge of the terrestrial biosphere. Yet, retrieving information from remote sensing data requires sophisticated processing and demands a better understanding of the underlying physics. This paper reviews research efforts that lead [...] Read more.
Earth observations collected by remote sensors provide unique information to our ever-growing knowledge of the terrestrial biosphere. Yet, retrieving information from remote sensing data requires sophisticated processing and demands a better understanding of the underlying physics. This paper reviews research efforts that lead to the developments of the stochastic radiative transfer equation (RTE) and the spectral invariants theory. The former simplifies the characteristics of canopy structures with a pair-correlation function so that the 3D information can be succinctly packed into a 1D equation. The latter indicates that the interactions between photons and canopy elements converge to certain invariant patterns quantifiable by a few wavelength independent parameters, which satisfy the law of energy conservation. By revealing the connections between plant structural characteristics and photon recollision probability, these developments significantly advance our understanding of the transportation of radiation within vegetation canopies. They enable a novel physically-based algorithm to simulate the “hot-spot” phenomenon of canopy bidirectional reflectance while conserving energy, a challenge known to the classic radiative transfer models. Therefore, these theoretical developments have a far-reaching influence in optical remote sensing of the biosphere. Full article
(This article belongs to the Special Issue Radiative Transfer Modelling and Applications in Remote Sensing)
Show Figures

Graphical abstract

25 pages, 6130 KiB  
Article
Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing
by Uttam Kumar, Sangram Ganguly, Ramakrishna R. Nemani, Kumar S Raja, Cristina Milesi, Ruchita Sinha, Andrew Michaelis, Petr Votava, Hirofumi Hashimoto, Shuang Li, Weile Wang, Subodh Kalia and Shreekant Gayaka
Remote Sens. 2017, 9(11), 1105; https://doi.org/10.3390/rs9111105 - 29 Oct 2017
Cited by 15 | Viewed by 10080
Abstract
Land cover (LC) refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote [...] Read more.
Land cover (LC) refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote sensing satellites. Therefore, observed data are a mixture of spectral signatures of two or more LC features resulting in mixed pixels. One solution to the mixed pixel problem is the use of subpixel learning algorithms to disintegrate the pixel spectrum into its constituent spectra. Despite the popularity and existing research conducted on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of several subpixel learning algorithms based on least squares, sparse regression, signal–subspace and geometrical methods. Analysis of the results obtained through computer-simulated and Landsat data indicated that fully constrained least squares (FCLS) outperformed the other techniques. Further, FCLS was used to unmix global Web-Enabled Landsat Data to obtain abundances of substrate (S), vegetation (V) and dark object (D) classes. Due to the sheer nature of data and computational needs, we leveraged the NASA Earth Exchange (NEX) high-performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into four classes, namely forest, farmland, water and urban areas (in conjunction with nighttime lights data) over California, USA using a random forest classifier. Validation of these LC maps with the National Land Cover Database 2011 products and North American Forest Dynamics static forest map shows a 6% improvement in unmixing-based classification relative to per-pixel classification. As such, abundance maps continue to offer a useful alternative to high-spatial-resolution classified maps for forest inventory analysis, multi-class mapping, multi-temporal trend analysis, etc. Full article
(This article belongs to the Special Issue Machine Learning Applications in Earth Science Big Data Analysis)
Show Figures

Graphical abstract

16 pages, 851 KiB  
Article
Structural Uncertainty in Model-Simulated Trends of Global Gross Primary Production
by Hirofumi Hashimoto, Weile Wang, Cristina Milesi, Jun Xiong, Sangram Ganguly, Zaichun Zhu and Ramakrishna R. Nemani
Remote Sens. 2013, 5(3), 1258-1273; https://doi.org/10.3390/rs5031258 - 12 Mar 2013
Cited by 20 | Viewed by 10146
Abstract
Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP) is usually modeled [...] Read more.
Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP) is usually modeled as a function of Vapor Pressure Deficit (VPD) and/or soil moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while regional changes in precipitation are less certain. This difference in projections between VPD and precipitation can cause considerable discrepancies in the predictions of vegetation behavior depending on how ecosystem models represent the drought effect. In this study, we scrutinized the model responses to drought using the 30-year record of Global Inventory Modeling and Mapping Studies (GIMMS) 3g Normalized Difference Vegetation Index (NDVI) dataset. A diagnostic ecosystem model, Terrestrial Observation and Prediction System (TOPS), was used to estimate global GPP from 1982 to 2009 under nine different experimental simulations. The control run of global GPP increased until 2000, but stayed constant after 2000. Among the simulations with single climate constraint (temperature, VPD, rainfall and solar radiation), only the VPD-driven simulation showed a decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging responses in 2000s can be attributed to the difference in the representation of the impact of water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in modeling global GPP. Full article
(This article belongs to the Special Issue Monitoring Global Vegetation with AVHRR NDVI3g Data (1981-2011))
Show Figures

22 pages, 1479 KiB  
Article
Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011
by Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni
Remote Sens. 2013, 5(2), 927-948; https://doi.org/10.3390/rs5020927 - 22 Feb 2013
Cited by 808 | Viewed by 44914
Abstract
Long-term global data sets of vegetation Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) are critical to monitoring global vegetation dynamics and for modeling exchanges of energy, mass and momentum between the land surface and planetary boundary [...] Read more.
Long-term global data sets of vegetation Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) are critical to monitoring global vegetation dynamics and for modeling exchanges of energy, mass and momentum between the land surface and planetary boundary layer. LAI and FPAR are also state variables in hydrological, ecological, biogeochemical and crop-yield models. The generation, evaluation and an example case study documenting the utility of 30-year long data sets of LAI and FPAR are described in this article. A neural network algorithm was first developed between the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products for the overlapping period 2000–2009. The trained neural network algorithm was then used to generate corresponding LAI3g and FPAR3g data sets with the following attributes: 15-day temporal frequency, 1/12 degree spatial resolution and temporal span of July 1981 to December 2011. The quality of these data sets for scientific research in other disciplines was assessed through (a) comparisons with field measurements scaled to the spatial resolution of the data products, (b) comparisons with broadly-used existing alternate satellite data-based products, (c) comparisons to plant growth limiting climatic variables in the northern latitudes and tropical regions, and (d) correlations of dominant modes of interannual variability with large-scale circulation anomalies such as the EI Niño-Southern Oscillation and Arctic Oscillation. These assessment efforts yielded results that attested to the suitability of these data sets for research use in other disciplines. The utility of these data sets is documented by comparing the seasonal profiles of LAI3g with profiles from 18 state-of-the-art Earth System Models: the models consistently overestimated the satellite-based estimates of leaf area and simulated delayed peak seasonal values in the northern latitudes, a result that is consistent with previous evaluations of similar models with ground-based data. The LAI3g and FPAR3g data sets can be obtained freely from the NASA Earth Exchange (NEX) website. Full article
(This article belongs to the Special Issue Monitoring Global Vegetation with AVHRR NDVI3g Data (1981-2011))
Show Figures

23 pages, 1276 KiB  
Article
Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA
by Yuli Shi, Sungho Choi, Xiliang Ni, Sangram Ganguly, Gong Zhang, Hieu V. Duong, Michael A. Lefsky, Marc Simard, Sassan S. Saatchi, Shihyan Lee, Wenge Ni-Meister, Shilong Piao, Chunxiang Cao, Ramakrishna R. Nemani and Ranga B. Myneni
Remote Sens. 2013, 5(1), 284-306; https://doi.org/10.3390/rs5010284 - 17 Jan 2013
Cited by 19 | Viewed by 8741
Abstract
A methodology to generate spatially continuous fields of tree heights with an optimized Allometric Scaling and Resource Limitations (ASRL) model is reported in this first of a multi-part series of articles. Model optimization is performed with the Geoscience Laser Altimeter System (GLAS) waveform [...] Read more.
A methodology to generate spatially continuous fields of tree heights with an optimized Allometric Scaling and Resource Limitations (ASRL) model is reported in this first of a multi-part series of articles. Model optimization is performed with the Geoscience Laser Altimeter System (GLAS) waveform data. This methodology is demonstrated by mapping tree heights over forested lands in the continental USA (CONUS) at 1 km spatial resolution. The study area is divided into 841 eco-climatic zones based on three forest types, annual total precipitation classes (30 mm intervals) and annual average temperature classes (2 °C intervals). Three model parameters (area of single leaf, α, exponent for canopy radius, η, and root absorption efficiency, γ) were selected for optimization, that is, to minimize the difference between actual and potential tree heights in each of the eco-climatic zones over the CONUS. Tree heights predicted by the optimized model were evaluated against GLAS heights using a two-fold cross validation approach (R2 = 0.59; RMSE = 3.31 m). Comparison at the pixel level between GLAS heights (mean = 30.6 m; standard deviation = 10.7) and model predictions (mean = 30.8 m; std. = 8.4) were also performed. Further, the model predictions were compared to existing satellite-based forest height maps. The optimized ASRL model satisfactorily reproduced the pattern of tree heights over the CONUS. Subsequent articles in this series will document further improvements with the ultimate goal of mapping tree heights and forest biomass globally. Full article
Show Figures

Graphical abstract

22 pages, 1069 KiB  
Article
Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model
by Sungho Choi, Xiliang Ni, Yuli Shi, Sangram Ganguly, Gong Zhang, Hieu V. Duong, Michael A. Lefsky, Marc Simard, Sassan S. Saatchi, Shihyan Lee, Wenge Ni-Meister, Shilong Piao, Chunxiang Cao, Ramakrishna R. Nemani and Ranga B. Myneni
Remote Sens. 2013, 5(1), 202-223; https://doi.org/10.3390/rs5010202 - 10 Jan 2013
Cited by 17 | Viewed by 10358
Abstract
The ultimate goal of this multi-article series is to develop a methodology to generate continuous fields of tree height and biomass. The first paper demonstrated the need for Allometric Scaling and Resource Limitation (ASRL) model optimization and its ability to generate spatially continuous [...] Read more.
The ultimate goal of this multi-article series is to develop a methodology to generate continuous fields of tree height and biomass. The first paper demonstrated the need for Allometric Scaling and Resource Limitation (ASRL) model optimization and its ability to generate spatially continuous fields of tree heights over the continental USA at coarse (1 km) spatial resolution. The objective of this second paper is to provide an assessment of that approach at site scale, specifically at 12 FLUXNET sites where more accurate data are available. Estimates of tree heights from the Geoscience Laser Altimeter System (GLAS) waveform data are used for model optimization. Amongst the five possible GLAS metrics that are representative of tree heights, the best metric is selected based on how closely the metric resembles field-measured and Laser Vegetation Imaging Sensor tree heights. In the optimization process, three parameters of the ASRL model (area of single leaf, α; exponent for canopy radius, η; and root absorption efficiency, γ) are simultaneously adjusted to minimize the difference between model predictions and observations at the study sites (distances to valid GLAS footprints ≤ 10 km). Performance of the optimized ASRL model was evaluated through comparisons to the best GLAS metric of tree height using a two-fold cross validation approach (R2 = 0.85; RMSE = 1.81 m) and a bootstrapping approach (R2 = 0.66; RMSE = 2.60 m). The optimized model satisfactorily performed at the site scale, thus corroborating results presented in part one of this series. Future investigations will focus on generalizing these results and extending the model formulation using similar allometric concepts for the estimation of woody biomass. Full article
Show Figures

Graphical abstract

24 pages, 805 KiB  
Article
Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data
by Hirofumi Hashimoto, Weile Wang, Cristina Milesi, Michael A. White, Sangram Ganguly, Minoru Gamo, Ryuichi Hirata, Ranga B. Myneni and Ramakrishna R. Nemani
Remote Sens. 2012, 4(1), 303-326; https://doi.org/10.3390/rs4010303 - 23 Jan 2012
Cited by 47 | Viewed by 10981
Abstract
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach [...] Read more.
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) in capturing the seasonal and the annual variability of GPP estimates from an optimal network of 21 FLUXNET forest towers sites. The tested indices include the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation absorbed by plant canopies (FPAR). Our results indicated that single vegetation indices captured 50–80% of the variability of tower-estimated GPP, but no one index performed universally well in all situations. In particular, EVI outperformed the other MODIS products in tracking seasonal variations in tower-estimated GPP, but annual mean MODIS LAI was the best estimator of the spatial distribution of annual flux-tower GPP (GPP = 615 × LAI − 376, where GPP is in g C/m2/year). This simple algorithm rehabilitated earlier approaches linking ground measurements of LAI to flux-tower estimates of GPP and produced annual GPP estimates comparable to the MODIS 17 GPP product. As such, remote sensing-based estimates of GPP continue to offer a useful alternative to estimates from biophysical models, and the choice of the most appropriate approach depends on whether the estimates are required at annual or sub-annual temporal resolution. Full article
Show Figures

19 pages, 1384 KiB  
Article
Decadal Variations in NDVI and Food Production in India
by Cristina Milesi, Arindam Samanta, Hirofumi Hashimoto, K. Krishna Kumar, Sangram Ganguly, Prasad S. Thenkabail, Ashok N. Srivastava, Ramakrishna R. Nemani and Ranga B. Myneni
Remote Sens. 2010, 2(3), 758-776; https://doi.org/10.3390/rs2030758 - 11 Mar 2010
Cited by 64 | Viewed by 16274
Abstract
In this study we use long-term satellite, climate, and crop observations to document the spatial distribution of the recent stagnation in food grain production affecting the water-limited tropics (WLT), a region where 1.5 billion people live and depend on local agriculture that is [...] Read more.
In this study we use long-term satellite, climate, and crop observations to document the spatial distribution of the recent stagnation in food grain production affecting the water-limited tropics (WLT), a region where 1.5 billion people live and depend on local agriculture that is constrained by chronic water shortages. Overall, our analysis shows that the recent stagnation in food production is corroborated by satellite data. The growth rate in annually integrated vegetation greenness, a measure of crop growth, has declined significantly (p < 0.10) in 23% of the WLT cropland area during the last decade, while statistically significant increases in the growth rates account for less than 2%. In most countries, the decade-long declines appear to be primarily due to unsustainable crop management practices rather than climate alone. One quarter of the statistically significant declines are observed in India, which with the world’s largest population of food-insecure people and largest WLT croplands, is a leading example of the observed declines. Here we show geographically matching patterns of enhanced crop production and irrigation expansion with groundwater that have leveled off in the past decade. We estimate that, in the absence of irrigation, the enhancement in dry-season food grain production in India, during 1982–2002, would have required an increase in annual rainfall of at least 30% over almost half of the cropland area. This suggests that the past expansion of use of irrigation has not been sustainable. We expect that improved surface and groundwater management practices will be required to reverse the recent food grain production declines. Full article
(This article belongs to the Special Issue Global Croplands)
Show Figures

Figure 1

Back to TopTop